Adaptive Video Multicasting

Presenters:
Roman Glistvain, Bahman Eksiri, and Lan Nguyen

Outline
- Approaches to Adaptive Video Multicasting
 - Single rate multicast
 - Simulcast
 - Active Agents
 - Layered multicasting
- Detailed description of layered multicasting
 - RLM
 • uses current uniform packet drop routers
 - RLMP
 • extension of RLM
 • requires priority based packet dropping.
- Comparison of various approaches
- Concluding remarks

Aproaches for video multicasting

Classification of various video multicasting protocols:
- Single rate transmission vs Multi-rate transmission
- Place where adaptation is performed:
 • source/destination (end nodes)
 • intermediate nodes

Single rate multicast
- Single rate adaptation (end nodes)
- Active agents (intermediate nodes)

Multirate
- Simulcast (end nodes)
- Layered adaptation (end nodes)
- Active agents (intermediate nodes)

Single rate adaptation

Feedback based system
- The source adjusts the sending rate based on the feedback it receives from the end nodes.

Problems with this approach
- Unfair distribution of bandwidth
 • Small capacity receivers suffer from congestion
 • High capacity receivers are underutilized
- Feedback implosion problem
 • Receivers may end up sending the feedback at the same time.

Single Rate Adaptation (cont)

Practical systems
- INRIA IVS video conferencing system
- Uses polling rounds to poll receivers with congestion level bigger than the one it knows about.
- Avoids feedback implosion problem

Simulcast

- Single rate multicast and multiple unicast are two extremes
- The intention of simulcast is to bridge the gap between the 2 groups

Algorithm:
- Different bit-rate streams are sent over different multicast groups
- Allows for feedback based source rate adjustment in each group
Simulcast (cont)

Evaluation of Simulcast
- Advantages
 - Better granularity of receiver fairness in heterogeneous environment
- Disadvantages
 - Same stream is broadcast multiple times (with different bit rates)
 - Worse bandwidth utilization than single rate multicast

Practical algorithm
- DSG (destination set grouping)
 - 3 streams (low, medium, high quality)
 - Feedback based source rate control for each stream
 - Receiver can subscribe to different streams under different network conditions

Real Time protocol

- RTP (Real Time Protocol)
 - Universal framework for transferring real time data
 - multicast/unicast
 - Allows for active network elements
 - Timing and synchronization
- RTCP (Real Time Transport Control Protocol)
 - Provides feedback about
 - Jitter
 - Packet loss
 - Other parameters which can be used for rate control.

Services of RTP protocol

- Application level datagram protocol.
- Allows for active/passive gateways with various functionality
- Active Gateway – acts as a source
 - RTP Mixer (picture)
 - Combines multiple RTP streams into single stream
 - Changes the synchronization information
- Passive gateway – transparent to end nodes
 - RTP Translator
 - Translates formats/semantics

Active Agents
- Embedded into intermediate network elements
 - Adjust the dataflow to match the conditions of local network segment using feedback.
- Services offered by typical active agents:
 - Video transcoding (rate adjustment)
 - RTP Mixer
 - RTP translator

Usage of active agents
- Large networks are partitioned into small segments.
- Active agents are responsible for a segment of the network.

Evaluation of active agents

Advantages of Active Agents
- Very fine tuned adjustments for various network conditions
- A lot better adaptation than end-to-end based methods

Disadvantages of Active Agents
- Implementation complexity
- Inability to deal with high video traffic rates.
- Deployment problems
 - Usually the number of media gateways is very limited (due to high cost)
 - The operators have to decide where to place them in the network (which can be quite dynamic).

Layered adaptation

- Video is encoded into different streams.
 - Basestream is required to play back the video
 - Each additional enhancement layer refines the quality of the video
- Straightforward approach:
 - Packet prioritization – higher layer have lower packet priority
- Receiver driven approach (RLM)
 - Transmit various layers of video over different multicast groups
 - Let receivers subscribe to the layers they see fit.
TCP Friendliness
- Single rate multicast, Simulcast
 - Unfair
- Layered adaptation
 - RLM
 - unfair to TCP traffic in short run (because of join experiments) but fair in long run
 - RLMP
 - routers can decide what to do with low level priority traffic and assign it lower priority then TCP
- Active Agents
 - Function as routers/bridges – can adjust the multicast utilization based on user priorities.

Internet Heterogeneity and scale
- Problem
 - React to congestion
 - Network capacity for multicasting
 - Heterogeneous receivers
 - Locally degrading quality
 - Adding and dropping Layers (joining and leaving multicast groups)

RLM Protocol
- Basic idea.
 - Based on Layered Adaptation.
 - Different layers are multicast in different multicast groups.
 - Completely receiver driven.

Adapting method
- On congestion, drop a layer.
- On spare capacity, add a layer.

