# On the Space Complexity of Set Agreement

Carole Delporte-Gallet Hugues Fauconnier Petr Kuznetsov Eric Ruppert LIAFA, Université Paris-Diderot France LIAFA, Université Paris-Diderot France Télécom ParisTech France York University Canada

July 22, 2015



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

wait-free





3 > 4 3 >

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

< 17 ▶

wait-free





3 > 4 3 >

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

< 17 ▶





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

• (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10)





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

• (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10)





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

• (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10)

*m*-obstruction-free

| obstruction-free |   |   | т |       |              | wait-free |
|------------------|---|---|---|-------|--------------|-----------|
|                  | 1 | 2 | 3 | n – 2 | <i>n</i> – 1 | п         |

An algorithm is *m*-obstruction-free if some process is guaranteed to terminate when at most *m* processes continue to take steps.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

A (10) A (10) A (10)

#### *m*-obstruction-free *k*-set agreement

| ob        | obstruction-free |   |                                |                           | wait-free    |        |  |
|-----------|------------------|---|--------------------------------|---------------------------|--------------|--------|--|
|           | 1                | 2 | 3                              | n – 2                     | <i>n</i> – 1 | п      |  |
| consensus | 1                |   |                                |                           |              |        |  |
|           | 2                |   |                                |                           |              |        |  |
|           | 3                |   |                                |                           |              |        |  |
| k         | 4                |   | greement<br>t <i>k</i> differe | : processes<br>nt values. | must (       | output |  |

n – 2

setagreement $^{n-1}$ 



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

(日)



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Problem: *m*-obstruction-free *k*-set agreement for *n* processes  $(m \le k < n)$ 

## How many registers are needed?

Previous work

- n (single-writer) registers are sufficient
- For m = k = 1,  $\Omega(\sqrt{n})$  registers needed [FHS98]
- For m = 1, 2n 2k registers are sufficient [DFGR13]



Problem: *m*-obstruction-free *k*-set agreement for *n* processes  $(m \le k < n)$ 

How many registers are needed?

Previous work

- n (single-writer) registers are sufficient
- For m = k = 1,  $\Omega(\sqrt{n})$  registers needed [FHS98]
- For m = 1, 2n 2k registers are sufficient [DFGR13]



### **Repeated** *k*-set agreement problem

- Series A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, ... of set agreement instances
- In each instance A<sub>i</sub>, processes output at most k different values
- Processes access instances in order

Motivation

- Herlihy's universal construction (with k = 1).
- Possible route to lower bound for one-shot problem.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

A D N A D N A D N A D

### **Repeated** *k*-set agreement problem

- Series A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, ... of set agreement instances
- In each instance A<sub>i</sub>, processes output at most k different values
- Processes access instances in order

Motivation

- Herlihy's universal construction (with k = 1).
- Possible route to lower bound for one-shot problem.



(日)

# **Our Results**

Bounds on number of registers needed for *m*-obstruction-free *k*-set agreement for *n* processes

|       | Repeated                                          | One-Shot                      |
|-------|---------------------------------------------------|-------------------------------|
| Non-  | $\geq n+m-k$                                      | ≥ 2 [DFGR13]                  |
| Anon. | $\leq n+2m-k$                                     | $\leq n+2m-k$                 |
|       | $\leq$ <i>n</i> + <i>m</i> - <i>k</i> (known ids) | $\leq n + m - k$ (known ids)  |
| Anon. | $\geq n+m-k$                                      | $\geq \sqrt{m(rac{n}{k}-2)}$ |
|       | $\leq (m+1)(n-k)+m^2+1$                           | $\leq (m+1)(n-k)+m^2$         |

- Bounds show dependence on k and m
- First anonymous set agreement algorithm
- $\Omega(\sqrt{n})$  lower bound when m = k = 1 is a special case

• Bounds are nearly tight for repeated (non-anonymous)



