Transport Protocols & TCP

CSE 3213
Fall 2007
TCP
e Services
* Flow control

Connection establishment and termination

Congestion control

11/13/2007

TCP Services

Transmission Control Protocol (RFC 793)
connection oriented, reliable communication
over reliable and unreliable (inter)networks
two ways of labeling data:

data stream push

— user requires transmission of all data up to push flag

— receiver will deliver in same manner

— avoids waiting for full buffers

urgent data signal

— indicates urgent data is upcoming in stream
— user decides how to handle it

20 octets

TCP Header

Destination Port

Sequence Number

Acknowledgment Number
C|E|U[A|P|R|S|F
D Reserved [W|C|R|C|S|s]|y(I Window
offset rlEl|k|H|T|N[N
Checksum Urgent Pointer
Options + Padding

31

11/13/2007

Issues

ordered delivery,

retransmission strategy,

duplication detection,

flow control,

connection establishment & termination,
crash recovery

Note: since the underlying network is unreliable,
— segments may get lost
— segments may arrive out of order

Ordered Delivery

segments may arrive out of order
hence number segments sequentially
TCP numbers each octet sequentially

and segments are numbered by the first octet
number in the segment

11/13/2007

TCP Flow Control

Flow Control

e Fixed sliding window approach
— works well on reliable networks

— does not work well on unreliable networks such as
IP internet

e Credit scheme
— more flexible
— works for IP
— used in TCP

11/13/2007

Credit Scheme

decouples flow control from ACK

each octet has sequence number

each transport segment has seq number (SN), ack
number (AN) and window size (W) in header

sends seq number of first octet in segment

ACK includes (AN=i, W=j) which means
— all octets through SN=i-1 acknowledged, want i next

— permission to send additional window of W=j octets

9
Credit All ti
Transport Entity A Transport Entity B
-..1000 1001 2400/ 2401... ...1000 f1o01 2400] 2401...
—— SV
A may send 1400 octets] KL@_IH* B is prepared to receive 1300 octets,
TS = 1ap; beginning with 1001
P
==ty
-..1000 {1001 1601 2401... ‘_“—-——____‘
- —
A shrinks its transmit window with each coLo00 1601 2L
Sraammission B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
1 original budget (i.e., B will accept octets 1601
-..1000 J1001 200 2401... through 2600)
|
= 1600 J1601 2001 2601... 1 ——
- v
A adjusts its window with each credit i % A
| 1
1600 J1601 2601...
——————
A exhausts its credit 2600]ml “ml 2001
B acknowledges 5 segments (1000 octets) and
et 2601 2000] 4001 restores the original amount of credit
A receives new credit
10

11/13/2007

Data octets so far acknowledged

Octets not yet

acknowledged
Window of octets

Data octets already transmitted

that may be transmitted

Sending and Receiving Perspectives

® A bl
— R —
Initial Sequence Last octet Lastoctel Window shrinks from Window expands
Number (1SN} acknowledged transmitted trailing edge as from leading edge
AN-T) segments are sent as credits are received

Data octets so far acknowledged

(a) Send sequence space

Octets not yet

acknowledged
Window of octets

Data octets already received

that may be accepted

L+ A

Initial Sequence Last octet

 ——
Lastoctel Window shrinks from

—_—
Window expands

Number (ISN) acknowledged received {railing edge as from leading edge
AN-1) segments are received as credits are sent
(b) Receive sequence space 1
Retransmission Strategy
retransmission of segment needed because
— segment damaged in transit
— segment fails to arrive
transmitter does not know of failure
receiver must acknowledge successful receipt
— can use cumulative acknowledgement for efficiency
sender times out waiting for ACK triggers
re-transmission
12

11/13/2007

Retransmit Policy

* TCP has a queue of segments transmitted but not
acknowledged
e will retransmit if not ACKed in given time

— first only - single timer, send the front segment when timer
expires, efficient, considerable delays

— batch - single timer, send all segments when timer expires,
has unnecessary retransmissions

— individual - timer for each segment, lower delay, more
efficient, but complex

» effectiveness depends in part on receiver’s accept
policy

Accept Policy

e segments may arrive out of order
e in order

— only accept segments in order

— discard out of order segments

— simple implementation, but burdens network
* in windows

— accept all segments within receive window
— reduce transmissions
— more complex implementation with buffering

