Non-blocking Binary Search Trees

Faith Ellen, University of Toronto
Panagiota Fatourou, ICS FORTH & University of Crete
Eric Ruppert, York University

Franck van Breugel, York University

July 26, 2010

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

State of the Art

The Java standard library has several non-blocking data
structures, but no search trees.

“You might wonder why this doesn’t use some kind of search
tree instead The reason is that there are no known efficient
lock-free insertion and deletion algorithms for search trees.”

Doug Lea in java.util.concurrent.ConcurrentSkipListMap

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Non-Blocking Data Structures

Non-blocking: some operation makes progress.

@ Studied for 20+ years

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Non-Blocking Data Structures

Non-blocking: some operation makes progress.

@ Studied for 20+ years

@ Universal constructions [1988—present]
Disadvantage: inefficient

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Non-Blocking Data Structures

Non-blocking: some operation makes progress.

@ Studied for 20+ years

@ Universal constructions [1988—present]
Disadvantage: inefficient

@ Array-based structures [1990-2005]
snapshots, stacks, queues

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Non-Blocking Data Structures

Non-blocking: some operation makes progress.

@ Studied for 20+ years

@ Universal constructions [1988—present]
Disadvantage: inefficient

@ Array-based structures [1990-2005]
snapshots, stacks, queues

@ List-based structures [1995-2005]
singly-linked lists, stacks, queues, skip lists

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Non-Blocking Data Structures

Non-blocking: some operation makes progress.

@ Studied for 20+ years

@ Universal constructions [1988—present]
Disadvantage: inefficient

@ Array-based structures [1990-2005]
snapshots, stacks, queues

@ List-based structures [1995-2005]
singly-linked lists, stacks, queues, skip lists

@ A few others [1995—present]
union-find, ...

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Prior Work on Concurrent Search Trees

@ Many lock-based implementations [1978—present]

@ Valois outlined how his linked lists might generalize to
BSTs [1995]

e complicated and lacks detalil
@ Non-blocking BST [Fraser 2003]
e uses 8-word CAS

@ Bender et al. outlined how their lock-based cache-oblivious
B-trees might be made non-blocking [2005]

o lacks details and proof of correctness

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

New Result

A non-blocking implementation of BSTs from single-word CAS.

Some properties:
@ Conceptually simple
@ Fast searches
@ Concurrent updates to different parts of tree do not conflict
@ Technique seems generalizable
@ Experiments show good performance

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

@ Asynchronous

@ Crash failures allowed
@ Shared memory with single-word compare-and-swap
@ Linearizable

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Leaf-oriented BST

Deiinion

@ One leaf for each key in set Lt [EaT
@ Internal nodes used only for routing storing key set

@ Each internal node has exactly 2 children | {A, B, C, F}

@ BST property: (k)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Leaf-oriented BST

Deiinion

@ One leaf for each key in set Lt [EaT
@ Internal nodes used only for routing storing key set

@ Each internal node has exactly 2 children | {A,B,C,F}

@ BST property:

S0 6%

Advantages of Leaf-Oriented Trees \®
@ Deletions much simpler

@ Average depth only slightly higher

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion (non-concurrent version)

A \© Insert(D)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion (non-concurrent version)

A \© Insert(D)

/ @ Search for D
B

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion (non-concurrent version)

A \© Insert(D)

/ @ Searchfor D
B © Remember leaf and its parent

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion (non-concurrent version)

A \© Insert(D)
/ @ Searchfor D
B © Remember leaf and its parent

/ \ © Create new leaf, replacement leaf,

d one internal node
(b) |c F o
/ \
C D

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion (non-concurrent version)

Insert(D)
@ Search for D
© Remember leaf and its parent

© Create new leaf, replacement leaf,
and one internal node

© Swing pointer

o
)4

SN

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion (non-concurrent version)

A \© Delete(C)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion (non-concurrent version)

A \© Delete(C)

/ @ Search for C
B

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion (non-concurrent version)

A \© Delete(C)

/ \® @ Searchfor C
B ©@ Remember leaf, its parent and
/ \ grandparent

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion (non-concurrent version)

A \© Delete(C)

@ Search for C

B @ ©@ Remember leaf, its parent and
/ \ grandparent
C F © Swing pointer

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Challenges of Concurrency (1)

/ \® Concurrent Delete(B) and Delete(C).

