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Finding Shortest Paths 
Using BFS
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Finding Shortest Paths

The BFS code we have seen 
find outs if there exist a path from a vertex s to a vertex v 
prints the vertices of a graph (connected/strongly connected).

What if we want to find 
the shortest path from s to a vertex v (or to every other 
vertex)?
the length of the shortest path from s to a vertex v?

In addition to array flag[ ], use an array named prev[ ], 
one element per vertex.

prev[w] = v means that vertex w was visited right after v
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BFS and Finding Shortest Path

initialize 
all pred[v] to -1

record where  you 
came from

already got shortest path from s to v
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Example
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Shortest Path Algorithm
for each w adjacent to v

if flag[w] = false {
flag[w] = true;
prev[w] = v;   // visited w right after v
enqueue(w);

}

To print the shortest path from s to a vertex u, start with 
prev[u] and backtrack until reaching the source s.

Running time of backtracking = ?
To find the length of the shortest path from s to u, start 
with prev[u], backtrack and increment a counter until 
reaching s.

Running time = ?
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Flag that 2 has 
been visited.

Place source 2 on the queue.
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Q = {2} → {  8, 1, 4 }

Mark neighbors
as visited.

Record in pred
that we came from 
2.

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue
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Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 
Mark new visited
Neighbors.

Record in Pred
that we came 
from 8.

Dequeue 8.  
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!
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Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark new visited
Neighbors.

Record in Pred
that we came 
from 1.Dequeue 1.  

-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.
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Dequeue 4.  
-- 4 has no unvisited neighbors!
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Dequeue 0.  
-- 0 has no unvisited neighbors!
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Dequeue 9.  
-- 9 has no unvisited neighbors!
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Dequeue 3.  
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came 
from 3.

8

2

1

-

3

2

1

-

2

8

Pred



8

15

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

9

8

7

6

5

4

3

2

1

0

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 } 

Dequeue 7.  
-- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came 
from 7.
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Dequeue 5.  
-- no unvisited neighbors of 5.
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Dequeue 6.  
-- no unvisited neighbors of 6.
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BFS Finished
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Example of Path Reporting
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Try some examples; report path from s to v:
Path(2-0) ⇒
Path(2-6) ⇒
Path(2-1) ⇒
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Path Reporting

Given a vertex w, report the shortest path from s to w
currentV = w;
while (prev[currentV] ≠ –1) {

output currentV;  // or add to a list

currentV = prev[currentV];
}
output s; // or add to a list

The above code prints the path in reverse order.
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Path Reporting (cont.)

To output the path in the right order,
Print the list in reverse order.
Use a stack instead of a list.
Use a recursive method (implicit use of a stack).

printPath (w) {
if (prev[w] ≠ –1) 

printPath (prev[w]);
output w;

}
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Finding Shortest Path Length

To find the length of the shortest path from s to u, start 
with prev[u], backtrack and increment a counter until 
reaching the source s.

Running time of backtracking = ?

Following is a faster way to find the length of the shortest 
path from s to u (at the cost of using more space)

Allocate an array d[ ], one element per vertex.
When BSF algorithm ends, d[u] records the length of the 
shortest path from s to u.
Running time of finding path length = ?
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Recording the Shortest Distance

d[v] = ∞;

d[w] = d[v] + 1;

d[s] = 0;

d[v] stores shortest 
distance from s to v

24

BFS Trees
Tree: a connected (strongly connected) graph without cycles
Assuming a connected (strongly connected) graph, the paths found
by BFS is often drawn as a rooted tree (called BFS tree), with the 
starting vertex as the root of the tree.

BFS tree for vertex s = 2

Question: What would a “level” order traversal tell you?
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More on BFS
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A graph may not be connected 
(strongly connected) ⇒ enhance
the above BFS code to 
accommodate this case.

A graph with 3 components
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Recall the BFS Algorithm …

output ( v );
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Enhanced BFS Algorithm

It turns out that we can re-use 
the previous BFS method to 
compute the connected 
components of a graph G

BFSearch( G )  {
i = 1;     // component number
for every vertex v

flag[v] = false;
for every vertex v

if ( flag[v] == false ) {
print ( “Component ” +  i++ );
BFS( v );

}
}
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A graph with 3 components

L
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Next Topics

To construct a BSF forest from a graph

Depth First Search (DFS)

Shortest path algorithms for weighted graphs:
Bellman-Ford
Dijkstra’s


