
Fall 07 CSE4201

COSC4201
Multiprocessors

Prof. Mokhtar Aboelaze

Parts of these slides are taken from Notes by
Prof. David Patterson (UCB)

Fall 07 CSE4201

Multiprocessing

° We are dedicating all of our future product
development to multicore designs. We
believe this is a key inflection for the
industry

Intel President Paul Otellini 2005

Fall 07 CSE4201

Introduction

° Microprocessors are getting more and more
complex. Can we sustain the 2X/1.5Y
anymore?

° The major obstacle for parallel processing
is the software. Servers exhibits parallelism
that could be exploited using
multiprocessors.

° ILP is limited by the application (even if we
have unlimited issues.

° Vector processors is very good for
scientific applications, but not very useful in
desktops or servers.

Fall 07 CSE4201

130 W592 M
423
mm2

1.69 int.
2 FP

6/5/11Statically scheduled
VLIW-style

Intel
Itanium 2

80W
(est.)

200 M
300
mm2

(est.)

1.96 int.
2 FP

8/4/8Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

IBM
Power5
(1 CPU
only)

104 W114 M
115
mm2

2.86 int.
3 FP

3/3/4Speculative
dynamically
scheduled

AMD
Athlon 64

FX-57

115 W125 M
122
mm2

3.87 int.
1 FP

3/3/4Speculative
dynamically

scheduled; deeply
pipelined; SMT

Intel
Pentium 4
Extreme

PowerTransi
s-tors

Die
size

Clock
Rate
(GHz)

FUFetch /
Issue /

Execute

Micro architectureProcessor

Fall 07 CSE4201

Definitions

° Flynn’s classification
• Single instruction stream, single data stream SISD

- Uniprocessor
• Single instruction stream, multiple data streams SIMD

- Same instruction is sent to every processor, Illiac IV
• Multiple instruction stream, single data stream MISD

- No commercial multiprocessor ever built Systolic arrays?
• Multiple instruction stream, multiple data stream MIMD

- Each processor has its own instruction and data, IBM
SP2, NCUBE, SUN T1 (8 processors, 32 threads)

Fall 07 CSE4201

Definition

° In MIMD, each processor is executing its
own instruction stream.

° Multiple processors executing a single
program sharing code and data (threads).

° The term threads sometimes is loosely
defined to include processes not sharing
address space.

° The thread could be a function or a
subroutine written by the programmer, or
one iteration of a loop extracted by the
compiler.

Fall 07 CSE4201

Centralized Shared Memory

Relatively small number of processors
Processors share a single centralized (maybe interleaved or banked)

memory
An interconnection network (maybe a bus) is used to access the

memory
Also known as shared memory multiprocessors SMP and the style is

known as UMA (uniform memory access)

P1

$

Inter connection network

$

Mem I/O

Pn

Fall 07 CSE4201

Distributed Memory Multiprocessors

° Can support a larger number of processors than SMP.
° Usually a better-than-bus interconnection network is used.
° Every processor has its own memory and I/O
° Local memory is accessed faster than remote memory (message

passing or shared memory?)

P1

$

Inter connection network

Mem
I/O

Pn

$
Mem

I/O

. . .

Fall 07 CSE4201

Models for Communication and Memory

° Communication occurs through a shared
address space (memories could be
physically separate, but logically form a
single memory). DSM, or NUMA.

° The same physical address means the same
thing at each processor.

° Message Passing Multiprocessors: each
processor has its own memory,
communication is performed by passing
messages between processors.

° Communication can be performed from the
reader or writer point of view.

Fall 07 CSE4201

Performance Metrics

° Communication bandwidth:
• Ideally it should be determined by the

processor, memory, and interconnection
network bandwidth.

• The architecture of the node, and the
communication mechanism may affect the
bandwidth.

• Buffer management and resource occupancy
can affect bandwidth

Fall 07 CSE4201

Performance Metrics

° Communication latency:
• The latency is sender overhead, + receiver

overhead + time of flight + transmission time
• Time of flight, and transmission time are fixed.
• The overhead at both sender and receiver (H/W

and S/W) determine the latency.
• Overhead includes naming (remote addresses),

protection handling, and communication
mechanism.

• Does it include O/S or not ?

