
1

1

Building Reliable and
Efficient FPGA Designs

Adapted from Frank Nelson, the senior terchnical
trainer and course designer at Xilinx Inc.

2

 These tips are intended to show you how to
build reliable designs for your FPGA.

 These tips apply to any vendor of FPGAs,
and are not used to “fix” the FPGA, but the
design.

 Lots of designers create designs that fail
because they do not follow similar guidelines.

3

1. Don’t gate clocks
 Don’t route clock signals through the Look-Up

Tables (LUTs). These “internally generated clock
signals” can glitch easily.

 Instead of routing this signal to the clock port of the
synchronous elements in the FPGA, route them to
the clock enable port.

 Not gating clocks also reduces the number of clock
signals routed inside the FPGA.

 If you do not have a clock enable resource on each
register, this will be implemented as an input to the
combinatorial logic driving the register (LUT).

4

2. Use the global routing resources

 This reduces clock skew which makes the design
more likely to run reliably.

 Virtex has fewer global routing resources that are
intended for the distribution of clock signals only.

 Older families have more global routing resources
that can be used for any control signal (CE, Set,
Reset, etc.).

 Use the MaxSkew attribute in the UCF on control
signals that are routed on general interconnect,
especially clocks.

5

3.Register Asynchronous input signals

 This means signals which are not registered by the
same clock frequency as the FPGA registers may
need to be registered, or use a synchronization circuit.

 Consider using the IOB flip-flop to register your input.
Note that these flip-flops often have variable set-up
and hold times.

 Synchronization circuits may also be necessary for
transferring signals between clock domains within the
FPGA.
 Remember that synchronization circuits can prevent set-up

and hold time violations on asynchronous inputs, which can
cause failure of the circuit due to metastability.

6

4. Design with a Synchronous Set/Reset

 Use of Asynchronous Set/Reset can easily create
circuits that glitch.

 Use the Global Set/Reset (GSR) resources in the
older device families to reduce the skew on a
set/reset.

 Don’t use the GSR in Virtex. The GSR has too
much delay and general interconnect will distribute
this signal quickly.

2

7

5. Choose the best State Machine
Encoding scheme
 Binary encoding is good for creating small (less

than 16 states) FSMs in FPGAs.
 Larger FSMs require too much Next state logic and

perform slower when binary encoded.
 One-Hot encoding is good for building larger FSMs

since it requires very little Next state logic.
 OHE is more reliable than Binary encoding, because fewer

bits change at once making the circuit less likely to glitch.
 OHE leaves a lot of unused states in the FSM and also

uses a lot of registers (but there are a lot of registers in
FPGAs).

8

State Machine Encoding scheme

 Gray encoding of your state machine uses less
resources than OHE and also gets good speed.
 Gray encoding is also the most reliable encoding

technique, because only one bit changes per transition.
 However, Gray encoding requires the designer to be very

aware of the coding technique chosen when simulating the
FSM, and this is often a pain.

 Note that custom encoding can be an excellent
solution if there are not many cases where more
than one bit changes at once.

9

FSM Encoding Summary

 Simulate your circuitry in binary encoding and then
convert it to another coding technique to get better
speed or reliability.

 Binary encoding works best with 8 or fewer states.
 OHE works best for medium sized FSMs (less than

32 states).
 Gray encoding works best for the largest FSMs (it

uses fewer registers than OHE and is more
reliable).

10

6. Properly code your FSM

 Do not leave undefined states in your FSM. Use a
default statement or point the unused states to a
reset state.

 Do not infer latches in your FSM. This builds
unreliable circuits with designs that mix registers
and latches.
 Assign all outputs a value when in every branch of an

if/then and case statement.
 Use an Else or When Others statement to fix this.

 Use a Case statement. This will create a faster
FSM since If/Then statements create priority
encoders, which infer multiple levels of logic.

11

Build your state machine with two
Always blocks (speed)
 Next State decoding and Output decoding

should be placed in one block, while the
State and Output registering should be in
another.

 This will assure better speed of the FSM
when it is targeted for an FPGA. The
synthesis tends to optimize the combinatorial
logic when these pieces of logic are
separated.

12

End your combinatorial
processes/always blocks (reliability)
 Use an “else” statement when using if-then

when using a Case statement or the
“default” in Verilog when using a Case
statement.

 This will avoid inferring a latch.
 Use this to make sure you have covered all

possible conditions.
 Also be sure that you define all outputs in

each branch.

3

13

Register the outputs of your state
machine. (speed)
 This will prevent the logic from being optimized with

other hierarchical components combinatorial logic.
 This assures that the outputs of the state machine

will not be optimized away and can be simulated
and probed.

 Registering the outputs of every component
assures that team designers know that each of their
inputs are registered and encourages pipelining.
Pipelining is a primary method of improving the
speed of FPGA designs.

