

Bridges

- connects similar LANs
- · identical physical / link layer protocols
- minimal processing
- can map between MAC formats
- reasons for use
 - -reliability
 - -performance
 - -security
 - -geography

Fixed Routing

- Routing selected for each source-destination pair of LANs
 - -Done in configuration
 - -Usually least hop route
 - -Only changed when topology changes
- Widely used in commercially available products
- Manually loading the data into the routing tables
- Simple, minimal processing
- But suitable only for small and stable internets

21

Spanning Tree

- IEEE 802.1
- Bridge automatically develops routing table
- Automatically updates in response to changes
- Consists of 3 mechanisms:
 - -Frame forwarding
 - -Address learning
 - —Loop resolution

23

Address Learning

- can preload forwarding database
- when frame arrives at port X, it has come form the LAN attached to port X
- use source address to update forwarding database for port X to include that address
- have a timer on each entry in database
- · if timer expires, entry is removed
- each time frame arrives, source address checked against forwarding database
 - -if present timer is reset and direction recorded
 - -if not present entry is created and timer set

