An Introduction to
Population Protocols

James Aspnés Eric Ruppert
Yale University York University

September 11, 2007

Abstract

The population protocol model describes a collection of timobile agents
that interact with one another to carry out a computatione agents are identi-
cally programmed finite state machines. Interactions betvpairs of agents cause
the two agents to update their states. These interactiensciieduled by an ad-
versary, subject to a fairness constraint. Input valuegnétrally distributed to the
agents, and the agents must eventually converge to thectoutput value. This
framework can be used to model mokdlé hocnetworks of tiny devices or collec-
tions of molecules undergoing chemical reactions. We sursults that describe
what can be computed in various versions of the populatiotopol model.

1 Introduction

The population protocol model [3] was designed to represemsor networks consist-
ing of very limited mobile agents with no control over theiwro movement. It also

bears a strong resemblance to models of interacting megdultheoretical chem-
istry [16,17]. The defining features of the basic model are:

1. Anonymous, finite-state agents. The system consists afge Ipopulation of
indistinguishable finite-state agents.

2. Computation by direct interaction. In the original mqdagents do not send
messages or share memory; insteadngaraction between two agents updates
both of their states according to a joint transition tablkee &ctual mechanism of
such interactions is abstracted away.

3. Unpredictable interaction patterns. The choice of wiighnts interact is made
by an adversary. Agents have little control over which otinggnts they inter-
act with, although the adversary may be limited to pairinty @yents that are

*Supported in part by NSF grant CNS-0435201.
TSupported in part by the Natural Sciences and Engineerisgdeh Council of Canada.

adjacent in annteraction graph, typically representing distance constraints. A
strong globafairness conditionis imposed on the adversary to ensure the pro-
tocol makes progress.

4. Distributed inputs and outputs. The input to a populagioatocol is distributed
across the initial state of the entire population. Simylate output is distributed
to all agents.

5. Convergence rather than termination. Population pod¢agenerally cannot de-
tect when they have finished; instead, the agents’ outpeteguired to converge
after some finite time to a common, correct value.

A formal definition is given in Section 2.

The population protocol model was inspired in part by workibgmadi and Fis-
cher [13] on trust propagation in a social network. T automata of [2] can be
seen as a first draft of the model that retained in vestigiahfeeveral features of
classical automata: instead of interacting with each otligents could interact only
with a finite-state controller, complete with input tape.eTmotivation given for the
current model in [3] was the study of sensor networks in whiaksive agents were
carried along by other entities; the canonical example wasa@'s attached to a flock
of birds. The name of the model was chosen by analogpfulation processe$22]
in probability theory.

A population protocol often looks like an amorphous soupst,Inearly mindless,
anonymous agents blown here and there at the whim of the satyeBut though indi-
vidual agents lack much intelligence or control over theinalestinies, the population
as a whole is nonetheless capable of performing signifiaanpatations—under some
conditions, it has the same power as a traditional computarttie same total storage
capacity. Some examples of simple population protocolg&aen in Section 2.

Much of the work so far on population protocols has concéatran characterizing
what predicates on the input configuration can be computdifarent variants of the
model and under various assumptions, such as a boundeéedatgraction graph or
random scheduling.

If the interaction graph is unrestricted, the worst casefonputation turns out to
be a complete interaction graph, since any other intenagiaph can simulate a com-
plete interaction graph by shuffling agents between the :ifgle In a complete inter-
action graph, all agents with the same state are indistahgiile, and only the counts
of agents in each state affect the outcome of the protoca.sehof computable pred-
icates in most variants of the basic model for such a grapbusknown to be either
exactly equal to or closely related to the seseimilinear predicates, those definable in
first-order Presburger arithmetic [18, 25]. These results, which originally appeared
in[1,3,5,7-9,12], are summarized in Sections 3, 4, 5, 7 an&8metimes the struc-
ture of incomplete interaction graphs can be exploitedrwutate a Turing machine,
which implies that a restricted interaction graph can makesystem stronger than the
complete graph.