 Since state machines are often in their own level of
hierarchy, registering their outputs only requires
adding a component that is entirely registers. 14

Registered Mealy outputs are preferable to
registered Moore outputs. (speed)
 The outputs of the Moore FSM are 1 clock

cycle behind the active state (causing
additional latency).

 The outputs of the Mealy FSM reflect the
active state, resulting in simplified timing and
reduced latency.

 Recall that a Moore FSM has outputs that
are based on the current state of the
machine. Mealy FSMs have outputs that are
based on the current state and the inputs.

15

“look-ahead” Mealy

 It is suggested that you use a “look-ahead” Mealy
state machine if possible.
 By using the inputs to look-ahead at the state you will be in

on the next rising clock edge (next state) and set the
output during the transition to reflect that state.

 A “look-ahead” Mealy state machine looks at the current
state, the inputs, and what the next state will be, so that
the outputs always reflect the current state.

 Mealy…
 based on inputs and current state

 Mealy look-ahead…
 based on inputs, current state, and the next state (again,

looking ahead to what the next state will be)
16

7. Try to avoid causing ground
bounce in your design
 Ground bounce can occur when many output pins

simultaneously switch (SSO).
 It is accentuated when many of the output pins are

assigned fast slew rate.
 Ground bounce causes the functionality of the

circuit to appear random.
 This is caused by the device’s internal ground rising above

the board level ground.
 When this happens some of the registers may trigger twice.

 Always use sufficient decoupling capacitors.

17

More on avoiding ground bounce

 Never assign fast slew rate to all of your output
pins. Instead assign fast slew rate to those output
paths that need a little bit better performance.

 Consider alternative coding techniques for your
counters and state machines so that all of the bits
do not transition at once.

 Add an extra ground pin to the design.
 Tie an unused output pin near the SSO pins to ground,

and externally connect this to the board’s ground plane.
 This pin should be using the LVTTL I/O standard with the

highest drive capability.
18

8. Consider alternative techniques to
create your counters
 Binary encoded counters can suffer from the

same problems as binary encoded FSMs.
 Gray code and Johnson counters have only

one bit transition at once, and are thus more
reliable than binary encoded counters.
Consider using these when possible or
necessary.

4

19

Summary-- Design rules for reliability

 In general, when these design techniques
are followed, your design has a greater
chance of working properly. This also means
that you can reduce your simulation effort
and complete your design sooner. However,
these steps sometimes cause the design to
run a little slower.

20

Design for Speed

 These tips are intended to show you how to
increase the speed of your FPGA design. These
tips apply to Xilinx FPGAs and some of the design
solutions apply to other vendors, and are not used
to “fix” the FPGA, but the design.

 Lots of designers have trouble increasing the
performance of their designs, while others do not
understand how to build reliable FPGA designs.

 Always create a reliable design by following our
Design Rules for Reliability and then increase the
speed of the design with these tips.

21

1. Don’t gate clocks

 Failing to use timing constraints will yield modest
performance.

 Early Pin-Locking can also limit the ability of the
Implementation Tools to reach your timing goal.
Give the tools as much flexibility to meet your timing
goal by making your pin assignments as late in the
design cycle as possible.

 Take the time to understand Basic Global Timing
Constraints (Period, Offset In, Offset Out, and Pad-
to-Pad constraints). Add these constraints as a
foundation to constraining your design. Keep these
constraints as loose as possible.

22

More on Clocks

 Take the time to understand the use and creation of
Path Specific Timing Constraints. Make these
constraints as tight as necessary.

 Note that the Virtex devices (Virtex/E/EM and
Spartan II) can have their timing constraints pro-
rated from the Constraints Editor.
 This utility allows you to enter your worst case operating

conditions, and have the timing information reported by the
Timing Analyzer pro-rated.

 Note that if your operating conditions ever get worse than
the values you enter into the Constraints Editor, you risk
your device failing in-system.

 Be certain you always enter the WORST case conditions
that you ever expect to encounter.

23

2. Use the Logic Level Timing Report to verify
that your timing constraints are realistic

 This is important especially on the first implementation
 Double the delays reported by the LLTR if you are

targeting a newer device (Virtex/E/EM or Spartan II)
because routing delays are considered zero.
 If your constraint is shorter than this your compile time is going

to be large and the Implementation Tools may not be able to
reach your timing goal (be very AWARE of this).

 Add 20% extra delay reported by the LLTR if you are
targeting an older device (XC4000/E/XL/XV,
Spartan/XL, or older) because routing delays are
estimated.

 Note that the LLTR will not change unless the device,
speed grade, or the design changes. 24

3. Use the Timing Analyzer to generate detailed
timing information about your design

 The Timing Analyzer will provide a wealth of timing
information on designs that use timing constraints.
Unconstrained designs will generate a Default Path
Analysis that is only slightly helpful.

