Finding Shortest Paths
Using BFS

Finding Shortest Paths

The BFS code we have seen
find outs if there exist a path from a vertex s to a vertex v
prints the vertices of a graph (connected/strongly connected).
What if we want to find

the shortest path from s to a vertex v (or to every other
vertex)?

the length of the shortest path from s to a vertex v?
In addition to array flag[], use an array named prev[],
one element per vertex.

previw] = v means that vertex w was visited right after v

BFS and Finding Shortest Path

Algorithm BFS(s)

1. for each vertex v

2. do flug(v) := false; itialize

< | predfv] := —1; . all pred[v] to -1

4, (@ = empty queue;

5. flag[s] := true;

6. enqueue(Q,s);

7. while @ is not empty

8. do v := dequeue(Q); already got shortest path from s to v
9. for each w adjacent to v

10. do if flag[w] = false

11. then flag[w] := true;

12. |pmd[w] — 'u;|<7 g;);dﬁygr}]ere you
13. enqueue(Q,w) .
Example

Q=1{1} sTOPII!l Qisempty!!!

Adjacency List

:

|

st B
Wil —
— &

l

3 | =
> | on |

;

x‘.‘;mqo-'/\-l.-wra»—c|

Visited Table (T/F)

olt] [s]
| 2]
BE:]
s[t| |1
1| [2]
s[t] [3]
s[t]| [7]
[t |1
s[t]| [2]
o[t]| 8]

prev[]

prev[] now can be traced backward

to report the path!

Shortest Path Algorithm

for each w adjacent to v
if flag[w] = false {
flag[w] = true;
prev[w] =v; /I visited w right after v
enqueue(w);

}

To print the shortest path from s to a vertex u, start with
prev[u] and backtrack until reaching the source s.

Running time of backtracking = ?

To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until

reaching s.
Running time = ?

Example

Adjacency List
[o}—s
l—3 7 9 2
2 g1 4
i/ 4 5 1

source P

L 6

6 5.
7 1 6
g2 0 9
9—1 8

Initialize visited
table (all false)

Visited Table
(T/IF)

0

ol w| ~| o o 2| w|]| -

mimmMm|Mm |||

prev[]

Q =} Initialize prev[]to -1

Initialize Q to be empty

6

Adjacency List Visited Table (T/F)

— of|F -
0 8]
1| F .
13 7 9 2 —
2|7 }
2 8 1 4]
3| F .
314 5 1]
42 3 4F |- |
source N 5| F :
6 7 s 5|F -
7 1 6 “|F -
g2 0 9 8|F -
9 —1 8 9| F

Pred

Flag that 2 has
been visited.

Q:{2}

Place source 2 on the queue.

Adjacency List Visited Table (T/F)

— 0| F -
0 8 —
1T 2
13 7 9 2 —
2 R
Neighbors—»| 2 g1 4 T —
i/ 4 5 1 *|F -—
a2 3 T 12]
s 6 °|F L
6 75 °|F L
7 16| T[F -
§—2 0 9 8T 12]
91— 1 8 9| F
Pred
Mark neighbors
as visited.

Q={2—~ {814}

Record in pred

Dequeue 2. _ that we came from
Place all unvisited neighbors of 2 on the queue 5. i

Adjacency List

e | oo
q_.
b=
(=]

weota = =
s

by | | oo |

[0 [PV RV

1
b | = | =t | e
o

jlf

Q=1{814}—{1,4009}

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!

Visited Table (T/F)

ofT 8
ik 2]
2| T N
3|F N
Nk 2|
5|F]
6|F]
7| F N
s|T 2]
Nk s |
Pred
Mark new visited

Neighbors.

Record in Pred
that we came

from 8.
9

Adjacency List

Neighbors—»

w | oo
b=
(=]

weota = =
s

source

[P I
[0 [PV RV P P

1
ba | = | =
o

jlf

0={14009}~{4,00937}

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven'’t been visited yet.

Visited Table (T/F)
o]+ [3]
1T 2|
2| T -]
s|t| |1
ne B
5| F -]
6|F N
aE; N
s|t| 2]
slr| 8]

Pred
Mark new visited
Neighbors.

Record in Pred
that we came

from 1.
10

Adjacency List

f

=

b

£oloe |w
T
— e |w

Neighbors—»

[I N P Y

1

W s 3 ke W = D |

30 =T - KV - N)

Q={400937}—~{0093,7}

Dequeue 4.
-- 4 has no unvisited neighbors!

Visited Table (T/F)

ol T 8
K 2
2 T N
Ik 1]
Nk 2
5| F]
6| F]
Ak 1]
s|T 2]
Nk s |

Pred

11

Adjacency List

Neighbors—»

f

=

b

£oloe |w
T
— e |w

[I N P Y

1

W s 3 ke W = D |

30 =T - KV - N)

0=1{0937}-{9,37}

Dequeue 0.
-- 0 has no unvisited neighbors!

Visited Table (T/F)

olt] T[]
| |2
BE:]
s(t] [t
NEIEER
5| F]
6| F]
[t [t
st |2}
s[t] e

Pred

Adjacency List Visited Table (T/F)

T :IB ofT T
1—3 7 9 2 T 2
2 § 1 4 2T]
314 5 1 [T i
41— 3| T 2
s5—3 6 5[F -
6 705 5|F -
7 1 6I T 1]
g2 0 9 8 (T 2]
d — 1 8 9| T 8
Pred
Q:{9,3,7}—>{3,7}
Dequeue 9.
-- 9 has no unvisited neighbors! 1

Adjacency List Visited Table (T/F)

o}-[5] 1]
13 7 9 2 2
2 8§ 1 4 2T B

Neighbors—| 3 — 4 5 1 T Z

a2 3 T 2

53 6 [T [5]

6 7 s LR -]

7 16| 1Tl |1

s—2 0 9 8T 5 |

9 —1 8| ofT g |

Pred
Mark new visited

Vertex 5.