Fall 07 CSE4201

Performance Metrics

° Communication latency Hiding:
• How will we can hide latency?
• Can we overlap communication with

computation or another communication?
• Application dependent

Fall 07 CSE4201

Compariosn

° Shared Memory
• Compatibility with the

well-understood model
• Ease of programming
• Lower overhead for

small amount of data
transfer

• The ability to use
hardware controlled
caching

° Message Passing
• Simpler hardware

especially compared to
supporting coherent
caching for remote data.

• Communication is
explicit, simpler to
understand

• Explicit communication
focuses programmer
attention on it.

• Easier to do sender
initiated communication

Fall 07 CSE4201

Array sum: Message Passing

#define ASIZE 1024

#define NUMPROC 4

double myArray[ASIZE/NUMPROC];

double mySum=0;

for(i=0;i<ASIZE/NUMPROC;i++)

mySum+=myArray[i];

if(myPID=0){

for(int
p=1;p<NUMPROC;p++){

int pSum;

recv(p,pSum);

mySum+=pSum;

}

printf(“Sum:
%lf\n”,mySum);

}else

send(0,mySum);

Fall 07 CSE4201

Array Sum: Shared Memory

#define ASIZE 1024

#define NUMPROC 4

shared double array[ASIZE];

shared double allSum=0;

shared mutex sumLock;

double mySum=0;

for(int
i=myPID*ASIZE/NUMPROC;i<(
myPID+1)*ASIZE/NUMPROC;i+
+)

mySum+=array[i];

lock(sumLock);

allSum+=mySum;

unlock(sumLock);

if(myPID=0)

printf(“Sum:
%lf\n”,allSum);

Fall 07 CSE4201

Implementation

° The desired communication model can be
created on top of a hardware model that
supports either.

° Supporting message passing using shared
memory is easing, message passing is
simply copying data between 2 locations
(How to deal with a memory system that is
oriented towards transfer of cache lines?
Performance degradation).

° Supporting shared memory on top of
message passing is not easy. All shared
memory reference must involve the
operating system for translation and
memory protection.

Fall 07 CSE4201

Workload
° Commercial Workload
° Online Transaction-Processing (OLTP)

• Using Oracle 7.3.2
• Clients generating requests and servers

responding to them

° Decision Support System (DSS)
• Using also Oracle 7.3.2
• Parallelism within and across queries

° Web index search (AltaVista)
• Search on a mapped version of the AltaVista

database

Fall 07 CSE4201

Workload

° Scientific
° FFT Kernel
° LU Kernel
° Barnes Application

• n-body algorithm

° Ocean application
• Simulates eddy and boundary currents on large-

scale flow in the ocean
• Solve elliptical partial differential equations

using Gauss Seidel multigrid technique

Fall 07 CSE4201

Computation/Communication

° Computation to communication ratio
determine the speedup in multiprocessors.

° Also the scaling of computation and
communication vs. the number of
processors.

° Assume p is the number of processors and
n is the problem size

Fall 07 CSE4201

n/pOcean

(nlogn)/pBarnes

n/pLU

log nn/p(nlogn)/pFFT

Scaliong of
Com/Com

Scaling of
communicatio
n

Scaling of
computation

Application

p
n

p
n≈

p
n

p
n

p
n

p
nn log

Fall 07 CSE4201

Symmetric Shared Memory

° For symmetric shared memory
multiprocessors, the memory is equally
accessible by all the processors.

° Memory bandwidth is usually a problem
with SMP

° To alleviate the bandwidth problem, caches
are used.

° Private and Shared data are cached
° Cache coherence problem

Fall 07 CSE4201

SMP

I/O devices

Memory

P1

$ $ $

P1 P1

Fall 07 CSE4201

Cache Coherence

° A memory system is coherent if
1. A read by P to location X that follows a write by

P to location X with no writes to X in between (by
any processor) returns the value written by P.

2. A read by processor p1 to X that follows a write
by P2 to X returns the value written by P2 if the
read and write are sufficiently separated in time,
and no other writes to X occurred between the
two accesses.