More recent work has concentrated on performance. Bechesedak schedul-
ing assumptions in the basic model allow the adversary tw a@nat a computation

indefinitely, the worst-case adversary scheduler is replédy a random scheduling as-
sumption, where the pair of agents that interacts at eaphstirawn uniformly from
the population as a whole. This gives a natural notiotinoé equal to the total number
of steps to convergence apdrallel time equal to the average number of steps initi-
ated by any one agent (essentially the total number of stefaied by the number of
agents).

As with adversarial scheduling, for random scheduling testfunderstood case is
that of a complete interaction graph. In this case, it is jpdsdo construct a regis-
ter machine, where subpopulations of the agents hold toleesenting the various
register values in unary. It is not hard to implement regiefzerations like addition,
subtraction, and comparison by local operations betweies pBagents; with the elec-
tion of a leader, we can further construct a finite-state radnfThe main obstacle to
implementing a complete register machine is to ensure thay@gent completes any
needed tasks for each instruction cycle before the nexecstelrts. In [3], this was
handled by having the leader wait a polynomial number ofsstap average before
starting the next cycle, a process which gives an easy pifqudlgnomially-bounded
error but which also gives an impractically large slowdowsubsequent work has
reduced the slowdown to polylogarithmic by using epiderigth to propagate infor-
mation quickly through the population and to provide tim[dg6]. These results are
described in more detail in Section 6.

In addition to work on the basic population protocol modeg&re have been sev-
eral extensions of the model to more accurately reflect thairements of practical
systems. The basic model requires coordinated two-way aonuation between in-
teracting agents; this assumption is relaxed in Section@rk\Wh incorporating agent
failures into the model are discussed in Sections 7 and Sidfes of the model that
give agents slightly increased memory capacity are disclissSection 8.

2 The basic model

In the basic population protocol model, a collection of ageare each given an input
value, and agents have pairwise interactions in an orderméted by a scheduler,
subject to some fairness guarantee. Each agentis a kindtefdtate machine and the
“program” for the system describes how the states of two @gsan be updated by an
interaction. The agents’ output values change over timenaust eventually converge
to the correct output value for the inputs that were iniaistributed to the agents.

A protocol is formally specified by

e (), afinite set of possible states for an agent,

e Y, afinite input alphabet,

e ¢, an input map fronk to), where.(o) represents the initial state of an agent
whose input isr,

w, an output map frony) to the output rang¥’, wherew(q) represents the output
value of an agent in statg and

e § C @4, atransition relation that describes how pairs of agenisraaract.

We now describe how a computation proceeds according toapechtocol. The
computation takes place amongagents wheren > 2. Each agent is given an in-
put value fromX. Each agent’s initial state is determined by applyirtg its input
value. This determines an initial configuration for an exmeu A configuration of
the system can be described by a vector of all the agents'sstBecause agents with
the same state are indistinguishable, each configuratiobheasummarized as an un-
ordered multiset of states.

An execution of a protocol proceeds from the initial confafion by interactions
between pairs of agents. Suppose two agents in stataad g, meet and have an
interaction. They can change into staigsand ¢, as a result of the interaction if
(g1, 92,41, ¢5) is in the transition relatiod. We sometimes describeby listing
all possible interactions using the notation, ¢2) — (¢},45). (We assume a null
transition(q1,q2) — (q1, g2) if no others are specified witfy, g2) on the left hand
side.) If there is only one possible transition, ¢2) — (g1, ¢5) for each pair(q1, ¢2),
then the protocol isleterministic. If C' andC’ are configurations, we writ€' — C’
if C’ can be obtained from¥' by a single interaction of two agents. This means that
C contains two stateg; andgs andC’ is obtained fronC' by replacingg; andgs by
¢, and g, where(q1, g2, 4}, ¢5) is in 6. An executionof the protocol is an infinite
sequence of configuratiorsy, C1, Cs, . .., whereCj is an initial configuration and
C; — Ciyq foralli > 0. Thus, an execution is a sequence of snapshots of the
system after each interaction occurs. In a real distribatedution, interactions could
take place simultaneously, but when writing down an exeoutve can order those
simultaneous interactions arbitrarily.