A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

# **Our Results**

Bounds on number of registers needed for *m*-obstruction-free *k*-set agreement for *n* processes

|       | Repeated                     | One-Shot                       |
|-------|------------------------------|--------------------------------|
| Non-  | $\geq n+m-k$                 | ≥ 2 [DFGR13]                   |
| Anon. | $\leq n+2m-k$                | $\leq n+2m-k$                  |
|       | $\leq n + m - k$ (known ids) | $  \leq n + m - k$ (known ids) |
| Anon. | $\geq n+m-k$                 | $\geq \sqrt{m(\frac{n}{k}-2)}$ |
|       | $\leq (m+1)(n-k)+m^2+1$      | $\leq (m+1)(n-k)+m^2$          |

- Bounds show dependence on k and m
- First anonymous set agreement algorithm
- $\Omega(\sqrt{n})$  lower bound when m = k = 1 is a special case

• Bounds are nearly tight for repeated (non-anonymous)



A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

# **Our Results**

Bounds on number of registers needed for *m*-obstruction-free *k*-set agreement for *n* processes

|       | Repeated                     | One-Shot                       |
|-------|------------------------------|--------------------------------|
| Non-  | $\geq n+m-k$                 | ≥ 2 [DFGR13]                   |
| Anon. | $\leq n+2m-k$                | $\leq n+2m-k$                  |
|       | $\leq n + m - k$ (known ids) | $  \leq n + m - k$ (known ids) |
| Anon. | $\geq n+m-k$                 | $\geq \sqrt{m(\frac{n}{k}-2)}$ |
|       | $\leq (m+1)(n-k)+m^2+1$      | $\leq (m+1)(n-k)+m^2$          |

- Bounds show dependence on k and m
- First anonymous set agreement algorithm
- $\Omega(\sqrt{n})$  lower bound when m = k = 1 is a special case
- Bounds are nearly tight for repeated (non-anonymous) YC variation

