Digital Logic Design CSE3201

Lecture 2 Boolean Algebra and Logic Gates

FALL 2007 CSE3201 1

Boolean Algebra (Axiomatic Definition).

- Boolean algebra is an algebraic structure defined by a set of elements B, together with to binary operators + and ., provided that the following postulates are satisfied (Huntington).
- Closure with respect to + and .
- Identity element of + = 0, to . is 1
- Commutative wrt + and •
- Distributive over + and . $X \bullet (y+z) = (x \bullet y) + (x \bullet z)$ and over . $X+(y \bullet z) = (X+y) \bullet (X+z)$
- For every element in B x, there is x' such that x+x'=1 and x x'=0
- There are at lease 2 different element in B

Two-Valued Boolean Algebra

- The element 1 and 0 operation are OR and AND
- All postulates are satisfied

FALL 2007 CSE3201 3

Duality

 Duality Principle: In Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the operators if the operators and identity elements are interchanged. In 2-valued Boolean algebra, exchange AND and OR, and 1 and 0

Basic Theorems

Postualte 1	X+0=x	X . 1=1
Postulate 5	X+X'=1	X . X'=0
Theorem 1	X+X=X	X . X =1
Theorem 2	X + 1 = 1	X * 0 = 0
Theorem 3	(x')'=x	
Commutative	X + Y = Y + X	X . Y = Y . X
Associative	X + (Y + Z)=(X + Y) + Z	X(YZ)=(XY)Z
Distributive	X(Y+Z)=(X.Y)+(X.Z)	X + YZ = (X+Y)(X+Z)
DeMorgan	(x+y)'=x'y'	(xy)'=x'+y'
Absorption	x + xy = x	x(x+y)=x

FALL 2007 CSE3201 5

Boolean Function

- Boolean functions can be represented in a truth table that shows the value of the function for all different combination of the input variables.
- An algebraic expression
- Circuit diagram that implements the algebraic expression
- Show as an example F=x+y'z and F=x'y'z+xz+yz'

Algebraic manipulation

- We define a *literal* to be a single variable within x'y+zxy is composed of 2 terms and 5 literals.
- By reducing the number of literals, or terms we can obtain a simpler circuit
- x(x'+y)=xx'+xy=0+xy=xy
- (x+y)(x+y')=x+xy+xy'+yy'=x(1+y+y')=x

FALL 2007 CSE3201 7

Algebraic manipulation

- You can find the complement of a function by taking their duals, and complementing each literal.
- F=x'yz'+x'y'z
- Dual of F is (x'+y+z')(x'+y'+z')
- Complemnting literals (x+y'+z)(x+y+z)
- F'=(x'yz')' (x'y'z)'
- F'=(x+y'+z)(x+y+z')

Representation

- Truth Table
- Cubes
- Binary Decision Diagram BDD

FALL 2007 CSE3201

Truth Tables

 A table that lists all the combinations of input variables and the corresponding value of the function

	X ₁	X_2	X_3	Z	
	0	0	0	0	
	0	0	1	0	
	0	1	0	1	
	0	1	1	0	
	1	0	0	1	
	1	0	1	1	
	1	1	0	0	
	1	1	1	1	
CSE	3201				10

FALL 2007

Cubes

- A cube of the function Z(x₁,x₂,...) has the form v₁,v₂,...|V_z such that V_z=Z(v₁,v₂,...)
- An implicant of Z is represented as a cube
 as follows

set
$$v_i = 1(0)$$
 if $x_i(x_i)$ appears in Z
set $v_i = X$ if neither x_i nor x_i appears in Z
set $v_z = 1$

• For example, $00X \mid 1$ represents $x_1 x_2$

FALL 2007 CSE3201 11

Cubes

- If a cube q can be obtained from another cube p by replacing one or more X in p by 0 or 1, then we say that p covers q
- For example, 00X|1 covers 000|1 and 001|1
- A cube representing a prime implicant in Z
 (Z') is called a prime cube

FALL 2007 CSE3201 13

Cubes

 To find the value of Z for a given input combination, (v₁, v₂,...) search the primitive cubes of Z until we find one whose input part covers v using intersection operator

 $0 \cap 1 \text{ is inconsistency} \\$

\cap	0	1	X
0	0	ф	0
1	ф	1	1
Χ	0	1	Х

Cubes

- The intersection of 2 cubes is cinsistent if all values are compatible (no ∩)
- 1. Form the cube v1 v2 .. |X
- Intersect this cube with the prime implicants of Z until a consistent intersection is obtained
- 3. The value of Z is obtained in the right most position