 The Report Paths in Timing Constraints Report, shows
each constraints delay path in descending order of
slack. The Report Paths Failing Timing Constraints
Report, shows each failing delay path.

 The Custom Report, shows all the delay paths
between groups of path endpoints created by selecting
Sources and Destinations. This report can be used find
the timing information for a particular delay path
without having to review a large report.

5

25

More on the Timing Analyzer

 The Report Paths Not Covered Report, shows the
all of the delay paths in the design, in descending
order of length. This report can be used to find any
unconstrained delay paths.

 The Timing Analyzer reports can show users how
many levels of logic are being inferred.
 This is very important, since most designers are not aware

of how much logic they are generating with their synthesis
tool, or how much optimization the synthesis tool is doing
for them.

 If your delay path infers multiple levels of logic, it will have
to be re-synthesized (with code changes or different
synthesis option settings) to meet your timing objective.

26

4. Increase the Place and Route
Effort Level
 This will enable the software to work longer

trying to implement your design.
 It is very effective at improving your design’s

performance.
 It increases the compile time considerably.

27

5. Use MPPR to improve the
performance of your design
 This allows the tools to use different

algorithms to improve the performance of
your design while focusing on improving
your placement. Placement is responsible
for 80% of your designs performance, not
routing.

 Consider decreasing your routing iterations
with each pass of MPPR, and after
implementation is completed polishing the
routing with the Re-Entrant Router.

28

6. Pipeline purely combinatorial
functions
 Pipelining involves the addition of registers to a design,

especially designs that have multiple levels of logic
between synchronous elements.

 This design techniques has been particularly useful
since FPGAs are register rich and most designers do
not use all of their flip-flops.

 Pipelining also creates latency in a design and requires
designers to create additional logic to signal when data
is valid.

 In cases where a design has multiple pipelined stages,
consider using the Shift Register LUT to balance the
stages and save registers.

29

7. Choose the best State Machine
Encoding scheme
 One-Hot and Gray encoded FSMs tend to have the

least Next state logic and hence infer the fewest levels
of logic.

 This generally assures that larger FSMs (greater than
16 states) will be faster if they are not Binary encoded.

 Note that custom encoding can be an excellent
solution if there is not very much decode logic inferred.

 Creating your Binary FSM in the Virtex Block Ram
resources can create a fast and reliable FSM by
transitioning the outputs with a 3.3Ns read access
time.

30

8. Use the Carry Logic resources for
fast arithmetic functions
 Carry Logic is the easiest and fastest way to

create fast adders, accumulators, counters,
subtractors, comparators, etc.

 Pre-Scale counters can be used to get even
better speed than Carry Logic. Likewise,
Linear Feedback Shift Registers can be
used in FIFO applications to get better
speed than Carry Logic implementations.

6

31

9. Duplicate logic can decrease net
delay on high fan-out nets
 This enables the placement tools to place the

replicated logic in different areas of the die, which
shortens the associated net delay.

 Net delay and fan-out can be found with the Timing
Analyzer reports and the FPGA Editor.

 Duplicate address and control lines to large
memories, clock enables, output enables, and
synchronous resets.

 The only caveat to this technique is that increases
the total area of the design.

32

10. Use the IOB resources

 They are designed to register your inputs
(fast set-up times) and to register your
outputs (fast clock-to-output times).

 Input register have variable set-up and hold
times. 0Ns hold time comes at the expense
of an increased set-up time.

 Fast slew rate decreases your output
transition times (decrease output delays by
30-40%).

33

11. Use the Re-Entrant router

 This utility is designed to route designs that failed to
completely route during the implementation process.

 It can be used to improve the performance of
SOME nets by as much as .3Ns. However, the net
you may need to be shorter may not improve at all.

 The Delay Based Clean-up option can be used to
improve net delays as described above, but can be
very effective at improving unconstrained net delays.

34

12. Change your speed grade

 This option allows you to choose a faster or
slower device to meet your performance
specifications.

 The Timing Analyzer can access a new speed
file and recalculate your designs internal
delays to determine if a faster or slower device
will meet your timing specifications. Moving to
a faster device will cost more, but if may save
you from costly re-design. Likewise, a slower
speed grade can save you money.

35

Summary--Go faster!

 In general, when these design techniques are followed,
your design has a greater chance of running very fast.

 Note that the Implementation Tools and these tips
cannot tell you whether your design will actually
function when downloaded to a prototype.

 Although these techniques enable you to be get better
speed out of your design, creative use of the FPGAs
resources can sometimes produce even better results.

 Your design will probably run faster in your prototype,
especially if you are not going to be operating the
finished product at worst case operating conditions.