# **Repeated Set Agreement Bounds**

#### Repeated *m*-obstruction-free *k*-set agreement for *n* processes



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

# **Repeated Set Agreement Bounds**

#### Repeated *m*-obstruction-free *k*-set agreement for *n* processes

| $k \qquad \begin{array}{c} 1 & 2 & 3 & n-2 & n-1 & n \\ \hline 1 & 2 & 3 & k & 2 & k \\ \hline 1 & 2 & n-1 & k & k & k & k \\ \hline 2 & 2 & n-1 & 2 & n-1 & 2 & n \\ \hline 2 & 2 & 2 & n-1 & 2 & n-1 & 2 & n \\ \hline 2 & 2 & 2 & n-1 & 2 & n-1 & 2 & n \\ \hline 3 & 2 & 2 & n-2 & 2 & n-1 & 2 & n-3 & \dots & k & k & k \\ \hline 3 & 2 & 2 & n-2 & 2 & n-1 & 2 & n-1 & \dots & k & k & k \\ \hline 4 & 2 & 2 & 2 & n-2 & 2 & n-1 & \dots & k & k & k & k \\ \hline 1 & 1 & 2 & 1 & 2 & 1 & 2 & \dots & k & k & k & k \\ \hline 1 & 1 & 2 & 1 & 2 & 1 & 2 & \dots & k & k & k & k \\ \hline 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 2 & 1 & 2 & \dots & k & k & k & k & k \\ \hline 1 & 1 & 1 & 2 & 1 & 2 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 2 & 1 & 2 & \dots & k & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 2 & 1 & \dots & k & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 2 & 1 & \dots & k & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 2 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \dots & k \\ \hline 1 &$ | obstr                            |                                                                                                         | т                                                          |      |                                          | wait-free                  |      |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|------------------------------------------|----------------------------|------|----|
| $2 \xrightarrow{\geq n-1}_{\leq n} \xrightarrow{\geq n}_{\leq n+2} \times \cdots \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 1 2                                                                                                     | 3                                                          |      | n – 2                                    | <i>n</i> – 1               | п    |    |
| $3 \xrightarrow{\geq n-2}_{\leq n-1} \xrightarrow{\geq n-1}_{\leq n+1} \xrightarrow{\geq n}_{\leq n+3} \cdots \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | consensus 1                      | $ \geq n \\ \leq n+1 $                                                                                  | ×                                                          | •••  | ×                                        | ×                          | ×    |    |
| $\geq n-3 \geq n-2 \geq n-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                | $\begin{vmatrix} \geq n-1 \\ \leq n \end{vmatrix} \stackrel{\geq n}{\leq n+1}$                          | - 2 ×                                                      | •••  | ×                                        | ×                          | ×    |    |
| $k \qquad 4 \qquad \frac{\geq n-3}{\leq n-2} \stackrel{\geq n-2}{\leq n} \stackrel{\geq n-1}{\leq n+2} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                | $\begin{vmatrix} \geq n-2 \\ \leq n-1 \end{vmatrix} \ge n-2$                                            | $\begin{vmatrix} -1 \\ -1 \end{vmatrix} \ge n \\ \le n+3$  | •••  | ×                                        | ×                          | ×    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k 4                              | $\begin{vmatrix} \geq n-3 \\ \leq n-2 \end{vmatrix} \stackrel{\geq n-3}{\leq n}$                        | $\begin{vmatrix} -2 \\ \leq n-1 \\ \leq n+2 \end{vmatrix}$ | •••  | ×                                        | ×                          | ×    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                                         | •                                                          | •••• | •                                        | •<br>•                     | •    |    |
| $n-2 \begin{array}{ c c c c c c c c } \geq 3 \\ \leq 4 \\ \leq 6 \\ \leq 6 \\ \leq 8 \\ \leq 8 \\ \end{array} \begin{array}{ c c c c c c c c } \geq 5 \\ \leq 2n-2 \\ \end{array} \begin{array}{ c c c c c c c c } \times \\ \times \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n – 2                            |                                                                                                         | $\geq 5 \leq 8$                                            | •••  | $  \stackrel{\geq}{\leq} n \\ \leq 2n-2$ | ×                          | ×    |    |
| $\begin{array}{c c} \text{set-} \\ \text{agreement}^{n-1} \end{array} \stackrel{\geq 2}{\leq 3}  \begin{array}{c c} \geq 3 \\ \leq 5 \end{array}  \begin{array}{c c} \geq 4 \\ \leq 7 \end{array}  \begin{array}{c c} \bullet \bullet \bullet \end{array}  \begin{array}{c c} \geq n-1 \\ \leq 2n-3 \end{array} \stackrel{\geq n}{\leq 2n-1}  \textbf{x} \\ \begin{array}{c c} \downarrow \\ \downarrow \downarrow \downarrow \downarrow \\ \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | set-<br>agreement <sup>n-1</sup> | $\begin{array}{c c} \geq 2\\ \leq 3 \\ \leq 5 \end{array} \begin{array}{c} \geq 3\\ \leq 5 \end{array}$ | $\geq 4 \leq 7$                                            | •••  | $ \geq n-1$<br>$\leq 2n-3$               | $\frac{\geq n}{\leq 2n-1}$ | × YC | RK |

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

・ 戸 ト ・ ヨ ト ・ ヨ ト

# **Repeated Set Agreement Bounds**

#### Repeated *m*-obstruction-free *k*-set agreement for *n* processes



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Consider any m-obstruction-free k-set agreement algorithm. Construct an execution:



 $Q_i$ 's are disjoint sets of *m* processes each.  $P_i$  is set of processes disjoint from  $Q_1, Q_2, \ldots, Q_i$ .  $A_i$  is a set of registers.

$$Q = \{p_1, p_2, p_3, \dots, p_m\}$$
  

$$P = \{\}$$
  

$$A = \{\}$$



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$Q = \{p_1, p_2, p_3, \dots, p_m\}$$

$$P = \{\}$$

$$A = \{\}$$

Let processes in Qrun until a process  $p_1$  is poised to write to  $R_1 \notin A$ 



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$Q = \{p_2, p_3, \dots, p_m, p_{m+1}\}$$
$$P = \{p_1\}$$
$$A = \{R_1\}$$

Let processes in 
$$Q$$
  
run until a process  
 $p_1$  is poised to  
write to  $R_1 \notin A$ 



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$Q = \{p_2, p_3, \dots, p_m, p_{m+1}\}$$

$$P = \{p_1\}$$

$$A = \{R_1\}$$

$$\bigcirc$$
Let processes in Q
run until a process
$$p_1 \text{ is poised to}$$
write to  $R_1 \notin A$ 

$$\bigcirc$$
Let processes in Q
run until a process
$$p_2 \text{ is poised to}$$
write to  $R_2 \notin A$ 

(日)





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert



Repeat until every continuation by Q writes only registers in A.