The order in which pairs of agents interact is unpredictalskethink of the sched-
ule of interactions as being chosen by an adversary, so thaiqols must work cor-
rectly under any schedule the adversary may choose. In é@deneaningful com-
putations to take place, we must put some restrictions oradversarial scheduler;
otherwise it could divide the agents into isolated grougbssahedule interactions only
between agents that belong to the same group.

The fairness condition that we impose on the scheduler is quite simplddtes
but is somewhat subtle. Essentially, we do not allow the dglee to avoid a possible
step forever. More formally, if” is a configuration that appears infinitely often in
an execution, and' — C’, thenC’ must also appear infinitely often in the execution.
Another way to think of this is that anything that is alwaysgible eventually happens:
it is equivalent to require that any configuration that isaa/reachable is eventually
reached.

At any point during an execution of a population protocotlreagent’s state deter-
mines its output at that time. If the agent is in statéts output value isv(q). Thus,
an agent’s output may change over the course of an exectt@fairness constraint
allows the scheduler to behave arbitrarily for an arbilydoing period of time, but does
require that it behave nicely eventually. It is therefortunal to phrase correctness as
a property to be satisfied eventually too. For example, thedwler could schedule
only interactions between agents 1 and 2, leaving the other agents isolated, for
millions of years, and it would be unreasonable to expectsamsible output during
the period when only two agents have undergone state chafiyes, for correctness,
we require that all agents produce the correct output (feritiput values that were

initially distributed to the agents) at some time in the ex@mn and continue to do so
forever after that time.

To summarize, we say that a protocol computes a fungtitirat maps multisets of
elements ok to Y if, for every such multisef and every fair execution that starts from
the initial configuration corresponding 1o the output value of every agent eventually
stabilizes tof (I).

Example 1. Suppose each agent is given an input bit, and we want all ageentitput
the ‘or’ of those bits. There is a very simple protocol to aogtish this: each agent
with input 0 simply outputs 1 as soon as it discovers thatlaroagent had input 1.
Formally, we haveX = Y = @ = {0,1} and the input and output maps are the
identity functions. The only interaction ihis (0,1) — (1, 1). If all agents have input
0, no agent will ever be in state 1. If some agent has input htineber of agents with
state 1 cannot decrease and fairness ensures that it wiltually increase to:. In
both cases, all agents stabilize to the correct output value

Example 2. Suppose the agents represent dancers. Each dancer iss{exdglua
leader or a follower. We wish to determine whether there aveerteaders than follow-
ers. We us&” = {0, 1}, with 1 indicating that there are more leaders than foll@vér
centralized solution would count the leaders and the fadi®and compare the totals.
A more distributed solution is to ask everyone to start dagevith a partner (who
must dance the opposite role) and then see if any dancersfangthout a partner. We
formalize this cancellation procedure as a populationqmaitwith > = {L, F'} and

Q = {L, F,0,1}. The input map is the identity, and the output mapmapsL and1

to 1 and mapg” and0 to 0. The transitions of are (L, F') — (0,0), (L,0) — (L, 1),
(F,1) — (F,0) and(0,1) — (0,0). The first rule ensures that, eventually, either no
L’s or no F’s will remain. At that point, if there ard.’s remaining, the second rule
ensures that all agents will eventually produce output fil&ily, the third rule takes
care of the case wheti’s remain. In the case of a tie, the third rule ensures that the
output stabilizes to 0.

It may not be obvious why the protocol of in Example 2 must esge. Con-
sider, for example, the transitiog,, L, ¥} — {0,L,0} — {1,L,0} — {0,L,0} —
{0,L,1} — {0, L,0}, where in each configuration, the agents that are about to in-
teract are underlined. By repeating this loop, we obtainmeunverging execution
in which every pair of agents interacts infinitely often. Hawer, this execution is not
fair: the configuratioq 0, L, 1} appears infinitely often anfd, L, 1} — {1, L, 1}, but
{1, L, 1} never appears. This is because the first two agents onhaaitat “incon-
venient” timesj.e,, when third agent is in state 0. The definition of fairnesesuhis
out. Thus, in some ways, the definition of fairness is strotfygn saying that each pair
of agents must interact infinitely often. (In fact, the twanddions are incomparable,
since there can be fair executions in which two agents neeet.nfror example, an ex-
ecution where every configuration{4., L, L} and all interactions take place between
the first two agents is fair.)

