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Introduction

* Retiming is a transformation technique that is
used to change the locations of delay
elements in a circuit without changing its
functionality.

- Can be used to reduce the number of
registers, or the clock cycle

+ Could be considered as a generalization of the
pipelining technique studies earlier
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Retiming
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Definitions

* Mapping G to G,
* A retiming solution is a value r(V) for every
node in the graph.
+ w(e) is the original weight of the edge e
+ w,(e) is the weight in the retimed graph
- Edge eis fromU >V
w,(e)=w(e)+r(V)-r(U)
* A solution is feasible if all w, >0
» For previous example, r(1)=r(3)=r(4)=0, r(2)=-1
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Definitions

* The weight of a path froma fo b is

w,(p)=w(p)+r(b)-r(a)
» Retiming does not change the number of
delays in a cycle.

* Retiming does not change iteration
bound

* Adding a constant to all the r(V)
produce the same circuit
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Solving Systems of
Inequalities

* Draw the constraints graph
- Draw node 1 to N from the graph + node N+1
- For each inequality r-r; <k, (k is integer) draw an
edge from node j — i'with weight k
- For each node i=1,2,..N draw an edge N+1 — i with
weight O
+ Solve

- The system has a solution if the constraints graph
has no negative cycle.

- One solution is the min. length from node N+1 to i
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Example
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r-ry <5
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Example
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Cutset Retiming

* Cutset: A set of edges if removed, the graph
G is partitioned into 2 graphs 6,,6, .

* Cutset retiming is done by adding k delays to
all the edges in the cutset from 6, to G,, and
removing k delays from the edges from G, to
G

- min WEj<k< min we)

G, ——G, G,—>G,
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Cutset Retiming

- Cutset retiming is a special case of
retiming, where every node in 6, has a
retiming value of J, and every node in G,
has a retiming value of J*K'(jis
unimportant).
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Cutset Retiming

Of course we should not have any
negative delays after the
transformation.
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Cutset Retiming

« Pipelining is a special case where there are no
nodes from G, to G, (no loops).

* Cutset is combined with s/ow-down, where
first an N-slow-down version of the graph is
created by changing every D to ND, then
retiming is used.

+ With the N-slow-down version, the input is
slowed down too (N-1 null operation or O
samples must be interleaved with input data
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Example

y(n)=ay(n-2) + by(n-3) +x (n)
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100 stage lattice filter
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Example

X, y(n)
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X(n) Cl_\ y(n) x(n)
P R
Time Action Time Action Action
1 y(1)=ay(-1)+x(1) 1 y(1)=x(1)+w(0)  w(1)=ay(0)
2 2 Y(2)=x(2)+w(1)  w(2)=ay(1)
3 y(2)=ay(0)+x(2) 3 y(3)=x(3)+w(2)  w(3)=ay(2)
4 4 Y(A)=x(4)+w(3)  w(4)=ay(3)
5 y(3)=ay(1)+x(3) 5 y(5)=x(5)+w(4)  w(5)=ay(4)
6 6 y(6)=x(6)+w(5)  w(6)=ay(5)
7 y(4)=ay(2)+x(4) 7 Y(N)=x(7)+w(6)  w(7)=ay(6)
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Retiming for Period
Minimization

+ We can use retiming to minimize the period
(maximize the clock rate).

* The minimum period is the computation time
of the critical path

®(G) = max{t(p) : w(p) =0}
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Minimize Clock Period

- W(U,V) is the minimum number of
registers on any path from U —» V

* D(U,V) is the max. computation time
among all paths from U — V with weight
W(U,V)

W (U,V) = min{w(p) : pis a path from U to \V/}
D(U,V) = max{w(p) : pisa path from U to V,and w(p) =W (U,V)}
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Minimize Clock Period

1. Let M=nt,,,, wheret_ . is the max.
computation time of any node, n =number of
nodes

2. Form a new graph &'which is the same as &
except the edge weights are replaced by
w’(e)=Mw(e)-t(U) (e=U — V)

3. Solve for all-pairs shortest path on G' (S)

1. If U=V, then WU, V)=[S,/M]and
D(U,V)=MW(U,V)-S,,+t(V)
2. IF U=V, W(U,V)=0, D(U,V)=t(U)
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Example ven.-ves
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Example
12 5 7 15 01 1 2
s - 7 12 14 22 10 2 3
WTls —2 12 20 WUMI=I 0 0 3
5 -2 12 20 10 2 0
U=V W(U,V):FM&—‘,D(U,V):MW(U,V)—SUV+t(\/) 1433
U=V W(U,V)=0,DU,V)=t(U) DU.V) = 21 4 4
' 4 3 2 6
4 3 6 2
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Minimize Clock Period

+ After getting W(U,V),D(U,V) construct the
following set of constraints

* Feasibility constraints r(U)-r(V) <w(e) for
every edge in G

» Critical path constraint r(U)-r(V) < W(U,V)-1for
all nodes U,V in G such that D(U,V)>c (cycle
time).

+ Solve to get r(.) (retiming values)

wi(p)=w(p)+r(b)-r(a)
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Critical Path Constraints

©) r(1)-r(2) <0

ibili i r(2)-r(3) <1

Eiiﬁ;g Igltil Constraints 2 < 2

r(1)-r(4) <2 r(3)-r(1) <0

r(2)-r(1) <1 r(4)-r(1) <0

r(1)-r(2)<1 r(4)-r(3) <1
r(3)-r(2) <0
r(4)-r(2) <0
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Retiming for Register
Minimization
* The number of registers required to

implement the output edges of node v

Ry = Vmgx 7{Wr (e)}

—

* Minimize
COST = ¥Ry
Ry > w, (e) forallV and all edgesV ——?

r(U)-r(Vv) < w(e) for every edgeU ——V
r(U)-r(v)<w(U,V)-1forevery verticesU,V such that D(U,V) > ¢
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