YOR

イロト イポト イヨト イヨ



 $Q_i$ 's are disjoint sets of *m* processes each.  $P_i$  is set of processes disjoint from  $Q_1, Q_2, \ldots, Q_i$ . Let *r* be the number of registers used by the algorithm.





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

 $Q_i$ 's are disjoint sets of *m* processes each.  $P_i$  is set of processes disjoint from  $Q_1, Q_2, \ldots, Q_i$ . Let *r* be the number of registers used by the algorithm.



Let c = # set agreement instances accessed in this execution.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert Space C

 $Q_i$ 's are disjoint sets of *m* processes each.  $P_i$  is set of processes disjoint from  $Q_1, Q_2, \ldots, Q_i$ . Let *r* be the number of registers used by the algorithm.





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

 $Q_i$ 's are disjoint sets of *m* processes each.  $P_i$  is set of processes disjoint from  $Q_1, Q_2, \ldots, Q_i$ . Let *r* be the number of registers used by the algorithm.



 $\frac{k+1}{m} \text{ repetitions yields a contradiction.}$ This is possible if  $n \ge (\frac{k+1}{m} - 1) \cdot m + r = k + 1 - m + r$ . Thus, n < k + 1 - m + r.  $\Rightarrow r \ge n + m - k$ .

Space Complexity of Set Agreement

(日)

Use snapshot object A with n + 2m - k components.

Repeat:

- write (pref, id) into A[i]
- Iscan A
- if at most *m* different pairs, output value from one that appears twice
- if my pair appears only where I last wrote it AND some other pair (v, id') appears twice then *pref*  $\leftarrow v$
- else i + +



(日)

Use snapshot object A with n + 2m - k components.

Repeat:

- write (pref, id) into A[i]
- I scan A
- if at most m different pairs, output value from one that appears twice
- if my pair appears only where I last wrote it AND some other pair (v, id') appears twice then pref  $\leftarrow v$



## Example

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.

$$v_5, 5$$
  $v_3, 3$   $v_2, 2$   $v_2, 2$   $v_2, 2$   $v_3, 3$   $v_5, 5$ 



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

・ロト ・ 四ト ・ ヨト ・ ヨト

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

(日) (四) (三) (三)

$$n = 5, m = 3, k = 4.$$
  
Use  $n + 2m - k = 7$  components.

$$v_5, 5$$
  $v_3, 3$   $v_5, 4$   $v_5, 4$   $v_5, 4$   $v_3, 3$   $v_5, 5$ 



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

# Validity: Every output value is the input of some process. Trivial proof: values in *A* are input values of some process.



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

# Agreement

#### Agreement: At most *k* different values are output.

We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

## Agreement

Agreement: At most *k* different values are output.

We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:



We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:





(I)

We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:



Space Complexity of Set Agreement

(I)

We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

We don't care what the first k - m processes output.

Claim: The last n + m - k processes output  $\leq m$  values.

When the first of those n + m - k processes does final scan *S*, it sees at most *m* different pairs. We prove that afterwards,

- Only pairs with those values can appear in 2 locations.
- No other value can ever be output.

Intuition:



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

A process stops when it sees at most *m* different pairs in *A*.

If at most *m* processes continue taking steps, we prove

- They cannot all stand still (exchanging preferences)
- Eventually only their pairs are stored in A
- Two pairs with same id have same value

 $\Rightarrow$  *m*-obstruction-free termination



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

(I)

A process stops when it sees at most *m* different pairs in *A*.

If at most *m* processes continue taking steps, we prove

- They cannot all stand still (exchanging preferences)
- Eventually only their pairs are stored in A
- Two pairs with same id have same value

 $\Rightarrow$  *m*-obstruction-free termination



< 回 > < 回 > < 回

A process stops when it sees at most *m* different pairs in *A*.

If at most *m* processes continue taking steps, we prove

- They cannot all stand still (exchanging preferences)
- Eventually only their pairs are stored in A
- Two pairs with same id have same value

 $\Rightarrow$  *m*-obstruction-free termination



4 **A** N A **B** N A **B** 

A process stops when it sees at most *m* different pairs in *A*.