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Challenges of Concurrency (1)

/ Concurrent Delete(B) and Delete(C).

/ \ = C is still reachable from the root!

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Challenges of Concurrency (2)

e %

A

B/ E Concurrent Delete(C) and Insert(D).
/ \

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Challenges of Concurrency (2)

7%

e

@ Concurrent Delete(C) and Insert(D).

@/ \ = D is not reachable from the root!
F

C
/\D

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Coordination Required

Crucial problem: A node’s child pointer is changed while the
node is being removed from the tree.

Solution: Updates to the same part of the tree must coordinate.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Coordination Required

Crucial problem: A node’s child pointer is changed while the
node is being removed from the tree.

Solution: Updates to the same part of the tree must coordinate.

Desirable Properties of Coordination Scheme
@ Avoid exclusive-access locks
@ Maintain invariant that tree is always a BST
@ Allow searches to pass unhindered
@ Make updates as local as possible
@ Algorithmic simplicity

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Flags and Marks

An internal node can be either flagged or marked (but not both).
Status is changed using CAS.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Flags and Marks

An internal node can be either flagged or marked (but not both).
Status is changed using CAS.

Indicates that an update is changing a child pointer.
@ Before changing an internal node x’s child pointer, flag x.
@ Unflag x after its child pointer has been changed.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Flags and Marks

An internal node can be either flagged or marked (but not both).
Status is changed using CAS.

Indicates that an update is changing a child pointer.
@ Before changing an internal node x’s child pointer, flag x.
@ Unflag x after its child pointer has been changed.

Indicates an internal node has been (or soon will be) removed
from the tree.

@ Before removing an internal node, mark it.
@ Node remains marked forever.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

e Insert(D)
PN

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

/ Insert(D)

A @ Searchfor D
7 %

B

5~ s

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

/ Insert(D)
A @ Searchfor D

/ @ Remember leaf and its parent
B (i)
/ \

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

/ Insert(D)
A @ Searchfor D

/ \(@ Remember leaf and its parent

B © Create three new nodes
5 PN

C F
PN

C D

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

B

(D)

2 s

7%

e

C

Tp

F

D

Insert(D)
@ Search for D
© Remember leaf and its parent
© Create three new nodes

© Flag parent (if this fails, retry from
scratch)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

/ Insert(D)
A @ Search for D
/ © Remember leaf and its parent
B P © Create three new nodes
\ © Flag parent (if this fails, retry from
scratch)
C F , . :
/ \ © Swing pointer (using CAS)

C D

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Insertion Algorithm

/ Insert(D)
A @ Searchfor D

/ \(, @ Remember leaf and its parent

© Create three new nodes

B
\ © Flag parent (if this fails, retry from
scratch)
C F , . ,
/ \ © Swing pointer (using CAS)

Q@ Unflag parent

C D

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

A/\@ Delete(C)
R
N

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

Delete(C)

/ @ Searchfor C
N

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

s

)

B

ic

2

C F

Delete(C)
@ Searchfor C

© Remember leaf, its parent and
grandparent

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

Delete(C)
/ @ Searchfor C
A Ei) ’:l @ Remember leaf, its parent and
/ grandparent
B © Flag grandparent (if this fails, retry
/ \ from scratch)
C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

Delete(C)
/ @ Searchfor C
A ’:l © Remember leaf, its parent and
/ grandparent

© Flag grandparent (if this fails, retry

/ \’i from scratch)
C F

B

© Mark parent (if this fails, unflag
grandparent and retry from scratch)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

B

Delete(C)

/ E @ Searchfor C
A ’:l © Remember leaf, its parent and
/

grandparent
@ % © Flag grandparent (if this fails, retry

/ \ from scratch)

© Mark parent (if this fails, unflag
c F grandparent and retry from scratch)

@ Swing pointer (using CAS)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Deletion Algorithm

Delete(C)

s

@ Search for C
© Remember leaf, its parent and

/ grandparent

B

@ % © Flag grandparent (if this fails, retry

/ \ from scratch)

© Mark parent (if this fails, unflag
c F grandparent and retry from scratch)

@ Swing pointer (using CAS)
Q@ Unflag grandparent

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

A \© Concurrent Delete(B) and Delete(C)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

/
A \© '% Concurrent Delete(B) and Delete(C)
s

Case I: Delete(C)’s flag succeeds.
B (i)

2

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

\© '% Concurrent Delete(B) and Delete(C)

\(, Case I: Delete(C)’s flag succeeds.

