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Iteration bound

• Iteration: execution of all computations 
in the algorithm once.

• Iteration period: the time required to 
perform the iteration (sample period).

• Feedback imposes an inherent bound on 
the iteration period,

• A characteristic of the representation 
of the algorithm (DFG).
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Iteration bound

• The feedback imposes an inherent 
fundamental lower bound on the 
achievable iteration period.

• It is not possible to achieve iteration 
period less than the iteration bound 
even if we have an infinite processing 
power.
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Iteration Bound
• Edges describe a precedence constraints 

both intra-iteration → and inter-iteration ⇒
• Critical path is the path with the longest 

computation time among all paths that 
contains no delay.

• For recursive DFG, there is a fundamental 
lower bound “iteration bound” T∞

• Loop bound: tl/wl, tl= loop computation time, wl
is the delay in the loop.
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Iteration Bound

• The edge from A to B enforces the intra 
iteration precedence, the kth iteration of A must 
be done before the kth iteration of B.

• The edge from B to A enforces the inter 
iteration precedence. The kth iteration of B must 
be executed before the (k+1)th iteration of A
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Critical path 6->3->2->1 = 5 tu

5->3->2->1 5 tu’s

Critical Path A->B 6 tu’s
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Iteration bound

• Precedence
A0 → B0 ⇒ A1 → B1 ⇒ A2 → B2 ⇒ A3 → B3
If 2D instead of D;  loop bound =6/2=3
A0 → B0 ⇒A2 → B2 ⇒ A4 → B4 ⇒ A6 → B6
A1 → B1 ⇒ A3 → B3 ⇒ A5 → B5 ⇒ A7 → B7
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Iteration bound

• Iteration bound

•
A B C(2)
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Longest path Matrix 
Algorithm “Iteration bound”

• A series of matrices are constructed 
L(m), m=1,2,..d, where d is the number of 
delays in the DFG.

• The value of        is the longest 
computation time of all paths from 
delay element di to delay element dj
that passes through m-1 delay elements, 
if no such path it is set to -1
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Longest path Matrix 
Algorithm “Iteration bound”

• High order matrices are computed
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Longest path Matrix 
Algorithm “Iteration bound”
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Longest path Matrix 
Algorithm “Iteration bound”
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The min. Cycle Mean 
Algorithm

• The cycle mean M(c), of a cycle c, is the 
average length of the edges in c. Calculated 
as the sum of weights of all edges divided by 
the number of edges in the cycle.

• The minimum cycle mean is the min of all c in 
the graph.

• The cycle means of a new graph Gd is used to 
calculate the iteration bound.
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The min. Cycle Mean 
Algorithm

• Construct a new graph Gd from G (SFG).
• A node in Gd for each delay element in G
• w(i,j) in Gd is the longest path in G between 

delay di to dj that dos not pass through any 
delay elements (zero-delay)

• If no such pass exist, the edge does not exist 
in Gd (L(1) in LPM).

• The maximum cycle mean in Gd is the iteration 
bound.
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• Construct the graph       from      by 
negating the values of the weights

• The maximum cycle mean of      is simple the 
minimum cycle mean of      multiplied by -1

• Find the maximum cycle mean of  
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The min. Cycle Mean 
Algorithm

• Choose any node arbitrarily and set
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Example

1
(1)

2
(2)

3
(1)

4
(1)

5
(2)

6
(1)

D d2
D d1

7
(1)

York University CSE

Multirate DFG

• Change the MRDFG into SRDFG
• Calculate the iteration bound of the 

SRDFG, which is the same as the 
iteration bound of the MRDFG