If at most *m* processes continue taking steps, we prove

- They cannot all stand still (exchanging preferences)
- Eventually only their pairs are stored in A
- Two pairs with same id have same value

 $\Rightarrow$  *m*-obstruction-free termination

A process stops when it sees at most *m* different pairs in *A*.

If at most *m* processes continue taking steps, we prove

- They cannot all stand still (exchanging preferences)
- Eventually only their pairs are stored in A
- Two pairs with same id have same value
- $\Rightarrow$  *m*-obstruction-free termination



Main idea:

- Write history of output values for all previous instances, along with *id* and *pref*.
- Ignore entries written by processes working on earlier instances.
- If you read value written by a process working on a later instance, adopt its output for your instance.

Can be done using the same number of registers.



## Simpler Algorithm When Ids Are Known





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

## Simpler Algorithm When Ids Are Known



YORK ・ロト・パクト・ミト・ミト モーシュペー

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

## Simpler Algorithm When Ids Are Known





Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

For any set V of m input values

let  $\alpha(V)$  be a run of *m* processes that outputs those *m* values.

We consider the sequence of registers written (for the first time) in  $\alpha(V)$ .

#### Claim

If  $r \leq \sqrt{m(\frac{n}{k}-2)}$  there are infinitely many sets *V* such that  $\alpha(V)$  writes to the same sequence of r + 1 registers.

Yields the  $\Omega(\sqrt{\frac{mn}{k}})$  lower bound.

For any set V of m input values

let  $\alpha(V)$  be a run of *m* processes that outputs those *m* values.

We consider the sequence of registers written (for the first time) in  $\alpha(V)$ .

#### Claim

If  $r \leq \sqrt{m(\frac{n}{k}-2)}$  there are infinitely many sets *V* such that  $\alpha(V)$  writes to the same sequence of r + 1 registers.

Yields the  $\Omega(\sqrt{\frac{mn}{k}})$  lower bound.

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

(日)



Inductively construct register sequence  $\mathbf{R}_i$  of length *i* such that infinitely many  $\alpha(V)$ 's register sequences start with  $\mathbf{R}_i$ .

 $\mathbf{R}_0 = \langle \rangle.$ 

Suppose we have  $\mathbf{R}_{i-1}$ .

Consider *V*'s such that  $\alpha(V)$ 's register sequence starts with  $\mathbf{R}_{i-1}$ . If there are  $\frac{k+1}{m}$  disjoint *V*'s such that  $\alpha(V)$  writes only to  $\mathbf{R}_{i-1}$ , combine them to get run with k + 1 outputs. Contradiction.

So infinitely many of the *V*'s have longer register sequence. One register *R* appears next in infinitely many of the *V*'s register sequences. Take  $\mathbf{R}_i = \mathbf{R}_{i-1} \cdot \langle R \rangle$ .



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

Inductively construct register sequence  $\mathbf{R}_i$  of length *i* such that infinitely many  $\alpha(V)$ 's register sequences start with  $\mathbf{R}_i$ .

 $\boldsymbol{R}_{0}=\langle\rangle.$ 

Suppose we have  $\mathbf{R}_{i-1}$ .

Consider *V*'s such that  $\alpha(V)$ 's register sequence starts with  $\mathbf{R}_{i-1}$ . If there are  $\frac{k+1}{m}$  disjoint *V*'s such that  $\alpha(V)$  writes only to  $\mathbf{R}_{i-1}$ , combine them to get run with k + 1 outputs. Contradiction.

So infinitely many of the *V*'s have longer register sequence. One register *R* appears next in infinitely many of the *V*'s register sequences. Take  $\mathbf{R}_i = \mathbf{R}_{i-1} \cdot \langle R \rangle$ .



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

Inductively construct register sequence  $\mathbf{R}_i$  of length *i* such that infinitely many  $\alpha(V)$ 's register sequences start with  $\mathbf{R}_i$ .

 $\textbf{R}_{0}=\langle\rangle.$ 

Suppose we have  $\mathbf{R}_{i-1}$ .

