Finding Shortest Paths
Using BFS

Finding Shortest Paths

The BFS code we have seen
find outs if there exist a path from a vertex s to a vertex v
prints the vertices of a graph (connected/strongly connected).
What if we want to find

the shortest path from s to a vertex v (or to every other
vertex)?

the length of the shortest path from s to a vertex v?
In addition to array flag[ ], use an array named prev[ ],
one element per vertex.

previw] = v means that vertex w was visited right after v




BFS and Finding Shortest Path

Algorithm BFS(s)

1. for each vertex v

2. do flug(v) := false; itialize

< | predfv] := —1; . all pred[v] to -1

4, (@ = empty queue;

5. flag[s] := true;

6. enqueue(Q,s);

7. while @ is not empty

8. do v := dequeue(Q); already got shortest path from s to v
9. for each w adjacent to v

10. do if flag[w] = false

11. then flag[w] := true;

12. |pmd[w] — 'u;|<7 g;);dﬁygr}]ere you
13. enqueue(Q,w) .
Example
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prev[ ] now can be traced backward

to report the path!




Shortest Path Algorithm

for each w adjacent to v
if flag[w] = false {
flag[w] = true;
prev[w] =v; /I visited w right after v
enqueue(w);

}

To print the shortest path from s to a vertex u, start with
prev[u] and backtrack until reaching the source s.

Running time of backtracking = ?

To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until

reaching s.
Running time = ?
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Adjacency List Visited Table (T/F)
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Pred

Flag that 2 has
been visited.

Q:{2}

Place source 2 on the queue.

Adjacency List Visited Table (T/F)

— 0| F -
0 8 —
1T 2
13 7 9 2 —
2 R
Neighbors—»| 2 g1 4 T —
i/ 4 5 1 *|F -—
a2 3 T 12 ]
s 6 °|F L
6 75 °|F L
7 16| T[F -
§—2 0 9 8T 12 ]
91— 1 8 9| F
Pred
Mark neighbors
as visited.
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Record in pred

Dequeue 2. _ that we came from
Place all unvisited neighbors of 2 on the queue 5. i




Adjacency List
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Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!
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Record in Pred
that we came

from 8.
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Adjacency List
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Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven'’t been visited yet.

Visited Table (T/F)
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Mark new visited
Neighbors.

Record in Pred
that we came

from 1.
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Adjacency List

f

=

b

£oloe |w
T
— e |w

Neighbors—»

[ I N P Y

1

W s 3 ke W = D |

30 =T - KV - N )

Q={400937}—~{0093,7}

Dequeue 4.
-- 4 has no unvisited neighbors!
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Adjacency List
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Dequeue 0.
-- 0 has no unvisited neighbors!
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Adjacency List Visited Table (T/F)
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Dequeue 9.
-- 9 has no unvisited neighbors! 1

Adjacency List Visited Table (T/F)
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Vertex 5.

Q=1{3.7}~1{7.5}

Record in Pred
Dequeue 3. that we came
-- place neighbor 5 on the queue. from 3. 14




Adjacency List Visited Table (T/F)
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Mark new visited
Vertex 6.

Q=1{7.5}~1{56}

Record in Pred
Dequeue 7. that we came

-- place neighbor 6 on the queue. from 7. 15

Adjacency List Visited Table (T/F)
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Dequeue 5.
-- no unvisited neighbors of 5. 16




Adjacency List Visited Table (T/F)
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Dequeue 6.
-- no unvisited neighbors of 6. 17

BFS Finished

Adjacency List Visited Table (T/F)
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prev[ ] now can be traced backward
Q=1{} STOP!Il Qisempty!ll toreportthe path!




Example of Path Reporting

nodes visited from
8
2

o|lo| ~w|o| ol &8l w| | ]| o
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Try some examples; report path from s to v:
Path(2-0) =
Path(2-6) =
Path(2-1) =
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Path Reporting

Given a vertex w, report the shortest path from s to w
currentV = w;
while (prev[currentV] # -1) {

output currentV; /I or add to a list

currentV = prev[currentV],

}

output s; //oradd to a list

The above code prints the path in reverse order.

20
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Path Reporting (cont.)

To output the path in the right order,
Print the list in reverse order.
Use a stack instead of a list.
Use a recursive method (implicit use of a stack).

printPath (w) {
if (prevjw] #-1)
printPath (prev[w]);
output w;

}

21

Finding Shortest Path Length

To find the length of the shortest path from s to u, start
with prev[u], backtrack and increment a counter until
reaching the source s.

Running time of backtracking = ?

Following is a faster way to find the length of the shortest
path from s to u (at the cost of using more space)
Allocate an array d[ ], one element per vertex.

When BSF algorithm ends, d[u] records the length of the
shortest path from s to u.

Running time of finding path length = ?

22

11



Recording the Shortest Distance

Algorithm BFS(s)

1 for each vertex v

2 do flag(v) := false;
3 pred[v] 1= —1; d[v] = o,
4. @ = empty queue;

5. flag[s] := true; d[s]=0;
6 enqueue(Q, s);

7 while @ is not empty
8

do v := dequeue(Q); «— d[v]stores shortest
distance from s to v

9. for each w adjacent to v

10. do if flag[w] = false

11. then flag[w] := true;

12 pred[w] = v; d[w] =d[v] + 1;
13. enqueue(Q, w)

23

BFS Trees

Tree: a connected (strongly connected) graph without cycles

Assuming a connected (strongly connected) graph, the paths found
by BFS is often drawn as a rooted tree (called BFS tree), with the
starting vertex as the root of the tree.

/ |\ BFS tree for vertex s = 2
/
L1

(s) (&)

Question: What would a “level” order traversal tell you? 2

12



A graph may not be connected
More on BFS (strongly connected) = enhance

the above BFS code to

accommaodate this case.

A graph with 3 components

25

Recall the BFS Algorithm ...

Algorithm BFS(s)
Input: s is the source vertex
OQutput: Mark all vertices that can be visited from s.

1. for each vertex v

2 do flag[v] := false;

3. @ = empty queue;

4. flag[s] := true;

5. enqueue(Q,s);

6. while @ is not empty

7. do v := dequeue(Q), output(V);
8. for each w adjacent to v

9. do if flag[w] = false

10. then flag[w] := true;
11. enqueue(Q,w)

26
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Enhanced BFS Algorithm

_ It turns out that we can re-use
A graph with 3 components the previous BFS method to

compute the connected
components of a graph G

BFSearch(G) {
i=1;, // component number
for every vertex v
e flag[v] = false;
Q for every vertex v
if (flag[v] == false ) {
G print ( “Component ” + i++);
BFS(v);
}
} 27

Next Topics
To construct a BSF forest from a graph

Depth First Search (DFS)

Shortest path algorithms for weighted graphs:

Dijkstra’s

28
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