
Fall 07 CSE4201

COSC4201
Loop Level Parallelism

Prof. Mokhtar Aboelaze

Based on Slides by
Prof. L. Bhuyan (UCR)
Prof. M. Shaaban (RIT)

Fall 07 CSE4201

Loop Level Parallelism LLP

° Loop-Level Parallelism (LLP) analysis focuses on
whether data accesses in later iterations of a
loop are data dependent on data values produced
in earlier iterations and possibly making loop
iterations independent.

° e.g. in for (i=1; i<=1000; i++)
x[i] = x[i] + s;

the computation in each iteration is independent of
the previous iterations and the
loop is thus parallel. The use of X[i] twice is within
a single iteration.

⇒ Thus loop iterations are parallel (or independent from
each other).

Fall 07 CSE4201

Loop Level Parallelism LLP
° Loop-carried Dependence: A data dependence between

different loop iterations (data produced in earlier iteration
used in a later one).

° LLP analysis is important in software optimizations such
as loop unrolling since it usually requires loop iterations
to be independent.

° LLP analysis is normally done at the source code level or
close to it since assembly language and target machine
code generation introduces loop-carried name
dependence in the registers used for addressing and
incrementing.

° Instruction level parallelism (ILP) analysis, on the other
hand, is usually done when instructions are generated by
the compiler

Fall 07 CSE4201

Loop Level Parallelism LLP

• S2 uses the value A[i+1], computed by S1 in the same iteration. This data
dependence is within the same iteration (not a loop-carried dependence).
⇒ does not prevent loop iteration parallelism.

• S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence, prevents
parallelism). The same applies for S2 for B[i] and B[i+1]
⇒ These two dependencies are loop-carried spanning more than one

iteration preventing loop parallelism.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop
Carried
Dependence

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1];} /* S2 */

}

Fall 07 CSE4201

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}
• S1 uses the value B[i] computed by S2 in the previous iteration

(loop-carried dependence)
• This dependence is not circular:

- S1 depends on S2 but S2 does not depend on S1.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

B i+1

Loop-carried Dependence

Fall 07 CSE4201

LLP Analysis Example 2LLP Analysis Example 2

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Fall 07 CSE4201

LLP Analysis Example 2LLP Analysis Example 2

Original Loop:

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

Modified Parallel Loop:

Iteration 1 Iteration 2 Iteration 100Iteration 99

Loop-carried
Dependence

Loop Start-up code

Loop Completion code

Iteration 1
Iteration 98 Iteration 99

Not Loop
Carried
Dependence

.

.

. . . .

S1

S2

Fall 07 CSE4201

LLP

for(i=2;i<=100;i++) {
y[i]=y[i-1]+y[i]
}

for(i=2;i<=100;i++) {
y[i]=y[i-5]+y[i]
}

Fall 07 CSE4201

Finding Dependences
° Finding dependences in the program is very

important for renaming and executing
instructions in parallel.

° Arrays and pointers makes finding
dependences very difficult.

° Assume array indices are affine, which
means on the form a x i+b where a and b
are constant.

° GCD test can be used to detect
dependences.

Fall 07 CSE4201

GCD Test

° Assume we stored an array with index
value of and loaded an array with an
index value of

° Are they pointing to the same location?
° Assume the loop limit is m,n
° Are there

bia +×
dic +×

dkcbjankjmkj +×=+×≤≤ such that ,,

Fall 07 CSE4201

GCD Test

° A simple and sufficient test for absence can
be found.

° If a loop dependence exists, then

° If that test fails, there is no guarantee there
is dependence (loop bound)

)(dividesmust),(bdacGCD −

Fall 07 CSE4201

GCD Test

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}
a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2
d - b = -3

2 does not divide -3 ⇒⇒ No
dependence is not possible.

5,7,9,11,13,15,17,19,21,23,….

4,6,8,10,12,14,16,18,20,22,…..

Fall 07 CSE4201

Dependence Analysis -- Difficulties

° Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

° Objects are referenced using pointers
° Array indexing using another array A[b[I]]
° Dependence may exist for some values of input,

but in reality the input never takes these values.
° When we want to more than the possibility of

dependence (which write causes it?)
° Dependence analysis across procedure boundaries

Fall 07 CSE4201

Dependence Analysis -- Difficulties

° Sometimes, points-to analysis might help.
° We might be able to answer simpler

questions, or get some hints.
° Do 2 pointers point to the same list?
° Type information
° Information derived when the object was

allocated
° Pointer assignments