Capacity inference
- How to find out if there is a spare capacity?
 - Join experiments
- How to avoid transient congestion caused by Join experiments?
 - Adding layers at well chosen times
 - Learning mechanism

RLM Adaptation
- Join experiments cause congestion
- Using join-timer
- Adaptive detection-time
Scaling RLM

- System scales poorly if each receiver independently carry out adaptation algorithm.
- Avoid scaling problem by scaling down join-experiment rates proportional to the group size.
- Shared learning mechanism to avoid too long converge time

Scaling RLM - continued

- Broadcasting join-n layer experiment to the group
- Group to watch the affect of new join-experiment
- In case of congestion, all the group members to scale back the nth join-timer.
- The learning process is conservative
- Overlapping problem and how/when to avoid it
- Shared learning process determines what does not work rather than what does work.

Complete Algorithm

1) On stable congestion:
 - Drop a layer, increase a join timer for the problematic layer
2) When the join timer expires:
 - Multicast a message that join experiment has started on a certain layer
 - Add that layer
 - Wait for the detection timer to expire
 - If there is a congestion during the experiment – goto 1, otherwise stay with the current layer of subscription.

Evaluation of the RLM algorithm

- Packet loss over a certain period of time.
- Convergence rate – to reach the optimal throughput
- The two metrics will have to be used together to evaluate the performance of the algorithm
 - Acceptably low loss rates and fast convergence times imply a well functioning system.
- Simulation terms
 - Latency Scalability
 - How different network latencies affects the loss rate of the algorithm.
 - Session size
 - How the number of different receivers affect the loss rate, convergence time of the algorithm
 - Bandwidth Heterogeneity
 - How the algorithm performs in presence of large quantities of receivers with different bandwidth constraints.
 - Superposition
 - Performance of the algorithm when multiple sessions share the same link.

Simulation results

- Latency scalability
 - The higher the network latency – the higher the packet loss due to the fact that it takes a very long time to detect the result of a join experiment
- Session Size
 - Doesn’t have a huge impact on the loss rates
 - It does increase convergence times due to the fact that more receivers might initiate join experiments in parallel
- Bandwidth heterogeneity
 - The protocol works well with a big amount of receivers with different bandwidth constraints.
- Superposition
 - Aggregate link utilization close to 1, bandwidth allocation can be unfair.

Packet dropping policies

- RLM: uniform dropping (e.g. FIFO)
 - Packets are dropped at all the layers
 - Performance adjustment is done by receivers
 - Performs poorly under congestion (why?)
 - Unfair allocation of bandwidth among receivers.
- Priority-based dropping
 - Each layer associates with a priority, set by the sender
 - The dropping is done by routers based on priorities
 - Maintains reasonable quality under congestion and bursty traffics (how?)
 - Stable and “fair” allocation of bandwidth
Priority vs uniform dropping

Drawbacks of priority dropping

- **Additional complexity**
 - Routers need to examine the priority header
 - Requires additional packet scheduling policy
- **Fairness**
 - Achieved only if all sessions use the same layering (priority) scheme
- **Unnecessary traffic**
 - Caused by receivers who subscribe to all the layers and "forget" to unsubscribe when not needed.

Combine RLM w/ Priority (RLMP)

- **Goals**
 - Maintains the simplicity of RLM
 - Achieves stability and fairness
- **Consists of 2 parts:**
 - Network portion: priority dropping at routers
 - Receiver portion: based on RLM

Network portion of RLMP

- The sender encodes video into multiple layers BUT does not assign the priorities
- It’s the receiver who decides the priority
- When a receiver joins a layer, it tells the routers its desired priority level.
- At routers, each outgoing link is attached with a priority, which is the maximum of all the priorities requested by all the downstream receivers

Receiver portion of RLMP

- Receivers subscribe to multiple N layers (RLM)
- N changes according to network conditions
- $N-1$ first layers are high priority. The Nth layer is low priority
- Purpose of the Nth low priority layer
 - Reserves unused bandwidth
 - Guesses the network conditions by the packet loss rate at the Nth layer
Finding optimal N

- Adaptively add and drop layers based on packet loss rates
- Adding a layer
 - Join layer $(N+1)$ at low priority
 - Re-join layer N at high priority
- Dropping a layer
 - Leaving layer N
 - Re-join layer $(N-1)$ at low priority

Features of RLMP

- **Fairness**
 - Can be achieved without the requirement that all sessions use the same priority scheme
 - Receivers who share the same upstream link, also share the same priority
- **Stability**
 - Characteristic of priority-based
 - By the use of a long term loss estimator

Example 1

- Pure priority-based with no congestion

Example 2

- Pure priority-based with congestion

Example 3

- RLMP with no congestion

Example 4

- RLMP with congestion
Summary RLM vs RLMP

- **RLM**
 - Simplicity
 - Performs well under CBR traffic sources
 - Unfairness
 - Performs poorly under bursts and congestion
- **RLMP**
 - More complexity
 - Fairness
 - Stability: maintain reasonable under network bursts and congestion.

Drawback of RLMP

- Do not support more than two levels of priorities (why?)

Conclusion

- No perfect algorithms for video multicast distribution
- Various approaches with various degree of complexity
- Requires end-to-end or network based QoS support to achieve a better degree of quality, stability and fairness.
- Complexity cost