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Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and 

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example
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Introduction
° In dynamic scheduling, the hardware rearranges 

the instruction execution to reduce stalls.
° Can handle cases where dependence is not known 

during compile time (memory reference).
° Simplifies the compiler
° Can tolerate unpredictable cases (cache miss).
° Speculation is based on dynamic scheduling.
° Can allow code compiled and for another pipeline 

to run efficiently on any pipeline
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Dynamic Scheduling – The idea

° DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

° SUB can not be issued because of the dependence 
of ADD on DIV, although there is no data 
dependence to prevent issuing it.

° In a classical pipeline, structural and data hazard 
are checked in the ID stage.

° Here we must separate between checking for 
structural hazards, and waiting for the absence of 
data hazard.

° In-order issue, but instructions starts executions 
soon as its data operands are available. 
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Dynamic Scheduling – The Idea

° Will distinguish when an instruction begins 
execution and when it completes execution; 
between 2 times, the instruction is in 
execution

° May create  WAR and WAW hazards
DIV.D F0,F2,F4

ADD.D F6,F0,F8

SUB.D F8,F10,F16

MUL.D F6,F10,F8

° Exceptions?
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Dynamic Scheduling – The Idea

° The ID stage is split into two stages
• Issue – Decode and check for structural hazards
• Read operands – Wait until there is no dat

hazards, then read operand

° Before the ID stage, there is an instruction 
fetch stage that can fetch in a queue or a 
register.

° All instructions pass through the issue
stage in order
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Tomasulo’s Algorithm

° Control & buffers distributed with Function Units 
(FU)

• FU buffers called “reservation stations”; have pending 
operands

° Registers in instructions replaced by values or 
pointers to reservation stations(RS); called  register
renaming ; 

• Renaming avoids WAR, WAW hazards
• More reservation stations than registers, so can do 

optimizations compilers can’t
° Results to FU from RS, not through registers, over 

Common Data Bus that broadcasts results to all 
FUs

• Avoids RAW hazards by executing an instruction only 
when its operands are available

° Load and Stores treated as FUs with RSs as well
° Integer instructions can go past branches (predict 

taken), allowing FP ops beyond basic block in FP 
queue
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Tomasulo’s Algorithm

° RS fetches operands as soon as they are 
available (no need to read them froma register).

° Pending instructions eliminates.
° Pending instructions designate the RS’s that 

will provide their inputs.
° When successive writes to the same register, 

only the last one is actually written to the 
register.

° Common data bus CDB is used to bypass 
registers in operand fetching.
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Tomasulo’s algorithm in MIPS
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Reservation Station

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

• Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source 
registers (value to be written)

• Note: Qj,Qk=0 => ready
• Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy
Register result status—Indicates which functional 
unit will write each register, if one exists. Blank 
when no pending instructions that will write that 
register.
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Tomasulo’s Algorithm

° The load and store buffers each have a field 
A which holds the results of the effective 
address (initially, the immediate field is 
stored).
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Tomasulo’s Algorithm

Stages
1. Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

° Normal data bus: data + destination (“go to” bus)
° Common data bus: data + source (“come from” bus)

• 64 bits of data + 4 bits of Functional Unit  source address
• Write if matches expected Functional Unit (produces result)
• Does the broadcast
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Tomasulo’s Algorithm

° Loads and stores require two-step 
execution (calculating effective address and 
load/store).

° Loads and stores are kept in program order
° To preserve exception behavior, no 

instruction is allowed to initiate execution 
until all branches that precede it in program 
order have completed.


