
Fall 07 CSE4201

CSE4201
Computer Architecture

Virtual memory
Slides are based on slides by Prof.
Shaaban (RIT) and Prof. Paterson

(UCB)

Fall 07 CSE4201

Virtual Memory

°Virtual memory first used to relive
programmers from the burden of
managing overlays.

°Later, it was used to share memory
between processes.

°Also used to allow the program to be
relocated (to run in a different
physical space than the one it was
compiled for).

Fall 07 CSE4201

Virtual Memory

° Each process has its own private “virtual address
space” For example, the CPU issues a 32-bit
memory address

° Each computer has a “physical address space”
(e.g., 512 MegaBytes DRAM); 29 bits and not all of
the RAM will be available for a single process.

° Address translation: mapping virtual to physical
• Allows multiple programs to use (different

chunks of physical) memory at same time
• Also allows some chunks of virtual memory to

reside on disk, (to exploit memory hierarchy)
• Compiler generate addresses independent of

the physical memory size.

Fall 07 CSE4201

Virtual Memory

° A program can be run in any location in
main memory or disk by using a
relocation/mapping mechanism controlled
by the operating system which maps the
address from virtual address space (logical
program address) to physical address
space (main memory, disk).

° A program code/data block needed for
process execution and not present in main
memory result in a page fault (address fault)
and the page has to be loaded into main
memory by the OS from disk (demand
paging).

Fall 07 CSE4201

Mapping Physical Memory to Physical Memory

° Divide Memory into equal sized
“chunks” (say, 4KB each)

° Any chunk of Virtual Memory assigned to
any chunk of Physical Memory (“page”)

0

Physical Memory

∞Virtual Memory

Heap

0

Stack

Heap

Static

Code

Single
Process

64 MB

Fall 07 CSE4201

Paging vs. Segmentation

Fall 07 CSE4201

VM vs. Cache

Fall 07 CSE4201

Mapping Physical Memory to Physical Memory

Virtual Page Number Page Offset

Page OffsetPhysical Page Number

Translation

29 28 27 .………………….12 11 10

9 8 ……..……. 3 2 1 0

Virtual Address

Physical Address
9 8 ……..……. 3 2 1 0

1KB page
size

31 30 29 28 27 .………………….12 11 10

Fall 07 CSE4201

° A page fault is like a cache miss
• Must find page in lower level of hierarchy

° If valid bit is zero, the Physical Page Number points
to a page on disk

° When OS starts new process, it creates space on
disk for all the pages of the process, sets all valid
bits in page table to zero, and all Physical Page
Numbers to point to disk

• called Demand Paging - pages of the process are loaded
from disk only as needed

Handling Page Faults

Fall 07 CSE4201

° Cache Virtual Memory
° Block or Line Page
° Miss Page Fault
° Block Size: 32-64B Page Size: 4K-16KB
° Placement: Fully Associative

Direct Mapped,
N-way Set Associative

° Replacement: Least Recently Used
LRU or Random (LRU) approximation

° Write Thru or Back Write Back
° How Managed: Hardware + Software

Hardware (Operating System)

Cache vs. Virtual Memory

Fall 07 CSE4201

° Where can a block be placed in MM?
• Since the miss penalty (page miss) is sever,

lower miss rate is the main concern.
• A block can be placed anywhere in the main

memory.
• Similar to fully associative cache

Virtual Memory

Fall 07 CSE4201

° How is a block found if it is in the MM?
• A data structure is used to translate between

virtual and physical address
• For paging, the virtual address is composed of a

page number and an offset in the page.
• The page number is used to index a page table,

that gives the beginning physical address of the
page.

• That address concatenated with the offset
produces the physical address.