Exercise 3. Show the protocol of Example 2 converges in every fair exenut

The definition of fairness was chosen to be quite weak (athatis still strong
enough to allow useful computations). Many models of mabitems assume that the

mobility patterns of the agents follow some particular @oitity distribution. The goal
of the population protocol model is to be more general. Ifg¢hie an (unknown) un-
derlying probability distribution on the interactions, iwh might even vary with time,
and that distribution satisfies certain independence ptiegeand ensures that every
interaction’s probability is bounded away from 0, then araxion will be fair with
probability 1. Thus, any protocol will converge to the catreutput with probability
1. So the model captures computations that are correct withability 1 for a wide
range of probability distributions, even though the modsirdtion does not explicitly
incorporate probabilities.

Other predicates can be computed using an approach simitatample 2.

Exercise 4. Design a population protocol to determine whether more #t&h of the
dancers are leaders.

Some predicates, however, require a different approach.

Example 5. Suppose each agent is given an input flore {0, 1, 2, 3} and we wish to
find the sum of the inputs, modudo The protocol can gather the sum (moddjonto

a single agent. Once an agent has given its value to anotbat,atp value becomes
null, and it obtains its output values from the eventualljque agent with a non-null
value. Formally, we hav@ = {0,1,2,3, Lo, L1, Lo, L3}, wherel, represents a null
value with output. Let:(v) = v andw(v) = w(Ll,) = vforv = 0,1,2,3. The
transition rules ofy are (vy,v2) — (v1 + V2, Ly 4v,) aNd (v1, Lyy,) — (v1, Loy),
wherev; andwv; are0, 1,2 or 3. (The addition is modulo 4.)

In some cases, agents may know when they have convergedcortieet output,
but in general they cannot. While computing the ‘or’ of infoits (Example 1), any
agent in state 1 knows that its state will never change agdias converged to its final
output value. However, no agent in the protocol of Examplarbever be certain it has
converged, since some additional agents with input 1 cdwialye join the computation
and change the required output value.

Two noteworthy properties of the population protocol maatel its uniformity and
anonymity. A protocol isiniform because its specification has no dependence on the
number of agents that take part. In other words, no knowledigeit the number of
agents is required by the protocol. The systermrisnymousbecause the agents are
not equipped with unique identifiers and all agents aredreat the same way by the
transition relation. Indeed, because the state set is fimitedoes not depend on the
number of agents in the system, there is not even room in dte st an agent to store
a unique identifier.

3 Computability

In studying what functions can be computed in the populgtiatocol model, there
is no loss of generality in restricting attention to pretisai.e., functions with range
Y = {0,1}. For any functionf with rangeY’, let P, be a predicate defined by
Ps,(z) = 1ifand only if f(x) = y. Then, f is computable if and only i, is
computable for eaclp € Y. The “only if” part of this statement is trivial. For the

converse, a protocol can compute all the predic#teg in parallel, using a separate
component of each agent's state for egctNote thatY” is finite because each distinct
output value corresponds to at least one state in the ofigintocol.

For the basic population protocol model, there is an exaatattterization of the

computable predicates: they are preciselygbmilinear predicates which we now
define. A multiset over the input alphab®tcan also be thought of as a vector with
d = |X| components, where each component is a natural number egypires the
multiplicity of one input character. For example, the inpuiltiset{a, a, a, b, b} over
the input alphabeE = {a,b,c} can be represented by the vectdr2,0) € N3.
A semilinear setis a subset ofN“ that is a finite union ofinear sets of the form
{b+ k@1 + kads + - - - + kmdm }, Whereb is ad-dimensional base vectat, through
a,, are basis vectors, arid throughk,, are non-negative coefficients. gemilinear
predicate on inputs is one that is true precisely on a semilinear set.

