Last time we saw how to prove decidability and undecidability of certain languages. So, how does one know whether a given language is decidable or not?

Detecting undecidability. Rice’s Theorem.

Sometimes it is very difficult to tell whether a given language is decidable, but there are some “rules of thumb” that may help:

- Questions about a particular behavior of Turing machines are *often, but not always*, undecidable. For example:
 - “Does a TM M on input w ever write a particular symbol on its tape?”
 - “Does a TM M have a useless (never entered) state?”
 - “Does a TM M on input w ever tries to move its head left while on the left end of the tape?”

However, some questions like that are decidable, so be careful! For example:

- “Does a TM M on input w ever tries to move its head left?” is decidable. Here’s an idea for the decider:

Given $⟨M, w⟩$ simulate M on w for $|w|$ steps. If the machine hasn’t made any left moves, then the head must be pointing to the first $⊔$ after w. And, now do a search in the state diagram of M by following all transitions that have $⊔$ as input. The search is similar to the one we did for E_{DFA}. We’re only interested in these transitions, because if the machine never moves left, the only available input symbol will be $⊔$. If none of the transitions move left, *accept*, otherwise *reject*.

- Questions about the language of Turing machines are almost always undecidable. This is known as *Rice’s Theorem*, and in essence, it says that every non-trivial property of the language of Turing machines is undecidable. Formally,

Theorem (Rice’s Theorem): Let L be a language of the form

$$L = \{⟨M⟩ \mid L(M) \text{ has some property } P\}$$

where

1. P is non-trivial, i.e. there exist at least one machine M such that $⟨M⟩ \in L$, and at least one machine M such that $⟨M⟩ \notin L$.

2. P is indeed a property of the *language* of TMs, i.e. whenever $L(M_1) = L(M_2)$, we have $⟨M_1⟩ \in L$ if and only if $⟨M_2⟩ \in L$.

Then L is undecidable.
Proof: The proof of this theorem is a generalization of all the undecidability proofs via reduction from A_{TM} that we have done in the last two classes. Whenever we had to prove that some language K is undecidable, we would reduce A_{TM} to K in the following way: on input $\langle M, w \rangle$ we would construct another Turing machine $\langle M_1 \rangle$, such that either $\langle M_1 \rangle \in K$ when M accepts w, and $\langle M_1 \rangle \notin K$ when M doesn’t accept w, or the other way around: $\langle M_1 \rangle \notin K$ when M accepts w, and $\langle M_1 \rangle \in K$ when M doesn’t accept w. Now, we generalize this construction.

Assume that L is decidable, that is there exists a Turing machine M_L that decides L. We’re going to construct the Turing machine M_{ATM} that will decide A_{TM}. Since, A_{TM} is undecidable, this will leads to contradiction.

Let M_\emptyset be a Turing machine with an empty language, that is $L(M_\emptyset) = \emptyset$. Then, we have two choices: either $\langle M_\emptyset \rangle \in L$, or $\langle M_\emptyset \rangle \notin L$.

- If $\langle M_\emptyset \rangle \in L$, then let M_x be another Turing machine, such that $\langle M_x \rangle \notin L$ (by condition 1, non-triviality, such M_x exists). Then the machine M_1, whose code we will pass to the decider for L, will work as follows:

 $M_1 =$ “on input x

 1. Simulate M on w.
 2. Reject if M rejects w.
 3. If M accepts w, simulate M_x on x and accept if M_x accepts x, reject otherwise.”

