C0OSC4201
Limits on Instruction Level Parallelism

Prof. Mokhtar Aboelaze

Parts of these slides are taken from Notes by
Prof. David Patterson at UCB

Fall 07 CSE4201

Outline

° Data dependence and hazards

° Exposing parallelism (loop unrolling and
scheduling)

° Reducing branch costs (prediction)
° Dynamic scheduling

° Speculation

° Multiple issue and static scheduling
° Advanced techniqgues

° Example

Fall 07 CSE4201

Limits to ILP

> Conflicting studies of amount

« Benchmarks (vectorized Fortran FP vs. integer C programs)
« Hardware sophistication
« Compiler sophistication

°How much ILP is available using existing
mechanisms with increasing HW budgets?

°Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

Motorola AltaVec: 128 bit ints and FPs

Supersparc Multimedia ops, etc.
Fall 07 CSE4201

Overcoming Limits

> Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

°However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

Fall 07 CSE4201

.. Il E
Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming — infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions

3. Jump prediction — all jumps perfectly predicted
(returns, case statements)

2 & 3 = no control dependencies; perfect speculation
& an unbounded buffer of instructions available

4. Memory-address alias analysis —addresses known
& aload can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions

(FP *,/); unlimited instructions issued/clock cycle;
Fall 07 CSE4201

Instructions Issued | Infinite 4

per clock

Instruction Window | Infinite 200

Size

Renaming Infinite 48 integer +

Registers 40 FI. Pt.

Branch Prediction | Perfect 2% to 6%
misprediction
(Tournament
Branch Predictor)

Cache Perfect 64Kl, 32KD, 1.92MB
L2,36 MB L3

Memory Alias Perfect ?7?

Analysis

Fall 07 CSE4201

Upper Limit to ILP: Ideal Machine

(Figure 3.1)

Instructions Per Clock

Fall 07

160

140 -

120 A

100 H

80 -

60 -

40 A

20 -

T 150.1

gcc espresso li fpppp doducd tomcatv

Programs

CSE4201

New Model Model Power 5

Instructions | Infinite Infinite 4

Issued per

clock

Instruction Infinite, 2K, 512, | Infinite 200

Window Size | 128, 32

Renaming Infinite Infinite 48 integer +

Registers 40 FI. Pt.

Branch Perfect Perfect 2% to 6%

Prediction misprediction
(Tournament Branch
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory Perfect Perfect ?7?

Alias

More Realistic HW: Window Impact

Change from Infinite window 2048, 512, 128, 32

160 -
140 -
120 -
100 -
80 -
60 -

40 -

InstrU(!tBrQ Per Cock

20 |-

gcc espresso li fpppp doduc tomcatv

@ Infinite @ 2048 m 512 O 128 m 32

New Model
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming Infinite Infinite 48 integer +
Registers 40 FI. Pt.
Branch Perfect vs. 8K Perfect 2% to 6%
Prediction Tournament vs. misprediction
512 2-bit vs. (Tournament Branch
profile vs. none predictor)
Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3
Memory Perfect Perfect ?7?

Alias

More Realistic HW: Branch Impact

Change from Infinite window to examine to 2048 and
maximum issue of 64 instructigns per clock cycle

60 1 58

60

IPC

Instruction issues per cycle

gce espresso li fpppp doducd tomcatv

Program

Fall 07 B Perfect W Selective predictor B Standard 2-bit O Static B None

Misprediction Rates

35%
30%
25%
20%
15%

10%

Misprediction Rate

5%

0%

Fall 07

tomcatv doduc fpppp [espresso

B Profile-based m 2-bit counter ®m Tournament

CSE4201

30%

gcc

New Model |Model |Power5
Instructions |64 Infinite 4
Issued per
clock
Instruction 2048 Infinite 200
Window Size
Renaming Infinite v. 256, Infinite 48 integer +
Registers 128, 64, 32, none 40 FI. Pt.
Branch 8K 2-bit Perfect Tournament Branch
Prediction Predictor
Cache Perfect Perfect 64KI, 32KD, 1.92MB

L2, 36 MB L3

Memory Perfect Perfect Perfect
Alias

Fall 07 CSE4201

More Realistic HW: Renaming Register

Change 2048 instr window, 64 instr issue, 8K 2
o1 |level Prediction

60 T
50 T

40 T

33ues per cycle

30 T

ct

I

3

= 20 T

10 -

gcc espresso li fpppp doducd tomcatv

Program

B Infinite @256 W128 064 m32 @ None

New Model |Power 5
Model
Instruction |64 Infinite |4
S Issued
per clock
Instruction | 2048 Infinite | 200
Window
R&®aming | 256 Int + 256 |Infinite |48 integer +
Registers |FP 40 FI. Pt.
Branch 8K 2-bit Perfect |Tournament
Prediction
Cache Perfect Perfect |64KI, 32KD,
1.92MB L2, 36
Memory Perfect v. Perfect |Perfect
Alias Stack v.
Inspect v

none

More Realistic HW: Memory Address Alias Impact

Figure 3.6

IPC

Fall 07

50 —

45

40 +

35 T

30 —+

25

20 —+

15 +

10 —+

Change 2048 instr
window, 64 instr issue, « «
8K 2 level Prediction,

256 renaming registers

10

_|
gcc espresso li foppp doducd tomcatv
Program
B perfect B Giobal/stack Perfect [| Inspection [None
CSE4201