FALL 2007 CSE3201 15

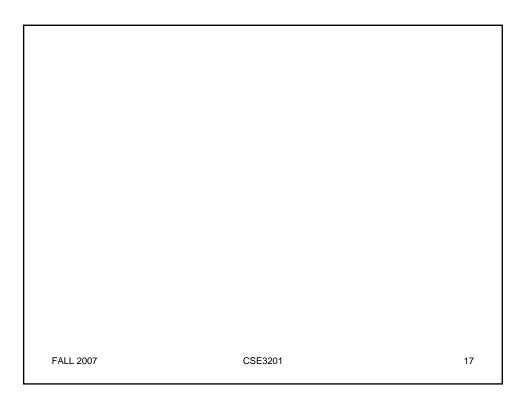
Cubes -- Example

X ₁	X ₂	X ₃	Z	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	
FALL 20	07			CSE3201

 $Z = x_2 + x_1 x_3$

X 1 0 0 1 1 X 0 X 0 X 1 0 X 1 1

16



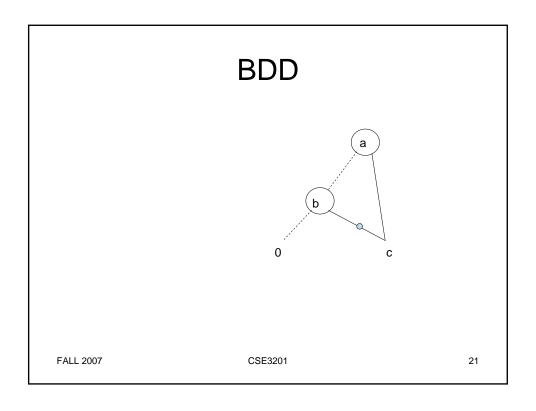
		Cuk	oes ·	Ex	am	ple			
X ₁	X_2	X_3	Z	_					
0	0	0	1						
0	0	1	1						
0	1	0	0			1	0	1	Х
0	1	1	1			x_1	X_2	X_3	Z
1	0	0	1			Χ	1	0	0
1	0	1	1			1	1	Χ	0
1	1	0	0			X	0	Χ	1
1	1	1	0			0	Χ	1	1
FALL 200	07		(CSE3201					18

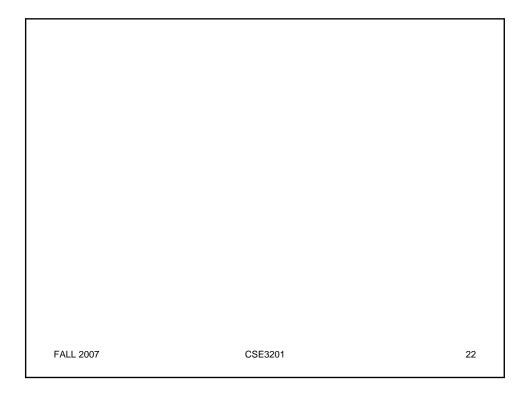
Cubes	Exampl	е
-------	--------	---

$\overline{X_1}$	X ₂	X ₃	Z	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	
FALL 20	07			CSE3201

Binary Decision Diagrams BDD

- A BDD is a graph model of the function of the circuit.
- A simple graph traversal procedure is used to determine the value of the output by sequentially examining values of the input.
- At every node follow left (right) branch if the value of the node is 0(1)
- The value of the function is encountered at exit
- If we encounter an odd number of dots, the exit value is complemented





Canonical and Standard Forms

- If we have *n* variables, we can have 2^n different combination of these variables either in its normal or complemented form.
- Each of these terms is called a *minterm*
- In a similar matter, n variables added (Ored) can form 2ⁿ maxterm
- A boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and taking the OR of all these terms.

FALL 2007 CSE3201 23

Canonical Form

			Minterms		Maxterms	
Х	у	Z	term		term	
0	0	1	x'y'z'	m0	x+y+z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz;	m2	x+y'+z	M2
0	1	1	x'yx	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x'+y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x'+y'+z'	M7

Canonical Form

- A Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function, then taking the OR of all these terms.
- It could be also expressed as the product of maxterms, where a maxtrm is formed for each combination of the variables that produces a 0 in the function.