11/13/2007

Acknowledgement Policy

e immediate
— send empty ACK for each accepted segment
— simple at cost of extra transmissions

e cumulative

— piggyback ACK on suitable outbound data
segments unless persist timer expires

— when send empty ACK
— more complex but efficient

Duplication Detection

e if ACK lost, segment duplicated & re-transmitted
* receiver must recognize duplicates

* if duplicate received prior to closing connection
— receiver assumes ACK lost and ACKs duplicate
— sender must not get confused with multiple ACKs

— need a sequence number space large enough to not cycle
within maximum life of segment

11/13/2007

Transport Transport
Entity A Entity B

A times out and
retransmits SN = 1

Incorrect Moo
Duplicate
Detection

17

Connection Establishment and
Termination

18

11/13/2007

Connection Establishment and
Termination

* required by connection-oriented transport
protocols like TCP

* need connection establishment and
termination procedures to allow:
— each end to know the other exists
— negotiation of optional parameters
— triggers allocation of transport entity resources

19

Connection State Diagram

Active Open)
send SYN Passive Open Assume a reliable

CLOSED
network (no loss
seen at the
Close| | Close transport layer).

‘YN SENT (LISTEN
Receive SYN

Receive SYN Send SYN
ESTAB
Close Receive FIN
Send FIN Legend:
Event

Action

FIN WAIT ‘A JSE WAIT
(State

Close
Receive FIN Send FIN
CLOSED

20

11/13/2007

10

Connection Establishment Diagram

System A System B
State/(Command) State/(Command)
CLOSED CLOSED
(Passive Open) {Active Open)
USTEN. ¥R syt
ESTAB
Syn

ESTAB

(a) Active/Passive Open

Assume a reliable network (no

loss seen at the transport layer).

System A System B
State/(Command) State/(Command)
CLOSED CLOSED
(Active Open) (Active Open)
SYN SENT }{ SYN SENT
ESTAB ESTAB

(b) Active/Active Open

What if either SYN is
lost? (discussed later)

21

Connection Termination

either or both sides by mutual agreement
graceful or abrupt termination
if graceful, initiator must:

— send FIN to other end, requesting termination
— place connection in FIN WAIT state
— when FIN received, inform user and close connection

e other end must:

— when receives FIN must inform TS user and place
connection in CLOSE WAIT state

— when TS user issues CLOSE primitive, send FIN & close

connection

22

11/13/2007

11

11/13/2007

Connection Establishment

e two way handshake
— A send SYN, B replies with SYN
— lost SYN handled by re-transmission
— ignore duplicate SYNs once connected
 |ost or delayed data segments can cause
connection problems
— eg. segment from old connection

23

A B
TWO Wa y w_’ A initiates a connection
. «}/— B accepts and acknowledges
Handshake: e
Obsolete T,
Data \ |
S e g m e n t New connection opened

Solution: starting SN is far away
from the last SN of the previous
connection.

Obsolete segment SN = 401 is accepted;
valid segment SN = 401 is discarded as duplicate

Use request of the form SYNi
where i +1 is the SN of the first
data segment to be sent.

24

12

Two Way Handshake:
Obsolete SYN Segment

Connection closed

Obsolete SYN i arrives

B responds; A sends new SYN

B discards duplicate SYN

SN o £ag
B rejects segment as out of sequence
25
Active Open or Unspecified Passive Open or
Active Open with Data Fully Specified Passive Open

Initialize SV; Send SYN Initialize SV

Close

Clear 8V

. > v« :
‘YNSH\T Receive SYN ‘RELEIVED Receive SYN "

Send SYN, ACK s, Send SYN,ACK
[CP Three
ACK of SYN .
Receive SVN, ACK

*+._ Receive FIN, ACK of SYN
. Send ACK
Way i e
] Close Receive FIN i‘.
a n S a e . Send FIN Send ACK 4

(F[N WAIT (A]SE WAIT
State e EE -

ACK of FIN Send ACE. Send FIN
.
Dia gram G Coonc G
e IN Receive Receive
ACK of FIN ACK of S¥N

—_— I
WAIT Tansont (CLO.SED
(2 MSL)

8V = state vector
MSL = maximum segment lifetime

26

11/13/2007

13

A B

W‘ A initiates a connection

1

"q,\.”’.\:;l”/— B accepts and acknowledges

SNaiy
L=,
=i+ q
A ack ges and begins

TCP Three

Obsolete SYN arrives
Wa y ‘w— B accepts and acknowledges

Handshake: TR L oo

() Delayed SYN

Examples

\“‘b A initiates a connection

Old SYN arrives al A; A rejects
B accepts and acknowledges

SN iyg .
M’
A ack ges and begins

(¢) Delayed SYN, ACK

27

TCP Connection Establishment:
Summary

three way handshake
— SYN, SYN-ACK, ACK

connection determined by source and
destination sockets (host, port)

can only have a single connection between
any unique pairs of ports

but one port can connect to multiple ports

28

11/13/2007

14

Connection Termination (2)

also need 3-way handshake

misordered segments could cause:

