Problem Session 2

Problem 1

Design a DFA that recognizes the following language:
\[L = \{ w \mid w \text{ starts with 0 and has odd length, or starts with 1 and has even length} \} \]

Solution:

![DFA Diagram]

The meaning of the states:
- \(q_0 \) - initial state
- \(q_1 \) - the string the DFA read so far starts with 0 and has an odd length
- \(q_2 \) - the string the DFA read so far starts with 0 and has an even length
- \(q_3 \) - the string the DFA read so far starts with 1 and has an odd length
- \(q_4 \) - the string the DFA read so far starts with 1 and has an even length

As it was correctly pointed out, this DFA can be simplified by combining the states \(q_1 \) and \(q_4 \), as well as \(q_2 \) and \(q_3 \):

![Simplified DFA Diagram]

Problem 2

Design a DFA that recognizes the following language:
\[L = \{ w \mid w \text{ is non-empty and has 1 on every odd position} \} \]

Solution:

\(^1\)In the class I didn’t require non-emptiness, which makes the definition of \(L \) ambiguous.
The meaning of the states:

- q_0 - initial state
- q_1 - the string the DFA read so far has odd length and has 1 on every odd position
- q_2 - the string the DFA read so far has even length and has 1 on every odd position
- q_3 - trap state (the string the DFA read so far has 0 on some odd)

Problem 3

What is the language recognized by the following DFA:

![DFA Diagram]

Solution: $L = \{0^m1^n \mid m \geq 0, n \geq 0\}$.
Meaning of the states:
The meaning of the states:

- q_0 - the string the DFA read so far is a sequence of 0’s
- q_1 - the string the DFA read so far is a sequence of 0’s followed by the sequence of 1’s
- q_2 - trap state

Alternative answer: $L_2 = \{w \mid w$ does not contain 10 as a subsequence $\}$. One of the ways to convince yourself that L_2 is the language recognized by this DFA, is to construct a DFA for $\overline{L_2} = \{w \mid w$ contains 10 as a subsequence $\}$, and then switch the accepting/rejecting states, just like we did in the class.
Problem 4

What is the language recognized by the following DFA:

Solution: $L = \Sigma^* \{01\}$, that is all binary strings that end with 01. To see this, notice that we get to q_2 only if we read a sequence 01. At which point, if no symbols are read we accept, otherwise we continue waiting for 01.