
Fall 07 CSE4201

COSC4201
Limits on Instruction Level Parallelism

Prof. Mokhtar Aboelaze

Parts of these slides are taken from Notes by
Prof. David Patterson at UCB

Fall 07 CSE4201

Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example

Fall 07 CSE4201

Limits to ILP
° Conflicting studies of amount

• Benchmarks (vectorized Fortran FP vs. integer C programs)
• Hardware sophistication
• Compiler sophistication

° How much ILP is available using existing
mechanisms with increasing HW budgets?

° Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

• Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
• Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
• Motorola AltaVec: 128 bit ints and FPs
• Supersparc Multimedia ops, etc.

Fall 07 CSE4201

Overcoming Limits

° Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

° However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

Fall 07 CSE4201

Limits to ILP
Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions
(FP *,/); unlimited instructions issued/clock cycle;

Fall 07 CSE4201

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectCache

2% to 6%
misprediction
(Tournament
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias
Analysis

4InfiniteInstructions Issued
per clock

200InfiniteInstruction Window
Size

48 integer +
40 Fl. Pt.

InfiniteRenaming
Registers

Power 5Model
Limits to ILP HW Model comparison

Fall 07 CSE4201

Upper Limit to ILP: Ideal Machine
(Figure 3.1)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Fall 07 CSE4201

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4InfiniteInfinite

200InfiniteInfinite, 2K, 512,
128, 32

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model
Limits to ILP HW Model comparison

Fall 07 CSE4201

55
63

18

75

119

150

36 41

15

61 59 60

10 15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Inf inite 2048 512 128 32

More Realistic HW: Window Impact
Change from Infinite window 2048, 512, 128, 32

IP
C

Fall 07 CSE4201

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model
Limits to ILP HW Model comparison

Fall 07 CSE4201

35

41

16

61
58

60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Change from Infinite window to examine to 2048 and
maximum issue of 64 instructions per clock cycle

IP
C

Fall 07 CSE4201

Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%
3% 2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

pr
ed

ic
tio

n
R

at
e

Profile-based 2-bit counter Tournament

Fall 07 CSE4201

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect

Tournament Branch
Predictor

Perfect8K 2-bit

48 integer +
40 Fl. Pt.

InfiniteInfinite v. 256,
128, 64, 32, none

Power 5ModelNew Model
Limits to ILP HW Model comparison

Fall 07 CSE4201

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

More Realistic HW: Renaming Register
Change 2048 instr window, 64 instr issue, 8K 2
level Prediction

IP
C

Fall 07 CSE4201

64KI, 32KD,
1.92MB L2, 36
MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window
Size

Instruction
s Issued
per clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect v.
Stack v.
Inspect v.
none

TournamentPerfect8K 2-bit

48 integer +
40 Fl. Pt.

Infinite256 Int + 256
FP

Power 5ModelNew
Model

Limits to ILP HW Model comparison

Fall 07 CSE4201

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4 5 4 4
6 5

3
5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW: Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr issue,
8K 2 level Prediction,
256 renaming registers

IP
C

Fall 07 CSE4201

64KI, 32KD,
1.92MB L2, 36
MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window
Size

Instruction
s Issued
per clock

4Infinite64 (no
restrictions)

200InfiniteInfinite vs.
256, 128, 64,
32

PerfectPerfectHW
disambiguati
on

TournamentPerfect1K 2-bit

48 integer +
40 Fl. Pt.

Infinite64 Int + 64 FP

Power 5ModelNew
Model

Limits to ILP HW Model comparison

Fall 07 CSE4201

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
Perfect disambiguation (HW), 1K Selective
Prediction, 16 entry return, 64 registers, issue as
many as window

IP
C

Fall 07 CSE4201

How to Exceed ILP Limits of this study?

° These are not laws of physics; just
practical limits for today, and perhaps
overcome via research

° Compiler and ISA advances could change
results

° WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

• Can get conflicts via allocation of stack frames
as a called procedure reuses the memory
addresses of a previous frame on the stack

Fall 07 CSE4201

HW v. SW to increase ILP
° Memory disambiguation: HW best
° Speculation:

• HW best when dynamic branch prediction better
than compile time prediction

• Exceptions easier for HW
• HW doesn’t need bookkeeping code or

compensation code
• Very complicated to get right

° Scheduling: SW can look ahead to schedule better
° Compiler independence: does not require new

compiler, recompilation to run well

Fall 07 CSE4201

Performance beyond single thread ILP

° There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

° Explicit Thread Level Parallelism or Data Level
Parallelism

° Thread: process with own instructions and data
• thread may be a process part of a parallel program of

multiple processes, or it may be an independent program
• Each thread has all the state (instructions, data, PC,

register state, and so on) necessary to allow it to execute

° Data Level Parallelism: Perform identical operations
on data, and lots of data

Fall 07 CSE4201

Thread Level Parallelism (TLP)

° ILP exploits implicit parallel operations
within a loop or straight-line code segment

° TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

° Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

° TLP could be more cost-effective to exploit
than ILP

Fall 07 CSE4201

New Approach: Mulithreaded Execution
° Multithreading: multiple threads to share the

functional units of 1 processor via overlapping
• processor must duplicate independent state of

each thread e.g., a separate copy of register file, a
separate PC, and for running independent
programs, a separate page table

• memory shared through the virtual memory
mechanisms, which already support multiple
processes

• HW for fast thread switch; much faster than full
process switch ≈ 100s to 1000s of clocks

° When switch?
• Alternate instruction per thread (fine grain)
• When a thread is stalled, perhaps for a cache miss,

another thread can be executed (coarse grain)

Fall 07 CSE4201

Fine-Grained Multithreading
° Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

° Usually done in a round-robin fashion, skipping any
stalled threads

° CPU must be able to switch threads every clock
° Advantage is it can hide both short and long stalls,

since instructions from other threads executed
when one thread stalls

° Disadvantage is it slows down execution of
individual threads, since a thread ready to execute
without stalls will be delayed by instructions from
other threads

° Used on Sun’s Niagara (will see later, if time
permits)

Fall 07 CSE4201

Course-Grained Multithreading

° Switches threads only on costly stalls, such as L2 cache
misses

° Advantages
• Relieves need to have very fast thread-switching
• Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

° Disadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs

• Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

• New thread must fill pipeline before instructions can
complete

° Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

° Used in IBM AS/400

For most apps, most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

Fall 07 CSE4201

Do both ILP and TLP?
° TLP and ILP exploit two different kinds of

parallel structure in a program
° Could a processor oriented at ILP to exploit

TLP?
• functional units are often idle in data path

designed for ILP because of either stalls or
dependences in the code

° Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

° Could TLP be used to employ the functional
units that would otherwise lie idle when
insufficient ILP exists?

Fall 07 CSE4201

Simultaneous Multi-threading ...
° Simultaneous Multithreading (SMT) is a

variation of multithreading that uses
resources of a multiple-issue, dynamically
scheduled processor to exploit both TLP
and ILP.

° Modern processors have more functional
units than a single thread can utilize.

° These functional units could be used to run
instructions from different threads
simultaneously.

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

Fall 07 CSE4201

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