3. Writes to the same location are serialized Two
writes by two processors to the same location
are seen in the same order by all processors

Fall 07 CSE4201

Write Consistency

° For now assume
1.A write does not complete (and allow the next write

to occur) until all processors have seen the effect
of that write

2.The processor does not change the order of any
write with respect to any other memory access

⇒ if a processor writes location A followed by
location B, any processor that sees the new value
of B must also see the new value of A

° These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

Fall 07 CSE4201

Cache Coherence

° In coherent multiprocessors, the cache
provide both migration and replication of
shared data items

° Migration: Data can move from the main
memory to the cache for faster access (and
less memory B.W.)

° Replication: An item may reside in more
than one cache where it will be read by
many processors without consuming
memory bandwidth.

Fall 07 CSE4201

Example

I/O devices

$ $

2 P

1

U=5

2

U=5

3

u= 7

4

u = ?

5

u = ?

Assuming a write back cache

Different processors see different values for the same
variable

Fall 07 CSE4201

Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

2. Snooping — Every cache with a copy of data also
has a copy of sharing status of block, but no
centralized state is kept

• All caches are accessible via some broadcast
medium (a bus or switch)

• All cache controllers monitor or snoop on the
medium to determine whether or not they
have a copy of a block that is requested on a
bus or switch access

Fall 07 CSE4201

Snoopy Cache Coherence Protocol

° Cache Controller “snoops” all transactions on the shared
medium (bus or switch)

• relevant transaction if for a block it contains
• take action to ensure coherence

- invalidate, update, or supply value
• depends on state of the block and the protocol

° Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Fall 07 CSE4201

Snoopy Cache Coherence Protocols

° Must invalidate before step 3
° Write update uses more broadcast

medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

Fall 07 CSE4201

Comparison

° Multiple writes to the same word with no
intervening reads require multiple write
broadcast for an update protocol, and one
invalidate for invalidate protocols.

° With multiword cache blocks, write to
multiple words (bytes) in the same line
require multiple broadcast, while only one
invalidate (assuming no intervening reads).

° The delay between writing a word in a
processor, and reading it by another
processor is less in write update

Fall 07 CSE4201

Implementation Techniques

° A shared bus
° All processors continuously snoop on the bus

checking if the address on the bus is in their cache
or not.

° A shared bus enforces serialization
° We need to locate the requested data.

• In a write through, the memory
• Ina write back, may be another processor

° For writes, we need to know if there are other
copies shared of the block or not.

• If yes, we have to invalidate on a write
• If not, no invalidation is necessary

Fall 07 CSE4201

Resources

° Normal cache tags can be used for
snooping

° Valid bit per block makes invalidation easy
° Read misses easy since rely on snooping
° Writes ⇒ Need to know if know whether any

other copies of the block are cached
• No other copies ⇒ No need to place write on

bus for WB
• Other copies ⇒ Need to place invalidate on bus

Fall 07 CSE4201

Resources

° To track whether a cache block is shared,
add extra state bit associated with each
cache block, like valid bit and dirty bit

• Write to Shared block ⇒ Need to place
invalidate on bus and mark cache block as
private (if an option)

• No further invalidations will be sent for that
block

• This processor called owner of cache block
• Owner then changes state from shared to

unshared (or exclusive)

Fall 07 CSE4201

Example Protocol
° Invalidation protocol, write-back cache

• Snoops every address on bus
• If it has a dirty copy of requested block, provides that block

in response to the read request and aborts the memory
access

° Each memory block is in one state:
• Clean in all caches and up-to-date in memory (Shared)
• OR Dirty in exactly one cache (Exclusive)
• OR Not in any caches

° Each cache block is in one state (track these):
• Shared : block can be read
• OR Exclusive : cache has only copy, its writeable, and dirty
• OR Invalid : block contains no data (in uniprocessor cache

too)

° Read misses: cause all caches to snoop bus
° Writes to clean blocks are treated as misses

Fall 07 CSE4201

Write Back: CPU requests
CPU Read hit

° State machine
for CPU
requests
for each
cache block

° Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Fall 07 CSE4201

Write Back: Bus requests

° State machine
for bus
requests
for each

cache block
Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Fall 07 CSE4201

Write Back: Block Replacement

° State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Fall 07 CSE4201

Write Back: Write Back Cache

Place read miss
on bus

° State machine
for CPU requests
for each
cache block and
for bus requests
for each

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