An alternative characterization of semilinear predicéésat they can be described
by first-order logical formulas in Presburger arithmetitjeh is arithmetic on the nat-
ural numbers with addition but not multiplication [25]. Bbairger arithmetic allows
for quantifier elimination, replacing universal and existential quantifiers with farm
las involving addition<, the modk congruence relatios, for each constant, and
the usual logical connectives Vv, and—.

Angluin et al.[3] gave protocols to compute any threshold predicate oaieder
predicate; the protocols are similar to those in Examples®a This gives< and=y.
They further observed that addition is trivially obtaingdrbnaming states: to compute
A + B from A and B we pretend that anyl or B token is really and + B token.
Finally, Boolean combinationg\(V) of these predicates can be computed by running
the protocols for each of the basic predicates in parallghgiseparate components
of the agents’ states, and negatiet) §imply involves relabeling the output values. It
follows that population protocols can compute all predésatefinable with Presburger
formulas,i.e., all semilinear predicates.

Amazingly, the converse also holds: only semilinear pratgis can be computed by
population protocols. For the basic model this result waswshby Angluin, Aspnes,
and Eisenstat [5] by applying results from partial orderotiye The proof is quite
involved, but the essential idea is that, like finite-stattomata, population protocols
can be “pumped” by adding extra input tokens that turn outmaffect the final output.
By carefully considering exactly when this is possibleaih e shown that the positive
inputs to a population protocol (considered as sets of vertan be separated into a
collection of cones over some finite set of minimal positimpduts, and that each of
these cones can be further expressed using only a finite $etsaf vectors. This is
sufficient to show that the predicate corresponds to a sesaitiset as described above.
We thus have:

Theorem 6 ([3,5, 7]). A predicate is computable in the basic population protocol
model if and only if it is semilinear.

Similar results with weaker classes of predicates hold déstricted models with
various forms of one-way communication [8]; we describes¢éhesults in more detail
in Section 4. Indeed, these results were a precursor to thiirsearity theorem of [5].
The journal paper [7] combines and extends these results.

A useful property of Theorem 6 is that it continues to hold wdiified in many
simple variants of the basic model. The reason is that anggehthat weakens the
agents can only decrease the set of computable predicdtiés.amy model that is still
strong enough to compute congruence modudmd comparison can still compute all
the semilinear predicates. So the semilinear predicatesnc® to be those that are
computable when the inputs are not given immediately bitilsta after some finite
time [1] or when one agent in an interaction can see the atlstate but not vice
versa [7], as in each case it is still possible to compute agergce and threshold in the
limit. A similar result holds when a small number of agents ail [12]; here a slight
modification must be made to allow for partial predicates tam tolerate the loss of
part of the input. We describe all of these results in latetises.

4 One-way communication

In the basic population protocol model, it is assumed that itweracting agents can
simultaneously learn each other’s state before updat#igakvn states as a result of the
interaction. This requires two-way communication betwenertwo agents. Angluiat
al. [7] studied several weaker interaction models where, imgraction, information
flows in one direction only. Aeceiveragent learns the state obanderagent, but the
sender learns nothing about the state of the receiver. Tlempaf a system with such
one-way communication depends on the nature of the commtimicmechanism.

The model is called &ransmission model if the sender is aware that an interac-
tion has happened (and can update its own state, althougipttete cannot depend
on the state of the receiver). In abservationmodel, on the other hand, the sender’s
state is passively observed by the receiver. Another inubga attribute is whether an
interaction happens instantaneousiyriediate transmissionandimmediate obser-
vation models) or requires some interval of tinde(ayed transmissionanddelayed
observationmodels). Thejueued transmissiormodel is similar to the delayed trans-
mission model, except that receivers can temporarily eesfiusoming messages so that
they are not overwhelmed with more incoming informatiomtlizey can handle. The
queued transmission model is the closest to traditionasawes passing models of dis-
tributed computing.

