Digital Logic Design

Chapter 1 Introduction

Fall 2007 CSE3201

Introduction

- This course is about Design Techniques for Digital System, a more exact name will be Synchronous Digital Hardware System.
- Synchronous means clocked i.e. all changes in the system are controlled by a global clock and happen at the same time
- Digital means all values (input, output, and internal) can take on discrete values.
- A/D if the input is analog (voice or music).

- Text: Digital Design, Mano and Ciletti 4th ED Prentice Hall
- References:
- Digital Design: Principles and Practices, Wakerly, Prentice Hall
- Advanced Digital Design with the Verilog HDL, M. Ciletti, Prentice hall
- Contemporary Logic Design, Katz and Borriello, Prentice Hall

- HW 0%
- 3 quizzes 10%
- Lab 10%

Midterm

• Project 10%

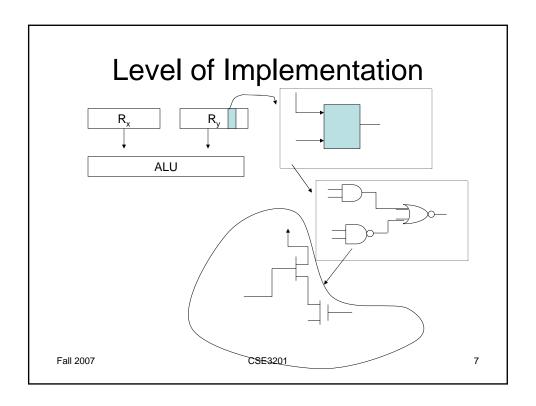
25%

• Final 45%

Fall 2007 CSE3201 3

Course contents

- Number system and how to represent things digitally.
- Boolean algebra and logic circuits.
- Combinational design
- Sequential design
- This is not a course on transistor physics or circuits, but we need to know these to better understand the building blocks of the system.
- Not a course on computer organization, but we will look at these as example of what we can do

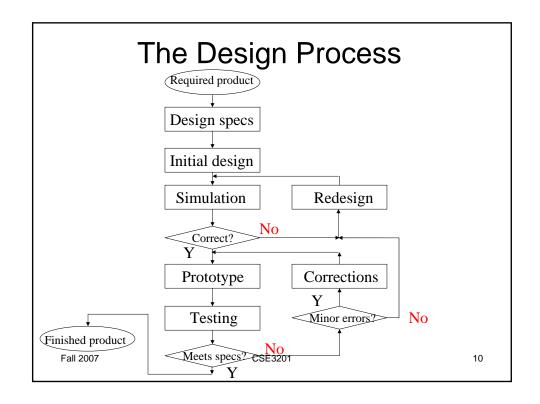

Good Design

- Digital systems are very complex and large, in order to do a good design, consider these issues:
 - Modularize your design
 - Top-down Design
 - Bottom-up Design
- Design issues: Speed, Cost, Power
- Usually these are contradictory (a fast system is not cheap.
- Design is more of an art than science, but luckily we have measures for the design (cost, speed, .)

Fall 2007 CSE3201

Specifications

- Like in any other design, we start with the specification.
- The specification is basically what do we want to achieve.
 - High level specification
 - Binary level specification
 - Algorithmic level specification



CAD TOOLS

- Nowadays, design is usually automated, we use design tools for our design.
- HDL is used to describe the system (or the proposed system) in a high-level C-like language.
- Synthesis tools are used to map this design to FPGA
- Simulation tools are used to check the design (timing or functional simulation).
- · Finally, testing

Implementation

- Integrated Circuits (IC's)
 - Crystalline silicon
 - 1—100's of Millions of transistors
 - Feature size 0.13um or 0.13 90 n (0.09micron) ...
 - CMOS (mostly)
 - Standard microprocessors
 - ASIC (application Specific IC's)
 - FPGA's (Field Programmable Gate Arrays)
- Printed Ciruits Board (PCB)
 - Fiberglass or ceramics
 - Many conductive layers (1-20)
 - Multiple Chips Modules (MCM's) multiple chips directly connected to a substarte
- Chassis

Number System

- Decimal numbers $(9735) = 9 \times 10^3 + 7 \times 10^2 + 3 \times 10^1 + 5 \times 10^0$
- Binary numbers (101) = 5 decimal
- How to convert 29 to binary (successive division by 2 the answer is 11101

Number	Quotient	Remainder	4
29/2	14	1	
14/2	7	0	
7/2	3	1	
3/2	1	1	
1/2	0	1	

Fall 2007 CSE3201 11

Number System

- Octal and Hex
- · Conversion is the same idea

Complements—Diminished radix

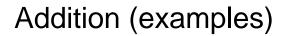
- Given a number N, in base r having n digits is defined as (rⁿ-1)-N
- For example 9th complement of 456325 is 543674
- The 1's complement of any binary number is obtained by changing every 1 to 0 and every 0 to 1
- The 1's complement of 101100010 is 010011101

Fall 2007 CSE3201 13

Radix Complement

- Given a number N, in base r having n digits is defined as rⁿ -N=(rⁿ -1) -N +1
- For the 10th complement, the rule is
- Leave the least significant 0's unchanged, the first nonzero digit is subtracted from 10, the rest of the digit are subtracted from 9 10th complement of 3451600 is

6548400


 For 2's complement, the LSB zeros are left unchanged, the first 1 un changed, the remaining bits are complemented 010010

Signed Binary Numbers

	Decimal	2's complement	1's complement	signed magnitude	
	+7	0111	0111	0111	
	+6	0110	0110	0110	
	+5	0101	0101	0101	
	+4	0100	0100	0100	
	+3	0011	0011	0011	
	+2	0010	0010	0010	
	+1	0001	0001	0001	
	+0	0000	0000	0000	
	-0		1111	1000	
	-1	1111	1110	1001	
	-2	1110	1101	1010	
	-3	1101	1100	1011	
	-4	1100	1011	1100	
	-5	1011	1010	1101	
	-6	1010	1001	1110	
Fall 2007	-7	1001	09 23201	1111	15
	-8	1000			

Subtraction with complement

- To subtract two n-digit unsigned numbers *M-N* in base *r* is done as follows
- 1. Add the minuend M to the r's complement of the subtrahend N yielding $M+(r^n-N)=M-N+r^n$
- 2. If $M \ge N$ The sum will produce an end carry, that is basically the r^n
- 3. If $M \le N$ The sum does not produce a carry and is equal to $r^n (N-M)$ which is the r's complement of (N-M). To obtain the answer take the r's complement of the sum and place a -ve sign next to it.

Fall 2007 CSE3201 17

Addition (Example)

Binary Codes

- BCD Note that in adding 2 BCD numbers, the digits are added as if they are 2 binary numbers, if the result is greater than or equal 1010, we add 0110 to obtain the correct BCD digit sum and a carry
- Gray code (why do we care?)
- ASCII and ASCII with parity

Fall 2007 CSE3201 19

BCD Addition

Gray Codes

- Only I digit change when we go from any number to number+1
- To form a sequence, put the sequence from left to right, followed by the sequence reversed. Add 0 as a MSB to the left sequence and 1 to the right sequence

Fall 2007 CSE3201 21

Register Transfer Logic

- Example R2 → R1
- What is an R?

Binary Logic

- Low 0-1 volt
- High 3-4 volts
- In-between not defined
- AND, OR NOT (EXOR, NAND, NOR)