Main point: what is the language of M_1? If M accepts w, then M_1 will act exactly like M_x, and so $L(M_1) = L(M_x)$. If M doesn’t accept w, then $L(M_1) = \emptyset$. So, the decider for A_{TM} can be constructed as follows:

$M_{ATM} =$ “on input $\langle M, w \rangle$

 1. Construct the code for the machine M_1, as described above.
 2. Simulate M_L on input $\langle M_1 \rangle$.
 3. Accept if M_L rejects, reject otherwise.“

M_{ATM} decides A_{TM} because it always halts, and on input $\langle M, w \rangle$, if M accepts w, then $L(M_1) = L(M_x)$, and since $\langle M_x \rangle \notin L$, by condition 2, $\langle M_1 \rangle \notin L$, and so M_L will reject $\langle M_1 \rangle$ and M_{ATM} will accept. If, on the other hand, M does not accept w, then $L(M_1) = L(M_\emptyset)$, and since $\langle M_\emptyset \rangle \in L$, by condition 2, $\langle M_1 \rangle \in L$, and so M_L will accept $\langle M_1 \rangle$, and so M_{ATM} will reject.

- In the second case, that is $\langle M_\emptyset \rangle \notin L$, then we take M_x to be another Turing machine, such that $\langle M_x \rangle \in L$ (again, by condition 1, such M_x exists). The machine M_L will be exactly like in the previous case, however the machine M_{ATM} for A_{TM} will work in the opposite way from before:
\(M_{ATM} = \text{“on input } \langle M, w \rangle \text{”} \)

1. Construct the code for the machine \(M_1 \), as described above.
2. Simulate \(M_L \) on input \(\langle M_1 \rangle \).
3. Accept if \(M_L \) accepts, reject otherwise.”

Now, \(M_{ATM} \) decides \(ATM \) because it always halts, and on input \(\langle M, w \rangle \), if \(M \) accepts \(w \), then \(L(M_1) = L(M_x) \), and since \(\langle M_x \rangle \in L \), and so \(M_L \) will accept \(\langle M_1 \rangle \) and \(M_{ATM} \) will accept. If, on the other hand, \(M \) does not accept \(w \), then \(L(M_1) = L(M_\emptyset) \), and since \(\langle M_\emptyset \rangle \notin L \), by condition 2, \(\langle M_1 \rangle \notin L \), and so \(M_L \) will reject \(\langle M_1 \rangle \), and so \(M_{ATM} \) will reject.

\[\square \]

Examples:

- \(ALL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM }, \text{ and } L(M) = \Sigma^* \} \) is undecidable, by Rice’s theorem. The property \(P \) in this case is “\(L(M) = \Sigma^* \)”. \(P \) is non-trivial, because there is at least one TM that belongs to \(ALL_{TM} \) (e.g. the machine that accepts everything), and at least one machine that doesn’t belong to \(ALL_{TM} \) (e.g. the machine that rejects everything). Also, \(P \) is indeed a property of the language of TMs, because any for two machines \(M_1 \) and \(M_2 \), such that \(L(M_1) = L(M_2) \),

\[
\langle M_1 \rangle \in ALL_{TM} \iff L(M_1) = \Sigma^* \\
\iff L(M_2) = \Sigma^* \\
\iff \langle M_2 \rangle \in ALL_{TM}.
\]

- \(CFL_{TM} = \{ \langle M \rangle \mid M \text{ is a TM }, \text{ and } L(M) \text{ is context-free } \} \) is undecidable, by Rice’s theorem. The property \(P \) in this case is “\(L(M) \text{ is context-free} \)”. \(P \) is non-trivial, because there is at least one TM that belongs to \(CFL_{TM} \) (e.g. the machine that accepts everything), and at least one machine that doesn’t belong to \(CFL_{TM} \) (e.g. the machine that accepts \(0^n1^n2^n \)). Also, \(P \) is indeed a property of the language of TMs, because any for two machines \(M_1 \) and \(M_2 \), such that \(L(M_1) = L(M_2) \),

\[
\langle M_1 \rangle \in CFL_{TM} \iff L(M_1) \text{ is context-free} \\
\iff L(M_2) \text{ is context-free} \\
\iff \langle M_2 \rangle \in CFL_{TM}.
\]

• Practice problems:

 - For decidability – all of the problems from Section 4.
 - For undecidability – 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.20, 5.28, 5.29, 5.30, 5.31, 5.35.