
1

1

Finding Shortest Paths
Using BFS

2

Finding Shortest Paths

The BFS code we have seen
find outs if there exist a path from a vertex s to a vertex v
prints the vertices of a graph (connected/strongly connected).

What if we want to find
the shortest path from s to a vertex v (or to every other
vertex)?
the length of the shortest path from s to a vertex v?

In addition to array flag[], use an array named prev[],
one element per vertex.

prev[w] = v means that vertex w was visited right after v

2

3

BFS and Finding Shortest Path

initialize
all pred[v] to -1

record where you
came from

already got shortest path from s to v

4

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!
prev[] now can be traced backward
to report the path!

8

2

1

7

3

2

1

-

2

8

prev[]

3

5

Shortest Path Algorithm
for each w adjacent to v

if flag[w] = false {
flag[w] = true;
prev[w] = v; // visited w right after v
enqueue(w);

}

To print the shortest path from s to a vertex u, start with
prev[u] and backtrack until reaching the source s.

Running time of backtracking = ?
To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until
reaching s.

Running time = ?

6

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all false)

Initialize prev[] to -1
Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

prev[]

4

7

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

F

F

F

F

F

F

F

T

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

Pred

8

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

F

T

F

F

F

T

F

T

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in pred
that we came from
2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

-

2

-

-

2

-

Pred

5

9

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

F

F

F

T

F

T

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }
Mark new visited
Neighbors.

Record in Pred
that we came
from 8.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

-

2

-

-

2

8

Pred

10

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

F

F

T

T

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in Pred
that we came
from 1.Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

1

-

-

2

1

-

2

8

Pred

6

11

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

F

F

T

T

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

8

2

1

-

-

2

1

-

2

8

Pred

12

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

F

F

T

T

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors

8

2

1

-

-

2

1

-

2

8

Pred

7

13

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

F

F

T

T

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors 8

2

1

-

-

2

1

-

2

8

Pred

14

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

F

T

T

T

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came
from 3.

8

2

1

-

3

2

1

-

2

8

Pred

8

15

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came
from 7.

8

2

1

7

3

2

1

-

2

8

Pred

16

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5.

Neighbors

8

2

1

7

3

2

1

-

2

8

Pred

9

17

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.

Neighbors

8

2

1

7

3

2

1

-

2

8

Pred

18

BFS Finished

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!
prev[] now can be traced backward
to report the path!

8

2

1

7

3

2

1

-

2

8

prev[]

10

19

Example of Path Reporting

8

2

1

7

3

2

1

-

2

8

9

8

7

6

5

4

3

2

1

0

nodes visited from

Try some examples; report path from s to v:
Path(2-0) ⇒
Path(2-6) ⇒
Path(2-1) ⇒

20

Path Reporting

Given a vertex w, report the shortest path from s to w
currentV = w;
while (prev[currentV] ≠ –1) {

output currentV; // or add to a list

currentV = prev[currentV];
}
output s; // or add to a list

The above code prints the path in reverse order.

11

21

Path Reporting (cont.)

To output the path in the right order,
Print the list in reverse order.
Use a stack instead of a list.
Use a recursive method (implicit use of a stack).

printPath (w) {
if (prev[w] ≠ –1)

printPath (prev[w]);
output w;

}

22

Finding Shortest Path Length

To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until
reaching the source s.

Running time of backtracking = ?

Following is a faster way to find the length of the shortest
path from s to u (at the cost of using more space)

Allocate an array d[], one element per vertex.
When BSF algorithm ends, d[u] records the length of the
shortest path from s to u.
Running time of finding path length = ?

12

23

Recording the Shortest Distance

d[v] = ∞;

d[w] = d[v] + 1;

d[s] = 0;

d[v] stores shortest
distance from s to v

24

BFS Trees
Tree: a connected (strongly connected) graph without cycles
Assuming a connected (strongly connected) graph, the paths found
by BFS is often drawn as a rooted tree (called BFS tree), with the
starting vertex as the root of the tree.

BFS tree for vertex s = 2

Question: What would a “level” order traversal tell you?

13

25

More on BFS

D
E

A
C

F
B

G
K

H

L
N

M

O
R

Q
P

s

A graph may not be connected
(strongly connected) ⇒ enhance
the above BFS code to
accommodate this case.

A graph with 3 components

26

Recall the BFS Algorithm …

output (v);

14

27

Enhanced BFS Algorithm

It turns out that we can re-use
the previous BFS method to
compute the connected
components of a graph G

BFSearch(G) {
i = 1; // component number
for every vertex v

flag[v] = false;
for every vertex v

if (flag[v] == false) {
print (“Component ” + i++);
BFS(v);

}
}

K

H

A
C

B

N

M

A graph with 3 components

L

28

Next Topics

To construct a BSF forest from a graph

Depth First Search (DFS)

Shortest path algorithms for weighted graphs:
Bellman-Ford
Dijkstra’s