The weakest of these one-way models is the delayed obsanratidel: protocols
can detect whether any particular input symbol is preseabsent (and compute any
predicate that depends only on this information) simply bgeyving other agents’
input values. Nothing else can be computed: there is no waljstinguish between
a sequence of observations of several agents with the sgueand a sequence of
observations of a single agent.

The immediate observation model is slightly stronger: it caunt the number of
agents with a particular input, up to some constant threshadr example, a protocol
can determine whether the number of copies of input symlm0, 1, 2, 3 or more than
3. Consequently, any predicate that depends only on tha dfinnformation can be
computed. A kind of pumping lemma can be used to show thatmer giredicates are
computable.

Angluin et al.also showed that the immediate and delayed transmissioelmace

equivalent in power. They gave a characterization of thepdable predicates that
shows the power of these models is intermediate betweemimediate observation
model and the standard two-way model.

Finally, the queued transmission model is equivalent ingraw the standard two-
way model: any protocol designed for the two-way model carsibeulated using
queued transmission and vice versa. This holds even thinagbet of configurations
in queued transmission is in principle unbounded; thetghidi generate large numbers
of buffered messages does not help the protocol, largelgusecthere is no guarantee
of where or when they will be delivered.

5 Restricted interaction graphs

In some cases the mobility of agents will have physical ltiiins, and this will limit
the possible interactions that can occur. We can repréesisrinformation in arinter-
action graph, where nodes represent agents and edges represent pogsilaetions.
The basic model corresponds to the case where the graph @etemin this model,
a configuration is always represented as a vector of staié® ggents are no longer
indistinguishable, so we cannot use a multiset.”I&nd C’ are configurations, we
write C — C" if C’ can be obtained fror®' through a single interaction @fdjacent
agents, and the definitions of executions and fairness drefase, using this modified
notion of a step.

Having a non-complete (but connected) interaction graps a@t make the model
any weaker, since adjacent agents can swap states to snfrel@atmovement [3]. For
some interaction graphs, the model becomes strictly mosegal. For example, con-
sider a straight-line graph. It is not difficult to simulatéreear-space Turing machine
by using each agent to represent one square of the Turingineaizpe. This allows
computation of any function or predicate in LINSPACE, mafyvbich are not semi-
linear and thus not computable in the complete interactraply of the basic model.

In addition to computing predicates on the inputs to agén#dso makes sense in
this model to ask whether properties of the interaction lyriggelf can be computed
by the agents in the system. Such problems, which were sthgidngluinet al.[1],
could have useful applications in determining the netwogotogy induced by aad
hocdeployment of mobile agents.

As a simple example, one might want to determine whetherrtegdction graph
has maximum degrek or more, for some fixed. This can be done by electing a
single moving leader token. Initially, all agents hold adeatoken. When two leader
tokens interact, the tokens coalesce, and when a leaddriaggacts with a non-leader
agent the leader token may change places. To test the maxiegiree, the leader may
instead choose to mark up kadistinct neighbors of its current node. By counting how
many nodes it successfully marks, the leader can get a lomardon the degree of
the node.

A complication is that the leader has no way to detect wheadtihteracted with all
neighbors of the current node. The best it can do is nondetestically wait for some
arbitrary but finite time before gathering in its marks andrg again. In doing so it
relies on the fairness condition to eventually drive it taa@es where it has correctly

computed the maximum degree. Because the original popnlatodel used determin-
istic transitions, some additional machinery is needednukte a nondeterministic
transition function by exploiting the nondeterminism oé thteraction schedule. Note
that the unmarking step does not require nondeterminismeghe leader keeps track
of how many marks it has placed, it can simply wait until it lEgountered each
marked neighbor again.

During the initial leader election phase, two leaders d@ptpmarks could interfere
with each other. To handle this, the survivor of any intdoacbetween two leaders
collects all outstanding marks from both and resets itsekegstimate.