B = Even if Delete(B)’s flag succeeds, its
7 NG mark will fail.
C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

A \© Concurrent Delete(B) and Delete(C)

/ Case I: Delete(C)’s flag succeeds.

B @ x = Even if Delete(B)’s flag succeeds, its
Ny Mark will fail.
c F| = Delete(C) will complete

Delete(B) will retry

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

(8)1%

A \© % Concurrent Delete(B) and Delete(C)
/ \(, Case II: Delete(B)’s flag and mark

B succeed.
5~ s

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

(8)1%

A \© % Concurrent Delete(B) and Delete(C)
/ \(, Case II: Delete(B)’s flag and mark

B succeed.

/ \ = Delete(C)’s flag fails.

C F

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Conflicting Deletions Now Work

A @ % Concurrent Delete(B) and Delete(C)
/ Case II: Delete(B)’s flag and mark
B succeed.
,~ N_ = Delete(C)s flag fails.
c F| = Delete (B) will complete

Delete(C) will retry

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Can think of flag or mark as a lock on the child pointers of a
node.

@ Flag corresponds to temporary ownership of lock.
@ Mark corresponds to permanent ownership of lock.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Can think of flag or mark as a lock on the child pointers of a
node.

@ Flag corresponds to temporary ownership of lock.
@ Mark corresponds to permanent ownership of lock.

Easier version of these ideas were used for singly-linked lists.
Locking two child pointers with one flag or mark is harder.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Can think of flag or mark as a lock on the child pointers of a
node.

@ Flag corresponds to temporary ownership of lock.
@ Mark corresponds to permanent ownership of lock.

Easier version of these ideas were used for singly-linked lists.
Locking two child pointers with one flag or mark is harder.

Each update needs only one or two locks, searches need none.
(Previous lock-based BSTs use more locks.)

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

We want the data structure to be non-blocking!

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

We want the data structure to be non-blocking!
Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a
process how to help the original operation.

If an operation fails to acquire a lock, it helps complete the
update that holds the lock before retrying.

Thus, locks are owned by operations, not processes.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

We want the data structure to be non-blocking!
Whenever “locking” a node, leave a key under the doormat.

A flag or mark is actually a pointer to a small record that tells a
process how to help the original operation.

If an operation fails to acquire a lock, it helps complete the
update that holds the lock before retrying.

Thus, locks are owned by operations, not processes.

Some similarities to Barnes’s cooperative technique.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Searches just traverse edges of the BST until reaching a leaf.
They can ignore flags and marks.

Can prove by induction that each node visited by a Search(K)
was on the search path for K at some time during the Search.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Progress

Goal: Show data structure is non-blocking (some operation
completes).

@ If an Insert successfully flags, it finishes.
@ If a Delete successfully flags and marks, it finishes.
@ If updates stop happening, searches must finish.

One CAS fails only if another succeeds.
= A successful CAS guarantees progress, except for a
Delete’s flag.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Progress: The Hard Case

B3
i E A Delete may flag, then fail to mark, then
F(]: unflag to retry.
E \® p =- The Delete’s changes may cause
E other CAS’s to fail.
i/ > However, lowest Delete will make

progress.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Some Details Omitted

The formal proof of correctness is surprisingly difficult
(20 pages long).

See the Technical Report.

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

Further Work

@ Balancing the tree
@ Proving worst-case complexity bounds

@ Can same approach yield (efficient) wait-free BSTs?
(Or at least wait-free Finds?)

@ Other data structures

Ellen, Fatourou, Ruppert, van Breugel Non-blocking Binary Search Trees