Virtual Memory

Fall 07 CSE4201

° Want fully associative page placement
° How to locate the physical page?
° Search impractical (too many pages)
° A page table is a data structure which contains the

mapping of virtual pages to physical pages
• There are several different ways, all up to the operating

system, to keep this data around

° Each process running in the system has its own
page table

Address Translation

Fall 07 CSE4201

Address Translation: Page Table
Virtual Address (VA):

virtual page nbr offset

Page Table
Register

Page Table
is located
in physical
memory

index
into
page
table

+

Physical
Memory

Address (PA)

Access Rights: None, Read Only,
Read/Write, Executable

Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

0 A.R.

V A.R. P. P. N.

...

...

disk

Fall 07 CSE4201

° A page fault is like a cache miss
• Must find page in lower level of hierarchy

° If valid bit is zero, the Physical Page Number points
to a page on disk

° When OS starts new process, it creates space on
disk for all the pages of the process, sets all valid
bits in page table to zero, and all Physical Page
Numbers to point to disk

• called Demand Paging - pages of the process are loaded
from disk only as needed

Handling Page Faults

Fall 07 CSE4201

Optimizing for Space
° Page Table too big!

• 4GB Virtual Address Space ÷ 4 KB page
⇒ 220 (~ 1 million) Page Table Entries
⇒ 4 MB just for Page Table of single process!

° Variety of solutions to tradeoff Page Table
size for slower performance when miss
occurs in TLB

Use a limit register to restrict page table size and
let it grow with more pages,Multilevel page table,
Paging page tables, etc.

Fall 07 CSE4201

° Problem: Virtual Memory requires two memory accesses!
• one to translate Virtual Address into Physical Address (page table

lookup)
• one to transfer the actual data (cache hit)
• But Page Table is in physical memory!

° Observation: since there is locality in pages of data, must be
locality in virtual addresses of those pages!

° Why not create a cache of virtual to physical address
translations to make translation fast? (smaller is faster)

° For historical reasons, such a “page table cache” is called a
Translation Lookaside Buffer, or TLB

How to Translate Fast?

Fall 07 CSE4201

Virtual Physical Valid Ref Dirty Access
Page Nbr Page Nbr Rights

•TLB just a cache of the page table mappings

• Dirty: since use write back, need to know whether or
not to write page to disk when replaced
• Ref: Used to calculate LRU on replacement

• TLB access time comparable to cache
(much less than main memory access time)

“tag” “data”

TLB

Fall 07 CSE4201

•TLB is usually small, typically 32-4,096 entries

• Like any other cache, the TLB can be fully
associative, set associative, or direct mapped

Processor TLB Cache Main
Memory

misshit

data

hit

miss

Disk
Memory

OS Fault
Handler

Page
Table

data

virtual
addr.

physical
addr.

Translation

Fall 07 CSE4201

° Which block should be replaced?
° To minimize page fault, LRU is used
° A use bit or reference bit is used (in the

page table), logically set when the page is
referenced.

° Periodically, the OS clears the reference bit
and later record them to know least-recently
used page.

Replacement

Fall 07 CSE4201

° What happens on writes?
° It would be crazy to do write-through
° A dirty bit is used to minimize writing on

replacement.

Writes?

Fall 07 CSE4201

° Programs that are block structured may include
procedures or functions which call each other.

° The set of logically related contiguous data
elements are referred to as a segment.

° Segments are allowed to grow and shrink almost
arbitrarily, unlike pages which have fixed size.

° Addresses are defined as (<s>,<i>), s is
translated into a segment address by the OS.

° Segmentation is a possibility since the segment
size varies.

Segmented Memory System

Fall 07 CSE4201

Address
Space name
similar to PID

Send the virtual address to be compared
with all tags (fully associative)

Check for memory access violation

There are 128 entries in the TLB, tag comparison results
in choosing one (128:1 MUX), produces high order bits
of physical address

Alpha 21264 Data TLB

Fall 07 CSE4201

° Bigger pages
• Small size of page table (small number of

pages)
• Transferring from and to desk is more efficient

for large page sizes.
• Large pages means reducing TLD misses

° Smaller pages
• Less wasted space per page (internal

fragmentation), as opposed to external
fragmentation for segmented virtual memory

Page Size