A similar mechanism can be used to assign unique colors teahbors of each
node in a bounded-degree graph: a wandesolgrizer token deploys pairs of marks to
its neighbors and recolors any it finds with the same colocelhis process converges,
the resultingdistance2 coloring (so called because all nodes at distadd¢wve dis-
tinct colors) effectively provides local identifiers fortineighbors of each node. These
can be used to carry out arbitrary distributed computatimiisg standard techniques
(subject to the)(1) space limit at each node). An example given in [1] is the qoiest
tion of a rooted spanning tree, which can be used to simulateing machine tape (as
in the case of a line graph) by threading the Turing machipe &dong a traversal of
the tree. It follows that arbitrary LINSPACE-computableperties of bounded-degree
graphs can be computed by population protocols.

6 Random interactions

An alternative assumption that also greatly increases tin=pof the model is to re-
place the adversarial (but fair) scheduler of the basic hwith a more constrained
interaction pattern. The simplest such variant assuaretom interactions: each pair
of agents is equally likely to interact at each step.

Protocols for random scheduling were given in the initighplation protocol paper
of Angluin et al.[3], based in part on similar protocols for the related maxelrn au-
tomata [2]. The central observation was that the main lititeobserved in trying to
build more powerful protocols in the basic model was theiiitstto detect the absence
of agents with a particular state. However, if a single leaadent were willing to wait
long enough, it could be assured (with reasonably high fitibg that it would meet
every other agent in the population, and thus be able toyir presence or absence
of particular token values stored on the other agents bytinspection. The method
used was to have the leader issue a single special markatttmkeme agent; when the
leader encountered this special agetitmes in a row it could be reasonably confident
that the number of intervening interactions was clos®ta**1). This is sufficient to
build unary counters supporting the usual increment, deerg, and zero test opera-
tions (the last probabilistic). With counters, a registexamine with anO(logn) bit
random-access memory can be simulated using a classiddeetof Minsky [23].

The cost of this simulation is a polynomial blowup for the@égst and a further
polynomial blowup in the simulation of the register machiAefaster simulation was
given by Angluin, Aspnes, and Eisenstat [4], based on epiceto propagate infor-
mation quickly through the population. This simulationwasgs a single designated

10

leader agent in the initial configuration, which acts as thigdfistate controller for the
register machine. Register values are again stored in w@sarykens scattered across
the remaining agents.

To execute an operation, the leader initiates an epidemritagung an operation
code. This opcode is copied through the rest of the populatid® (n logn) inter-
actions on average and with high probability; the latteuiteis shown to follow by
a reduction to a concentration bound for coupon collecta wuKamathet al. [21].
Arithmetic operations such as addition, comparison, satizn, and multiplication
and division by constants can be carried out by the non-teagients inO(n log® n)
interactions (00 (log® n) parallel time units) each. Some of these algorithms arequit
simple (addingA to B requires only adding a new token to each agent that already
holds anA token, possibly with an additional step of unloading extrégokens onto
empty agents to maintaifl(1) space per agent), while others are more involved (com-
paring two values in [4] involves up t@(logn) alternating rounds of doubling and
cancellation, because simply havidgand B tokens cancel each other as in Exam-
ple 2 might require as many &%n?) expected interactions for the last few survivors
to meet). The most expensive operation is divisionQ#t log) interactions (or
O(log* n) parallel time units).

Being able to carry out individual arithmetic operationgfidittle use if one can-
not carry out more than one. This requires that the leadebleeta detect when an
operation has finished, which ultimately reduces down taidp@ible to detect when
O(nlogn) interactions have occurred. Here the trick of issuing alsispgecial mark
is not enough, as the wait needed to ensure a low probabilggemature termination
is too long.

Instead, phase clockbased on successive waves of epidemics is used. The leader
starts by initiating a phase epidemic which propagates through the population in
parallel to any other activity. When the leader meets an e is already infected
with phasd), it initiates a phasé epidemic that overwrites the phagepidemic, and
similarly with phase2, 3, and so on, up to some fixed maximum phase 1 that is in
turn overwritten by phas@again. Angluinet al. show that, while the leader might get
lucky and encounter one of a small number of newly-infectgehés in a single phase,
the more typical case is that a phase takés logn) interactions before the next is
triggered, and overn, phases the probability that all are too short is polynomgthall.