Consider *V*'s such that  $\alpha(V)$ 's register sequence starts with  $\mathbf{R}_{i-1}$ . If there are  $\frac{k+1}{m}$  disjoint *V*'s such that  $\alpha(V)$  writes only to  $\mathbf{R}_{i-1}$ , combine them to get run with k + 1 outputs. Contradiction.

So infinitely many of the *V*'s have longer register sequence. One register *R* appears next in infinitely many of the *V*'s register sequences. Take  $\mathbf{R}_i = \mathbf{R}_{i-1} \cdot \langle R \rangle$ .



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

Inductively construct register sequence  $\mathbf{R}_i$  of length *i* such that infinitely many  $\alpha(V)$ 's register sequences start with  $\mathbf{R}_i$ .

 $\textbf{R}_0 = \langle \rangle.$ 

Suppose we have  $\mathbf{R}_{i-1}$ .

Consider *V*'s such that  $\alpha(V)$ 's register sequence starts with  $\mathbf{R}_{i-1}$ . If there are  $\frac{k+1}{m}$  disjoint *V*'s such that  $\alpha(V)$  writes only to  $\mathbf{R}_{i-1}$ , combine them to get run with k + 1 outputs. Contradiction.

So infinitely many of the *V*'s have longer register sequence. One register *R* appears next in infinitely many of the *V*'s register sequences.

Take  $\mathbf{R}_i = \mathbf{R}_{i-1} \cdot \langle \mathbf{R} \rangle$ .



Inductively construct register sequence  $\mathbf{R}_i$  of length *i* such that infinitely many  $\alpha(V)$ 's register sequences start with  $\mathbf{R}_i$ .

 $\textbf{R}_0 = \langle \rangle.$ 

Suppose we have  $\mathbf{R}_{i-1}$ .

Consider *V*'s such that  $\alpha(V)$ 's register sequence starts with  $\mathbf{R}_{i-1}$ . If there are  $\frac{k+1}{m}$  disjoint *V*'s such that  $\alpha(V)$  writes only to  $\mathbf{R}_{i-1}$ , combine them to get run with k + 1 outputs. Contradiction. Combined run uses  $\Theta(\frac{r^2k}{m})$  processes,

so can continue this argument as long as *r* is  $O(\sqrt{\frac{nm}{k}})$ .

So infinitely many of the *V*'s have longer register sequence. One register R appears next in infinitely many of the *V*'s register sequences.

Take  $\mathbf{R}_i = \mathbf{R}_{i-1} \cdot \langle R \rangle$ .

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Bounds on number of registers needed for *m*-obstruction-free *k*-set agreement for *n* processes

|       | Repeated                     | One-Shot                       |
|-------|------------------------------|--------------------------------|
| Non-  | $\geq n+m-k$                 | ≥ 2 [DFGR13]                   |
| Anon. | $\leq n+2m-k$                | $\leq n+2m-k$                  |
|       | $\leq n + m - k$ (known ids) | $  \leq n + m - k$ (known ids) |
| Anon. | $\geq n+m-k$                 | $\geq \sqrt{m(rac{n}{k}-2)}$  |
|       | $\leq (m+1)(n-k)+m^2+1$      | $\leq (m+1)(n-k)+m^2$          |



Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert

Space Complexity of Set Agreement

< 同 > < 三 > < 三

# Bounds on number of registers needed for *m*-obstruction-free *k*-set agreement for *n* processes

|       | Repeated                     | One-Shot                      |
|-------|------------------------------|-------------------------------|
| Non-  | $\geq n+m-k$                 | ≥ 2 [DFGR13]                  |
| Anon. | $\leq n+2m-k$                | $\leq n+2m-k$                 |
|       | $\leq n + m - k$ (known ids) | $\leq n + m - k$ (known ids)  |
| Anon. | $\geq n+m-k$                 | $\geq \sqrt{m(rac{n}{k}-2)}$ |
|       | $\leq (m+1)(n-k)+m^2+1$      | $\leq (m+1)(n-k)+m^2$         |

YOR

A (10) A (10) A (10)

Open Problems: Close the gaps.

Delporte-Gallet, Fauconnier, Kuznetsov, Ruppert Space Complexity of Set Agreement