— entity in CLOSE WAIT state sends last data segment,
followed by FIN

— FIN arrives before last data segment
— receiver accepts FIN, closes connection, loses data

need to associate sequence number with FIN

receiver waits for all segments before FIN sequence
number

29

Connection Termination:
Graceful Close

also have problems with loss of segments and
obsolete segments

need graceful close which will:
send FIN i and receive AN i+1
receive FIN j and send AN j+1

wait twice maximum expected segment
lifetime

30

11/13/2007

15

TCP Congestion Control

31

TCP Congestion Control

* flow control also used for congestion control

— recognize increased transit times & dropped
packets

— react by reducing flow of data
e RFC’s 1122 and 2581 detail extensions

— Tahoe, Reno and New Reno implementations
e two categories of extensions:

— retransmission timer management
— window management

32

11/13/2007

16

Retransmission Timer Management

* static timer likely too long or too short

* estimate round trip delay by observing pattern of
delay for recent segments

* set time to value a bit greater than estimated RTT
* simple average over a number of segments
* exponential average using time series (RFC793)

Computing RTT

e Simple average

1 K+1

r(K +1) :mz RTT (i)

K 1
rK+1) =——r(K)+—RTT (K +1
() K+1 (K) K+1 ()

e Exponential average

r(K+1) =axr(K)+@-a)xRTT(K+1)
O<ax<l

34

11/13/2007

17

o

(— 8] L a=05
a=0875

Observed or average value

—O—— Simple average

Use Of i o —=—— Observed value
_'"':IUWVIIJLII\JLI\\III\I

Exponential R
Averaging

S

0
o —

Observed or average value

Y *— a=03
s o O a=0875
—&—— Simple average

—&—— Observed value

L L 1 1 1 L L 1 1 1 L L L 1 1 L L L il
1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20
Time
(b} Decreasing function

Exponential RTO Backoff

timeout probably due to congestion
— dropped packet or long round trip time
hence maintaining same RTO is not good idea

better to increase RTO each time a segment is
re-transmitted

— RTO = g*RTO
— commonly g = 2 (binary exponential backoff)
— as in Ethernet CSMA/CD

36

11/13/2007

18

11/13/2007

Window Management

* slow start
— larger windows cause problem on connection created
— at start limit TCP to 1 segment
— increase when data ACK, exponential growth
* dynamic windows sizing on congestion
— when a timeout occurs perhaps due to congestion
— set slow start threshold to half current congestion window
— set window to 1 and slow start until threshold
— beyond threshold, increase window by 1 for each RTT

Summary

* Assigns a congestion window C,;:

Initial value of C,, = 1 (packet)

If trx successful, congestion window doubled. Continues until
Cpnax is reached

AfterC,2C,.,C,=C,+1

If timeout before ACK, TCP assumes congestion

e TCP response to congestion is drastic:

— A random backoff timer disables all transmissions for duration
of timer

— C,issetto1
— ChxissettoC.,, /2

e Congestion window can become quite small for
successive packet losses.

38

19

Window Management

20

timeout

i
i
i
i / occurs
|
|

15

cwnd
|

10
threshold

|
_____________ JUIPENR SPE g
I

01 2 3 4 5 6 7 8B 9 10 11 12 13 14 15 16

Round-trip times

Fast Retransmit, Fast Recovery

retransmit timer rather longer than RTT
if segment lost TCP slow to retransmit

fast retransmit

— if receive a segment out of order, issue an ACK for the last
in-order segment correctly received. Repeat this until the
missing segment arrives.

— if receive 4 ACKs for same segment then immediately
retransmit (without waiting for timer) since it is likely to
have been lost

fast recovery

— lost segment means some congestion
— halve window then increase linearly
— avoids slow-start

40

11/13/2007

20

Window Management Examples

Linear increase
(congestion avoidance)
OB e AL SR SR S Croinrreenn PRRREE R A R R e oo e

. “Regular TCP: -
... (TCP Taboe);

Congestion window size (MSS)

. time
B Congestion detected A slow start threshold

41

Reading

e Chapter 20, Stallings’ book

42

11/13/2007

21