New Model [Power 5
Model
Instruction |64 (no Infinite |4
S Issued restrictions)
per clock
Instruction | Infinite vs. Infinite | 200
Window 256, 128, 64,
R&®aming |64 Int + 64 FP |Infinite |48 integer +
Registers 40 FI. Pt.
Branch 1K 2-bit Perfect |Tournament
Prediction
Cache Perfect Perfect |64KI, 32KD,
1.92MB L2, 36
Memory HW Perfect |Perfect
Alias disambiqguati

Fall 07

on

CSE4201

IPC

Realistic HW: Window Impact

Perfect disambiguation (HW), 1K Selective
Prediction, 16 entry return, 64 registers, issue as
many as window *

60
50 +
40 A
30 -
20 -

10 A

gcc expresso li foppp doducd tomcatv

Program

B infinie M 256 M s [64 KR H 16 Hs [W
Fall 07 CSE4201

°These are not laws of physics; just
practical limits for today, and perhaps
overcome viaresearch

°>Compiler and ISA advances could change
results

°WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

e Can get conflicts via allocation of stack frames
as a called procedure reuses the memory
addresses of a previous frame on the stack

Fall 07 CSE4201

HW v. SW to increase ILP

° Memory disambiguation: HW best

° Speculation:

« HW best when dynamic branch prediction better
than compile time prediction

« Exceptions easier for HW

« HW doesn’t need bookkeeping code or
compensation code

* Very complicated to get right
° Scheduling: SW can look ahead to schedule better

°> Compiler independence: does not require new
compiler, recompilation to run well

Fall 07 CSE4201

Performance beyond single thread ILP

° There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

° Explicit Thread Level Parallelism or Data Level
Parallelism

° Thread: process with own instructions and data

* thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

« Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

> Data Level Parallelism: Perform identical operations
on data, and lots of data

Fall 07 CSE4201

Thread Level Parallelism (TLP)

(0]

ILP exploits implicit parallel operations
within a loop or straight-line code segment

TLP explicitly represented by the use of
multiple threads of execution that are
Inherently parallel

Goal: Use multiple instruction streams to
improve

1. Throughput of computers that run many
programs

2. Execution time of multi-threaded programs

TLP could be more cost-effective to exploit
than ILP

Fall 07 CSE4201

New Approach: Mulithreaded Execution

°>Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

e processor must duplicate independent state of
each thread e.g., a separate copy of register file, a
separate PC, and for running independent
programs, a separate page table

e memory shared through the virtual memory
mechanisms, which already support multiple
processes

« HW for fast thread switch; much faster than full
process switch ~ 100s to 1000s of clocks

°When switch?

* Alternate instruction per thread (fine grain)

* When a thread is stalled, perhaps for a cache miss,
Fal 07 gnother thread can besexecuted (coarse grain)

Fine-Grained Multithreading

> Switches between threads on each instruction,
causing the execution of multiples threads to be
Interleaved

°> Usually done in around-robin fashion, skipping any
stalled threads

° CPU must be able to switch threads every clock

> Advantage is it can hide both short and long stalls,
since instructions from other threads executed
when one thread stalls

° Disadvantage is it slows down execution of
Individual threads, since a thread ready to execute
without stalls will be delayed by instructions from
other threads

> Used on Sun’s Niagara (will see later, if time
permits)
Fall 07 CSE4201

Course-Grained Multithreading

° Switches threads only on costly stalls, such as L2 cache
misses

° Advantages
* Relieves need to have very fast thread-switching

 Doesn’t slow down thread, since instructions from other
threads issued only when the thread encounters a costly

stall

° Disadvantage is hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs

 Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

 New thread must fill pipeline before instructions can
complete

° Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost

stalls, where pipeline refill << stall time
° Used in IBM AS/400

Fall 07 CSE4201

For most apps, most execution units lie idle

L0

For an 8-way
superscalar.

e |
1
90 ¥

E memory conflict

E long Ip

short ip

long integer
E short integer
load delays

D control hazards
branch misprediction
E deache rmss
[III 1cache miss
m dilb miss

. itlb rmss

. processor busy

Y

B0

NN |

Th

50

40

Pamant of Total lsens Cyclos

30

20 oy

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:

® Maximizing On-chip
8 Parallelism, ISCA

" 1995.

Ry

Do both ILP and TLP?

°TLP and ILP exploit two different kinds of
parallel structure in a program

°Could a processor oriented at ILP to exploit
TLP?

* functional units are often idle in data path
designed for ILP because of either stalls or
dependences in the code

°Could the TLP be used as a source of
Independent instructions that might keep
the processor busy during stalls?

°Could TLP be used to employ the functional
units that would otherwise lie idle when
Insufficient ILP exists?

Fall 07 CSE4201

Simultaneous Multi-threading ...

°>Simultaneous Multithreading (SMT) Is a
variation of multithreading that uses
resources of a multiple-issue, dynamically

scheduled processor to exploit both TLP
and ILP.

°>Modern processors have more functional
units than a single thread can utilize.

°These functional units could be used to run
Instructions from different threads
simultaneously.

Fall 07 CSE4201

Simultaneous Multi-threading ...

One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FPBRCC Cycle M M FX FX FP FP BRCC
1

2

3

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

Multithreaded Categories

Simultaneous

1) Superscalar Fine-Grained Coarse-Grained Multlpro|cessmg Multithreading
- BN]] BEENNY HERXN
> B N [BEOSY B
=]] 1IN N
» HER 11 1IN 1IN
g NN [N
S EEEE DD NY HEEE
= HE YN EENNNY N
— B BEENY BN
GE) HER N 1IN
= N L ININ
' HER e N []
l 1= S NN

B Thread 1 Thread 3 Thread 5

N Thread 2 | Thread 4 dle slot

Fall 07 CSE4201