FALL 2007 CSE3201 25

Canonical Form

•	Example consider the	.,	.,	_	f
	following table	Х	у	Z	ı
•	F=x'y'z'+x'yz'+xy'z'	0	0	0	1
•	F=m ₀ +m ₂ +m ₄	0	0	1	0
	F'=x'y'z+x'yz+xy'z	0	1	0	1
	+xyz' + xyz	0	1	1	0
•	F=(x+y+z')(x+y'+z')	1	0	0	1
	(x'+y+z')(x'+y'+z)	1	0	1	0
	(x'+y'+z)	1	1	0	0
•	F=M ₁ . M ₃ . M ₅ . M ₆ . M ₇	1	1	1	0
	1 1011 1 1013 1 1015 1 1016 1 1017				

Canonical Form

• Example

```
\begin{split} F(A,B,C) &= \sum (1,4,5,6,7) \\ F'(A,B,C) &= \sum (0,2,3) = m_0 + m_2 + m_3 \\ F &= \overline{(m_0 + m_2 + m_3)} = m_0 m_2 m_3 = M_0 + M_2 + M_3 \\ F &= \prod (0,2,3) \end{split}
```

FALL 2007 CSE3201 27

Canonical Form

- Express the function F=A+B'C in a sum of minterm
- Method 1 make truth table
- Method 2, note that
 - A=A(B+B')=AB+AB'
 - F=AB+AB'+B'C
 - F=AB(C+C')+AB'(C+C')+(A+A')B'C
 - F=ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C
 - $F=m_7+m_6+m_5+m_4+m_5+m_1=\Sigma(1,4,5,6,7)$

Conversion between Canonical Forms

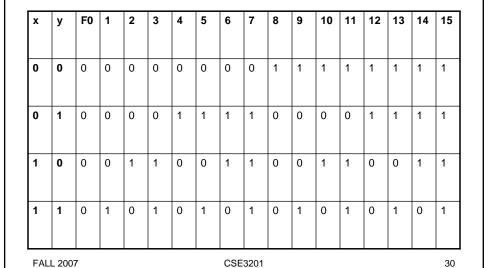
 The complement of the function expressed as the sum of many terms equals the sum of the minterms missing from the original function.

$$F(A,B,C) = \sum (1,4,5,6)$$

$$\overline{F}(A,B,C) = \sum (0,2,3) = m_0 + m_2 + m_3$$
take the complement using De Morgan's
$$F = \overline{(m_0 + m_2 + m_3)} = M_0 M_2 M_3$$

FALL 2007 CSE3201 29

Other Logic Functions



15

Other Logic Functions

F0=0		Null	Constant 0
F1=xy	x.y	AND	
F2=xy'	x/y	Inhibition	X but not y
F3=x		transfer	
F4=x'y	y/x	Inhibition	Y but not x
F5=y		Transfer	
F6=xy'+x'y	X⊕y	Exclusive OR	X, or y but not both
F7=x+y	Х+у	OR	
F8=(x+y)'	X↓Y	NOR	Not OR

FALL 2007 CSE3201 31

Other Functions

F9=xy+x'y'	(x ⊕ y)'	Equivalence	X equals y
F10=y'	Y'	Complement	NOT y
F11=x+y'	X ⊂ Y	Implication	If y, then x
F12=x'	X'	Complement	NOT x
F13=x'+y	$X\supset Y$	Implication	If x, then y
F14=(xy)'	X↑Y	NAND	NOT AND
F15=1		Identity	Constant 1

Digital Logic Gates

 Explain AND, OR, NOT, Buffer, NAND, NOR, EX-OR, EX-NOR

Negative Logic

FALL 2007 CSE3201 33

Extension to Multiple Inputs

- The extension of AND, and OR is easy
- Consider NOR
- $(X \downarrow Y) \downarrow Z = ((x+y)'+z)' = xz' + yz'$
- For simplicity we define
- $X \downarrow Y \downarrow Z = (X+Y+Z)$
- $X \uparrow Y \uparrow Z = (XYZ)'$

Positive and Negative Logic

- Hardware digital gates are defined in tyerms of signal values H and L, it is up to the user to define what is H and L
- Consider the following table

If we define H=1, L=0
X Y F
It is AND (+ve logic)
If we define H=0, L=1
It is OR (-ve Logic)
H H H

FALL 2007 CSE3201 33

Digital Logic Families

• TTL: standard

• ECL: high speed

MOS: high component density

CMOS: Low power, currently the dominant logic family