
Fall 07 CSE4201

Compiler Optimization

° Compiler can help in reducing cache miss
° Merging Arrays: Improve spatial locality by single 

array of compound elements vs. 2 arrays.

° Loop Interchange: Change nesting of loops to 
access data in the order stored in memory.

° Loop Fusion: Combine 2 or more independent 
loops that have the same looping and some 
variables overlap.

° Blocking: Improve temporal locality by accessing 
“blocks” of data repeatedly vs. going down whole 
columns or rows



Fall 07 CSE4201

Merging Arrays

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflict between val and key and reduces compulsory 
misses if they are accessed in the same pattern



Fall 07 CSE4201

Interchanging Loops

° Assume row-major matrix allocation
/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through 
memory every 100 words in this case improves 
spatial locality (reduces compulsory misses)



Fall 07 CSE4201

Loop Fusion

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}



Fall 07 CSE4201

Blocking

for (i = 0; i < 12; i = i+1)
for (j = 0; j < 12; j = j+1)

{r = 0;
for (k = 0; k < 12; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

/* After Blocking */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};


