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State of the Art

The Java standard library has several non-blocking data
structures, but no search trees.

“You might wonder why this doesn’t use some kind of search
tree instead . . . . The reason is that there are no known efficient
lock-free insertion and deletion algorithms for search trees.”

Doug Lea in java.util.concurrent.ConcurrentSkipListMap
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Non-Blocking Data Structures

Non-blocking: some operation makes progress.

Studied for 20+ years
Universal constructions [1988–present]

Disadvantage: inefficient
Array-based structures [1990–2005]

snapshots, stacks, queues
List-based structures [1995–2005]

singly-linked lists, stacks, queues, skip lists
A few others [1995–present]

union-find, ...
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Prior Work on Concurrent Search Trees

Many lock-based implementations [1978–present]
Valois outlined how his linked lists might generalize to
BSTs [1995]

complicated and lacks detail

Non-blocking BST [Fraser 2003]

uses 8-word CAS

Bender et al. outlined how their lock-based cache-oblivious
B-trees might be made non-blocking [2005]

lacks details and proof of correctness
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New Result

A non-blocking implementation of BSTs from single-word CAS.

Some properties:
Conceptually simple
Fast searches
Concurrent updates to different parts of tree do not conflict
Technique seems generalizable
Experiments show good performance
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Model

Asynchronous
Crash failures allowed
Shared memory with single-word compare-and-swap
Linearizable
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Leaf-oriented BST

Definition
One leaf for each key in set
Internal nodes used only for routing
Each internal node has exactly 2 children
BST property:

keys ≥ K

K

keys < K

Advantages of Leaf-Oriented Trees
Deletions much simpler
Average depth only slightly higher

Example

Leaf-oriented BST
storing key set
{A,B,C,F}
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Insertion (non-concurrent version)

E

C
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B
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C

B

Insert(D)
1 Search for D
2 Remember leaf and its parent
3 Create new leaf, replacement leaf,

and one internal node
4 Swing pointer
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Deletion (non-concurrent version)
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C
Delete(C)

1 Search for C
2 Remember leaf, its parent and

grandparent
3 Swing pointer
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Challenges of Concurrency (1)
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Concurrent Delete(B) and Delete(C).

⇒ C is still reachable from the root!
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Challenges of Concurrency (2)
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Concurrent Delete(C) and Insert(D).

⇒ D is not reachable from the root!
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Challenges of Concurrency (2)
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Concurrent Delete(C) and Insert(D).

⇒ D is not reachable from the root!
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Coordination Required

Crucial problem: A node’s child pointer is changed while the
node is being removed from the tree.

Solution: Updates to the same part of the tree must coordinate.

Desirable Properties of Coordination Scheme
Avoid exclusive-access locks
Maintain invariant that tree is always a BST
Allow searches to pass unhindered
Make updates as local as possible
Algorithmic simplicity
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Flags and Marks

An internal node can be either flagged or marked (but not both).
Status is changed using CAS.

Flag
Indicates that an update is changing a child pointer.

Before changing an internal node x ’s child pointer, flag x .
Unflag x after its child pointer has been changed.

Mark
Indicates an internal node has been (or soon will be) removed
from the tree.

Before removing an internal node, mark it.
Node remains marked forever.
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Insertion Algorithm
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Insert(D)
1 Search for D
2 Remember leaf and its parent
3 Create three new nodes
4 Flag parent (if this fails, retry from

scratch)
5 Swing pointer (using CAS)
6 Unflag parent
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Deletion Algorithm
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Delete(C)
1 Search for C
2 Remember leaf, its parent and

grandparent
3 Flag grandparent (if this fails, retry

from scratch)
4 Mark parent (if this fails, unflag

grandparent and retry from scratch)
5 Swing pointer (using CAS)
6 Unflag grandparent
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Conflicting Deletions Now Work

F

B

A

B

E

C

C Concurrent Delete(B) and Delete(C)

Case I: Delete(C)’s flag succeeds.

⇒ Even if Delete(B)’s flag succeeds, its
mark will fail.

⇒ Delete(C) will complete
Delete(B) will retry
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Case II: Delete(B)’s flag and mark
succeed.

⇒ Delete(C)’s flag fails.

⇒ Delete (B) will complete
Delete(C) will retry
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Locks

Can think of flag or mark as a lock on the child pointers of a
node.

Flag corresponds to temporary ownership of lock.
Mark corresponds to permanent ownership of lock.

Remark
Easier version of these ideas were used for singly-linked lists.
Locking two child pointers with one flag or mark is harder.

Remark
Each update needs only one or two locks, searches need none.
(Previous lock-based BSTs use more locks.)
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Wait a second . . .

We want the data structure to be non-blocking!

Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a
process how to help the original operation.

If an operation fails to acquire a lock, it helps complete the
update that holds the lock before retrying.

Thus, locks are owned by operations, not processes.

Some similarities to Barnes’s cooperative technique.
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Searching

Searches just traverse edges of the BST until reaching a leaf.

They can ignore flags and marks.

Can prove by induction that each node visited by a Search(K )
was on the search path for K at some time during the Search.
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Progress

Goal: Show data structure is non-blocking (some operation
completes).

If an Insert successfully flags, it finishes.
If a Delete successfully flags and marks, it finishes.
If updates stop happening, searches must finish.

One CAS fails only if another succeeds.
⇒ A successful CAS guarantees progress, except for a
Delete’s flag.
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Progress: The Hard Case
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C

A Delete may flag, then fail to mark, then
unflag to retry.

⇒ The Delete’s changes may cause
other CAS’s to fail.

However, lowest Delete will make
progress.
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Some Details Omitted

The formal proof of correctness is surprisingly difficult
(20 pages long).

See the Technical Report.
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Further Work

Balancing the tree
Proving worst-case complexity bounds
Can same approach yield (efficient) wait-free BSTs?
(Or at least wait-free Finds?)
Other data structures
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