
1

11/1/2007 5:33 PM 1

Data Link Control

CSE 3213

Fall 2007

2

Flow Control

• Ensuring the sending entity does not overwhelm
the receiving entity

—Preventing buffer overflow

• Transmission time

—Time taken to emit all bits into medium

• Propagation time

—Time for a bit to traverse the link

2

3

Model of Frame Transmission

4

Stop and Wait

• Source transmits frame

• Destination receives frame and replies with
acknowledgement

• Source waits for ACK before sending next frame

• Destination can stop flow by not send ACK

• Works well for a few large frames

3

5

Fragmentation

• Large block of data may be split into small
frames

—Limited buffer size

—Errors detected sooner (when whole frame received)

—On error, retransmission of smaller frames is needed

—Prevents one station occupying medium for long
periods

• Stop and wait becomes inadequate

6

Stop and Wait Link Utilization

4

7

Sliding Windows Flow Control

• Allow multiple frames to be in transit

• Receiver has buffer of W frames long

• Transmitter can send up to W frames without
ACK

• Each frame is numbered (for error control)

• ACK includes number of next frame expected

• Sequence number bounded by size of field (k)
—Frames are numbered modulo 2k

• Max window size is (2k– 1)

8

Sliding Window Diagram

5

9

Example Sliding Window

10

Sliding Window Enhancements

• RRn = received up to but not including frame n.

• Receiver can acknowledge frames without
permitting further transmission (Receive Not
Ready).

—RNR5 = received up to frame 4; temporarily stop
transmission.

• Must send a normal acknowledge to resume.

6

11

Duplex Communications

• Two stations exchange data.

• Each maintains to windows: one for transmit,
one for receive.

• Piggybacking: send both data and ACK in one
frame, saving communication capacity.

• If having ACK but no data to send, send a
separate ACK frame.

• If having data but no ACK to send, repeat the
last sequence number sent (or use “ACK_valid”
flag as in TCP).
—Duplicate ACKs are ignored.

12

Error Control

• Detection and correction of errors

• Lost frames

• Damaged frames

• Automatic repeat request

—Error detection

—Positive acknowledgment

—Retransmission after timeout

—Negative acknowledgement and retransmission

7

13

Automatic Repeat Request

(ARQ)

• Stop and wait

• Go back N

• Selective reject (selective retransmission)

14

Stop and Wait

• Source transmits single frame

• Wait for ACK

• If received frame damaged, discard it

—Transmitter sets timer

—If no ACK within timeout, retransmit

• If ACK damaged,transmitter will not recognize it

—Transmitter will retransmit

—Receive gets two copies of the same frame

—Use ACK0 and ACK1 to discard duplicates

8

15

Stop and Wait -

Diagram

16

Stop and Wait - Pros and Cons

• Simple

• Inefficient

9

17

Go Back N

• Based on sliding window

• If no error, ACK as usual with next frame
expected

• Use window to control number of outstanding
frames

• If error, reply with rejection

—Discard that frame and all future frames until error
frame received correctly

—Transmitter must go back and retransmit that frame
and all subsequent frames

18

Lost/Damaged Frame: Case 1

Lost/damaged frame is not the last frame

• Receiver detects error in frame i , discard it

(or frame i was simply lost in transit)

• Receiver receives frame (i+1) out of order

• Receiver sends rejection REJi
• Sender gets REJi
• Sender retransmits frame i and all subsequent
frames

10

19

Go Back N -

Diagram

20

Lost/Damaged Frame: Case 2

Frame i was lost/damaged and is the last frame
of the message

• Receiver gets nothing and returns neither
acknowledgement nor rejection

• Sender times out and sends a request for
acknowledgment: RR(P=1)

—RR(P=0) is a regular ACK.

—Receiver responds to the request by sending RRi
—Sender then retransmits frame i

• Alternative: Sender times out and retrx frame i.

11

21

Lost/Damaged RR

Case 1:

• Receiver gets frame i and sends acknowledgement (i+1)
which is lost

• Acknowledgements are cumulative, so next
acknowledgement (i+n) may arrive before sender times
out on frame i

Case 2:

• If sender times out, it sends request for ACK with P bit
set as before: RR(P=1)

• Receiver resends RR(i+1) (or possibly RR(i+m), m>1)

• The RR(P=1) packet is also timed in case it will be lost.
— This can be repeated a number of times before a reset
procedure is initiated

22

Go Back N -

Diagram

12

23

Lost/Damaged REJ

• Receiver stops accepting data and is waiting for
retransmitted frames.

• Sender times out and sends a request for
acknowledgment: RR(P=1)

• Receiver responds to the request by resending
REJi

• Sender retransmits frame i and all subsequent
frames

24

Go-Back-N Example

• Sequence numbers are 3 bit long, and start from 0.

• Window size is 6 frames.

• A sends data to B and B has no data to send.

• The sum of the propagation time and the transmission time for
every data frame, and every RR/REJ is 1 time unit.

• B sends an acknowledgment (either positive or negative) every 2
time units.

• The time-out period for each data frame is 4 time units.

Draw the flow diagram showing the sequence of interactions
between A and B, assuming that

• the 5th frame is damaged, then

• acknowledgment RR 7 is lost

13

25

Go Back N -

Diagram

26

Selective Reject ARQ
• Also called selective retransmission

• Only rejected frames are retransmitted

• Subsequent frames are accepted by the receiver and buffered

• Minimizes number of retransmissions

• Receiver must maintain large enough buffer and logic to insert
repair frames into the proper sequence.

• More complex logic in transmitter to send frames out of sequence

⇒ Go-back-N is more commonly used.

• Useful choice for satellite links due to long propagation delay

• Max window size (2k–1)

• In some implementations, the transmitter simply retrx a frame on
time-out rather than sending RR(P=1).

14

27

Selective Reject -

Diagram

28

Reading

• Sections 7.1 and 7.2, Stallings’ book.

• Demo:
http://gaia.ecs.csus.edu/~zhangd/oscal/selectiv
eReject/selectiveReject.html

