
Fall 07 CSE4201

COSC4201
Instruction Level Parallelism

Dynamic Scheduling

Prof. Mokhtar Aboelaze

Parts of these slides are taken from Notes by
Prof. David Patterson (UCB)

Fall 07 CSE4201

Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example

Fall 07 CSE4201

Introduction
° In dynamic scheduling, the hardware rearranges

the instruction execution to reduce stalls.
° Can handle cases where dependence is not known

during compile time (memory reference).
° Simplifies the compiler
° Can tolerate unpredictable cases (cache miss).
° Speculation is based on dynamic scheduling.
° Can allow code compiled and for another pipeline

to run efficiently on any pipeline

Fall 07 CSE4201

Dynamic Scheduling – The idea

° DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

° SUB can not be issued because of the dependence
of ADD on DIV, although there is no data
dependence to prevent issuing it.

° In a classical pipeline, structural and data hazard
are checked in the ID stage.

° Here we must separate between checking for
structural hazards, and waiting for the absence of
data hazard.

° In-order issue, but instructions starts executions
soon as its data operands are available.

Fall 07 CSE4201

Dynamic Scheduling – The Idea

° Will distinguish when an instruction begins
execution and when it completes execution;
between 2 times, the instruction is in
execution

° May create WAR and WAW hazards
DIV.D F0,F2,F4

ADD.D F6,F0,F8

SUB.D F8,F10,F16

MUL.D F6,F10,F8

° Exceptions?

Fall 07 CSE4201

Dynamic Scheduling – The Idea

° The ID stage is split into two stages
• Issue – Decode and check for structural hazards
• Read operands – Wait until there is no dat

hazards, then read operand

° Before the ID stage, there is an instruction
fetch stage that can fetch in a queue or a
register.

° All instructions pass through the issue
stage in order

Fall 07 CSE4201

Tomasulo’s Algorithm

° Control & buffers distributed with Function Units
(FU)

• FU buffers called “reservation stations”; have pending
operands

° Registers in instructions replaced by values or
pointers to reservation stations(RS); called register
renaming ;

• Renaming avoids WAR, WAW hazards
• More reservation stations than registers, so can do

optimizations compilers can’t
° Results to FU from RS, not through registers, over

Common Data Bus that broadcasts results to all
FUs

• Avoids RAW hazards by executing an instruction only
when its operands are available

° Load and Stores treated as FUs with RSs as well
° Integer instructions can go past branches (predict

taken), allowing FP ops beyond basic block in FP
queue

Fall 07 CSE4201

Tomasulo’s Algorithm

° RS fetches operands as soon as they are
available (no need to read them froma register).

° Pending instructions eliminates.
° Pending instructions designate the RS’s that

will provide their inputs.
° When successive writes to the same register,

only the last one is actually written to the
register.

° Common data bus CDB is used to bypass
registers in operand fetching.

Fall 07 CSE4201

Tomasulo’s algorithm in MIPS

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

From Add
unit

From
Add unit

Fall 07 CSE4201

Reservation Station

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

• Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source
registers (value to be written)

• Note: Qj,Qk=0 => ready
• Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy
Register result status—Indicates which functional
unit will write each register, if one exists. Blank
when no pending instructions that will write that
register.

Fall 07 CSE4201

Tomasulo’s Algorithm

° The load and store buffers each have a field
A which holds the results of the effective
address (initially, the immediate field is
stored).

Fall 07 CSE4201

Tomasulo’s Algorithm

Stages
1. Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

° Normal data bus: data + destination (“go to” bus)
° Common data bus: data + source (“come from” bus)

• 64 bits of data + 4 bits of Functional Unit source address
• Write if matches expected Functional Unit (produces result)
• Does the broadcast

Fall 07 CSE4201

Tomasulo’s Algorithm

° Loads and stores require two-step
execution (calculating effective address and
load/store).

° Loads and stores are kept in program order
° To preserve exception behavior, no

instruction is allowed to initiate execution
until all branches that precede it in program
order have completed.