Q=1{3.7}~1{7.5}

Record in Pred
Dequeue 3. that we came
-- place neighbor 5 on the queue. from 3. 14

Adjacency List Visited Table (T/F)

— ofT 8
0 8 - |
13 7 9 2 B
2 8 1 4 L
3E—4 5 1 T !
41— 3| AT 2
53 6 5T 3
6 7 s 6T 7
Neighbors—»| 7 L 6| 7T 1
) sk—2 0 9 8| T 2
91 8 of|T 8
Pred
Mark new visited
Vertex 6.

Q=1{7.5}~1{56}

Record in Pred
Dequeue 7. that we came

-- place neighbor 6 on the queue. from 7. 15

Adjacency List Visited Table (T/F)

— ofT 8
0 8 —
1T 2

13 7 9 2 -
2| T B

2 s 1 4 L
- 3|t 1

314 5 1]
42 3 AT |12
Neighbors—| s —— 3 4 5T 3
6 7 s o|T 7
- L 6| 7T 1
91 8 ofT 8
Pred

Q= {561 —1{6)

Dequeue 5.
-- no unvisited neighbors of 5. 16

Adjacency List Visited Table (T/F)

:

8
2

wolre (= e |w
Wil = |
— |

l

o |

\‘)Q’?-\-JG"I‘J—-'«\J[J'—C|
I N I I T I I I

o|lo| ~w|o| ol a8l w| |]| o

[elo]-[~[en]-]

UH

w0

o
=
@
o

0=1{6}—1{}

Dequeue 6.
-- no unvisited neighbors of 6. 17

BFS Finished

Adjacency List Visited Table (T/F)

8
2

:

ISR SR
Wil e
— |

l

o |

L= o0 -1 (=21 i e .l =] — = |
© o] ~ o (4, S w N - o
EEE NN R N I I R I

w0

[elo[=[~elm]-]

_,
(9]
<

prev[]

prev[] now can be traced backward
Q=1{} STOP!Il Qisempty!ll toreportthe path!

Example of Path Reporting

nodes visited from
8
2

o|lo| ~w|o| ol &8l w| |]| o

o |[N|Rr|[~N|w|Nd] |

Try some examples; report path from s to v:
Path(2-0) =
Path(2-6) =
Path(2-1) =

19

Path Reporting

Given a vertex w, report the shortest path from s to w
currentV = w;
while (prev[currentV] # -1) {

output currentV; /I or add to a list

currentV = prev[currentV],

}

output s; //oradd to a list

The above code prints the path in reverse order.

20

10

Path Reporting (cont.)

To output the path in the right order,
Print the list in reverse order.
Use a stack instead of a list.
Use a recursive method (implicit use of a stack).

printPath (w) {
if (prevjw] #-1)
printPath (prev[w]);
output w;

}

21

Finding Shortest Path Length

To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until
reaching the source s.

Running time of backtracking = ?

Following is a faster way to find the length of the shortest
path from s to u (at the cost of using more space)
Allocate an array d[], one element per vertex.

When BSF algorithm ends, d[u] records the length of the
shortest path from s to u.

Running time of finding path length = ?

22

11

Recording the Shortest Distance

Algorithm BFS(s)

1 for each vertex v

2 do flag(v) := false;
3 pred[v] 1= —1; d[v] = o,
4. @ = empty queue;

5. flag[s] := true; d[s]=0;
6 enqueue(Q, s);

7 while @ is not empty
8

do v := dequeue(Q); «— d[v]stores shortest
distance from s to v

9. for each w adjacent to v

10. do if flag[w] = false

11. then flag[w] := true;

12 pred[w] = v; d[w] =d[v] + 1;
13. enqueue(Q, w)

23

BFS Trees

Tree: a connected (strongly connected) graph without cycles

Assuming a connected (strongly connected) graph, the paths found
by BFS is often drawn as a rooted tree (called BFS tree), with the
starting vertex as the root of the tree.

/ |\ BFS tree for vertex s = 2
/
L1

(s) (&)

Question: What would a “level” order traversal tell you? 2

12

A graph may not be connected
More on BFS (strongly connected) = enhance

the above BFS code to

accommaodate this case.

A graph with 3 components

25

Recall the BFS Algorithm ...

Algorithm BFS(s)
Input: s is the source vertex
OQutput: Mark all vertices that can be visited from s.

1. for each vertex v

2 do flag[v] := false;

3. @ = empty queue;

4. flag[s] := true;

5. enqueue(Q,s);

6. while @ is not empty

7. do v := dequeue(Q), output(V);
8. for each w adjacent to v

9. do if flag[w] = false

10. then flag[w] := true;
11. enqueue(Q,w)

26

13

Enhanced BFS Algorithm

_ It turns out that we can re-use
A graph with 3 components the previous BFS method to

compute the connected
components of a graph G

BFSearch(G) {
i=1;, // component number
for every vertex v
e flag[v] = false;
Q for every vertex v
if (flag[v] == false) {
G print (“Component ” + i++);
BFS(v);
}
} 27

Next Topics
To construct a BSF forest from a graph

Depth First Search (DFS)

Shortest path algorithms for weighted graphs:

Dijkstra’s

28

14

