
1

Week3 29

A Cubical technique for
Minimization

• The initial specification of the function is
given in the form of implicants (not
necessarily prime or minterms.

• Use the intersection (∗ operation) as
defined earlier

• First, find all the prime implicants
• Find the essential prime implicants
• Find minimum coverage

Week3 30

A Cubical technique for
Minimization

• Let A={A1, A2, …An},B={B1,B2,…Bn} be two
implicants

• Find C=A ∗ B
– C= φ if Ai ∗ Bi = φ for more than one i
– ci=Ai ∗ Bi where Ai ∗ Bi ≠ φ, and ci = x if Ai ∗ Bi = φ

x10X
11φ1
0φ00
X10∩

2

Week3 31

A Cubical technique for
Minimization cont.

• Find new cubes that are not included in
the existing cubes.

• Gk+1 = ci ∗ cj for all ci, cj in Ck

• Ck+1 = Ck ∪ Gk+1 - redundant cubes
• Repeat until Ck+1 = Ck , then we have the

set of all prime implicants

Week3 32

Example

3

Week3 33

Finding Essential Prime Implicants

ε01X
εεφ1
εφε0
x10

Define the # operation

operation returns the part of A that is
not covered by B

C = A # B such that

C = A if Ai # Bi = φ for some i

C = φ if Ai # Bi = ε for all i

Otherwise C = ∪i(A1, A2, … Bi’, ..An)
where the union is for all I for which Ai=x
and Bi ≠ x.

Ai # Bi

Week3 34

Finding Essentials Prime Implicants

• Lep P be the set of all prime implicants, and DC is the set
of all don’t care.

• Let pi denote one prime implicant
• Pi is an essential prime implicant if

• The meaning of is that the # operation is applied
successively to each prime implicant in in P, if
P={p1,p2,p3,p4) and DC={d1,d2} then we evaluate

φ≠− DCpPp ii)#(#

214213)#)#)#)##((((ddpppp

4

Week3 35

Finding Essentials Prime Implicants

• Example
• Consider the set {x01x, x101, 01x1, xx10)

Week3 36

Complete Procedure
• Let C0 = set of initial cover of f and DC
• Find all prime implicants of C0 = P
• Find the essential prime implicants. If that set

covers all the vertices of f this is the minimum
cover

• Delete any non essential pi that is more
expensive than other prime implicant pj if pi # DC
pj = φ

• Choose the lowest-cost prime implicants to
cover the remaining vertices of f. Use branching

5

Week3 37

NAD and NOR Implementation

• Universal gate
1

Week3 38

NAND Gate

2 graphic symbols for NAND gate

AND-invert Invert-OR

6

Week3 39

2-Level Implementation

• Start with sum of product F=AB+CD

Week3 40

NAND Implementation

• Express the function in sum of products
• Replace every AND by a NAND
• Replace the OR by Invert-OR
• If a single element is an input to the OR

invert it.
• Change invert-OR to AND-invert
• Example on 3 variables

7

Week3 41

Multilevel NAND Circuits

• Convert all AND gates to NAND gates with
AND-invert symbols

• Convert all OR gates to NAND gates with
invert-OR symbols

• Check all the bubbles in the diagram, for
every bubble that is not compensated by
another bubble on the same line, add an
inverter (or compliment the input literal)

Week3 42

NOR Implementation

8

Week3 43

Wired Logic

• Wired AND in open collector TTL
• Wired-OR in ECL gates

Wired-AND in TTL

Week3 44

AND-OR-INVERT AOI
• In CMOS, and in most other logic families, the

simplest gates are inverters, then NAND and
NOR gates.

• It is typically not possible to design a
noninverting gate with less transistors than an
inverting gate.

• CMOS circuits can perfrom two level of logic
with just a single level of transistors. (AOI gate).

• The speed an other electrical characteristics of a
CMOS AOI or OAI gate is quite comparable to
those of a single CMOS NAND or NOR.

9

Week3 45

AOI

x5 •
x2

x3 •

x1
•

•

x4

Week3 46

AOI Gates

• If you implement the complement of the
function in sum of products it results in
AOI circuit

10

Week3 47

Other 2-level Implementation
• Consider the function

F=x’y’z’+zyz’
• Take the complement

F’=x’y+xy’+z
• You can implement it as

AOI using F’
• Change it to NAND-AND

by moving the bubble
from the output of the OR
to its inputs (and
changing it to AND)
NAND-AND
implementation

1000

0001

Z

Y

Week3 48

Other 2-level Implementation

• Using product of sums
• F=z’(x+y’)(x’+y), OR we can say
• F’=[(x’+y’+z)(x+y+z)]
• We can implement the above equation

using OR and NAND (OR-NAND
implementation).

• Then we can move the bubble of the
NAND to its inputs and changing it to OR
(NOR-OR implementation)

11

Week3 49

EX-OR

• x⊕y=x’y+y’x

x

y

Week3 50

• 3 and 4 inout EX-OR Parity

12

Week3 51

HDL

• Can be used to represent logic diagram,
Boolean expressions, and finite state
machine representation.

• Used to document digital systems
• Used in simulation and synthesis
• 2 main languages, Verilog, and VHDL

Week3 52

Verilog

• C-like syntax
• Case sensitive, // for comments
module smpl_circuit(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and g1(e,A,B);
not g2(y,c);
or g3(x,e,y);

endmodule

13

Week3 53

Verilog

• We can introduce delay
module smpl_circuit(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and #(30) g1(e,A,B);
not #(20) g2(y,c);
or #(10) g3(x,e,y);

endmodule

Week3 54

Verilog
// Behavioral Model of a Nand gate

// By Dan Hyde, August 9, 1995

module NAND(in1, in2, out);
input in1, in2;

output out;

// continuous assign statement
assign out = ~(in1 & in2);

endmodule

• The continuous assignment statement is used to
model combinational circuits where the
outputs change when one wiggles the input.

14

Week3 55

Verilog
module AND(in1, in2, out);
// Structural model of AND gate from two NANDS
input in1, in2;
output out;
wire w1;
// two instantiations of the module NAND
NAND NAND1(in1, in2, w1);
NAND NAND2(w1, w1, out);
endmodule

Week3 56

Testing
module test_AND;
// High level module to test the two other modules
reg a, b;
wire x,y;
Circuit_with_delay cwd(A,B,C,x,y);
initial

begin // Test data
A=1’b0; B=1’b0; C=1’b0;
#100 A=1’b1; B=1’b1; C=1’b1;
#100 $finish;
end

endmodule
Module circuit_with_delay(A,B,C,x,y);

input A,B,C;
output x,y;
wire e;
and #(30) g1(e,A,B);
not #(20) g2(y,c);
or #(10) g3(x,e,y);

endmodule

15

Week3 57

User Defined Primitives
//User defined primitive(UDP)
primitive crctp(x,A,B,C);

output x;
input A,B,C;

//Now the truth table
table

// A B C : x
0 0 0 : 1;
0 0 1 : 0;
0 1 0 : 1;
0 1 1 : 0;
1 0 0 : 1;
1 0 1 : 0;
1 1 0 : 1;
1 1 1 : 1;
endtable

Endprimitive
module abcdef;

reg x,y,z;
wire w;
crctp(w,x,y,z);

endmodule

