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Outline

° Data dependence and hazards
° Exposing parallelism (loop unrolling and 

scheduling)
° Reducing branch costs (prediction)
° Dynamic scheduling
° Speculation
° Multiple issue and static scheduling
° Advanced techniques
° Example
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Limits to ILP
° Conflicting studies of amount

• Benchmarks (vectorized Fortran FP vs. integer C programs)
• Hardware sophistication
• Compiler sophistication

° How much ILP is available using existing 
mechanisms with increasing HW budgets?

° Do we need to invent new HW/SW 
mechanisms to keep on processor 
performance curve?

• Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
• Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
• Motorola AltaVec: 128 bit ints and FPs
• Supersparc Multimedia ops, etc.
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Overcoming Limits

° Advances in compiler technology + 
significantly new and different hardware 
techniques may be able to overcome 
limitations assumed in studies

° However, unlikely such advances when 
coupled with realistic hardware will 
overcome these limits in near future 
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Limits to ILP
Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation 
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 



Fall 07 CSE4201

64KI, 32KD, 1.92MB 
L2, 36 MB L3

PerfectCache

2% to 6% 
misprediction
(Tournament 
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias 
Analysis

4InfiniteInstructions Issued 
per clock

200InfiniteInstruction Window 
Size

48 integer + 
40 Fl. Pt.

InfiniteRenaming 
Registers

Power 5Model
Limits to ILP HW Model comparison



Fall 07 CSE4201

Upper Limit to ILP: Ideal Machine
(Figure 3.1)
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Misprediction Rates
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Program
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Program
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How to Exceed ILP Limits of this study?

° These are not laws of physics; just 
practical limits for today, and perhaps 
overcome via research

° Compiler and ISA advances could change 
results

° WAR and WAW hazards through memory: 
eliminated WAW and WAR hazards through 
register renaming, but not in memory usage

• Can get conflicts via allocation of stack frames 
as a called procedure reuses the memory 
addresses of a previous frame on the stack
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HW v. SW to increase ILP
° Memory disambiguation: HW best
° Speculation: 

• HW best when dynamic branch prediction better 
than compile time prediction

• Exceptions easier for HW
• HW doesn’t need bookkeeping code or 

compensation code
• Very complicated to get right

° Scheduling: SW can look ahead to schedule better
° Compiler independence: does not require new 

compiler, recompilation to run well
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Performance beyond single thread ILP

° There can be much higher natural parallelism in 
some applications 
(e.g., Database or Scientific codes)

° Explicit Thread Level Parallelism or Data Level 
Parallelism

° Thread: process with own instructions and data
• thread may be a process part of a parallel program of 

multiple processes, or it may be an independent program
• Each thread has all the state (instructions, data, PC, 

register state, and so on) necessary to allow it to execute

° Data Level Parallelism: Perform identical operations 
on data, and lots of data
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Thread Level Parallelism (TLP)

° ILP exploits implicit parallel operations 
within a loop or straight-line code segment

° TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel

° Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 
2. Execution time of multi-threaded programs

° TLP could be more cost-effective to exploit 
than ILP
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New Approach: Mulithreaded Execution
° Multithreading: multiple threads to share the 

functional units of 1 processor via overlapping
• processor must duplicate independent state of 

each thread e.g., a separate copy of register file, a 
separate PC, and for running independent 
programs, a separate page table

• memory shared through the virtual memory 
mechanisms, which already support multiple 
processes

• HW for fast thread switch; much faster than full 
process switch ≈ 100s to 1000s of clocks

° When switch?
• Alternate instruction per thread (fine grain)
• When a thread is stalled, perhaps for a cache miss, 

another thread can be executed (coarse grain)
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Fine-Grained Multithreading
° Switches between threads on each instruction, 

causing the execution of multiples threads to be 
interleaved 

° Usually done in a round-robin fashion, skipping any 
stalled threads

° CPU must be able to switch threads every clock
° Advantage is it can hide both short and long stalls, 

since instructions from other threads executed 
when one thread stalls 

° Disadvantage is it slows down execution of 
individual threads, since a thread ready to execute 
without stalls will be delayed by instructions from 
other threads

° Used on Sun’s Niagara (will see later, if time 
permits)



Fall 07 CSE4201

Course-Grained Multithreading

° Switches threads only on costly stalls, such as L2 cache 
misses

° Advantages 
• Relieves need to have very fast thread-switching
• Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly 
stall

° Disadvantage is hard to overcome throughput losses from 
shorter stalls, due to pipeline start-up costs

• Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

• New thread must fill pipeline before instructions can 
complete 

° Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of high cost 
stalls, where pipeline refill << stall time

° Used in IBM AS/400



For most apps, most execution units lie idle

From: Tullsen, 
Eggers, and Levy,
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995.

For an 8-way 
superscalar.
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Do both ILP and TLP?
° TLP and ILP exploit two different kinds of 

parallel structure in a program 
° Could a processor oriented at ILP to exploit 

TLP?
• functional units are often idle in data path 

designed for ILP because of either stalls or 
dependences in the code 

° Could the TLP be used as a source of 
independent instructions that might keep 
the processor busy during stalls? 

° Could TLP be used to employ the functional 
units that would otherwise lie idle when 
insufficient ILP exists?
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Simultaneous Multi-threading ...
° Simultaneous Multithreading (SMT) is a 

variation of multithreading that uses 
resources of a multiple-issue, dynamically 
scheduled processor to exploit both TLP 
and ILP.

° Modern processors have more functional 
units than a single thread can utilize.

° These functional units could be used to run 
instructions from different threads 
simultaneously.



Simultaneous Multi-threading ...
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