It follows that for a suitable choice af:, the phase clock gives a high-probability
O(nlogn)-interaction clock, which is enough to time the other paftshe register
machine simulation.

A curious result in [4] is that even though the register maergimulation has a
small probability of error, the same techniques can competeilinear predicates in
polylogarithmic expected parallel time with no error in {irait. The trick is to run a
fast error-prone computation to get the answer quickly rabiste time, and then switch
to the result of a slower, error-free computation using tleelmanisms of [3] after some
polynomially long interval. The high time to converge foreteecond algorithm is
apparent only when the first fails to produce the correct @anshut as this occurs only
with polynomially small probability, it disappears in thepectation.

This simulation leaves room for further improvement. An igdrate task is to re-
duce the overhead of the arithmetic operations. In [6], #imaesauthors show how

11

to drop the cost of the worst-case arithmetic operatio@ta log” n) interactions by
combining a more clever register encoding with a égiroximate majority primitive
based on dueling epidemics. This protocol has only threesstéhe decision values
andy, andb (for “blank”). When anz token meets g token or vice versa, the second
token turns blank. When anor y token meets a blank agent, it converts the blank token
to its own value. Much of the technical content of [6] invashowing that this process
indeed converges to the majority valugtin log n) interactions with high probability,
which is done using a probabilistic potential function argant separated into several
interleaved cases. The authors suggest that simplifyisgatigument would be a very
useful target for future research. It is also possible thah&r improvements could re-
duce the overhead for arithmetic operations down t@ttelog n) interactions needed
simply for all tokens to participate.

A second question is whether the distinguished leader inntitial configuration
could be replaced. The coalescing leader election algorith[3] takesO (n?) inter-
actions to converge, which may dwarf the time for simple catapons. A heuristic
leader-election method is proposed in [6] that appears twarge much faster, but
more analysis is needed. The authors also describe a marstmdrsion of the phase
clock of [4] that, by incorporating elements of the threatstmajority protocol, ap-
pears to self-stabilize i®(n log n) interactions once the number of leaders converges
to a polynomial fraction, but to date no proof of correctrfesshis protocol is known.

7 Self-stabilization and related problems

A series of papers [9, 10, 15] have examined the question ehyglopulation protocols
can be made self-stabilizing [14], or at least can be madel¢odte input values that
fluctuate over some initial part of the computation. Eith@mdition is a stronger prop-
erty than the mere convergence of the basic model, as batiregtat the population
eventually converge to a good configuration despite an wigtable initial configura-
tion. Many of the algorithms designed to start in a knownahitonfiguration (even if
it is an inconvenient one, with, say, all agents in the sateswill not work if started
in a particularly bad one. An example is leader election talescence: this algorithm
can reduce a population of many would-be leaders down togdesimique leader, but
it cannot create a new leader if the initial population corgaone.

Angluin et al.[9] gave the first self-stabilizing protocols for the popida protocol
model, showing how to carry out various tasks from previoaggrs without assum-
ing a known initial configuration. These include a distaBcesloring protocol for
bounded-degree graphs based on local handshaking indteadandering colorizer
token (which is vulnerable to being lost). Their solutiors leach node track whether it
has interacted with a neighbor of each particular color ahaydeven number of times;
if a node has two neighbors of the same color, eventuallyoitstwill go out of sync
with that of one or the other, causing both the node and itghtogir to choose new
colors. This protocol is applied in a framework that allovedf-stabilizing protocols
to be composed, to give additional protocols such as rogedrsng tree construction
for networks with a single special node. This last protosahdteworthy in part be-
cause it require®)(log D) bits of storage per node, whef2 is the diameter of the

12

network; it is thus one of the earliest examples of pressuirestape the restrictive
O(1)-space assumption of the original population protocol rhod&ther results in
this paper include a partial characterization of which mekxtopologies do or do not
support self-stabilizing leader election.

This work was continued by Angluin, Fischer, and Jiang [W}p considered the
issue of solving the classonsensus problenj24] in an environment characterized
by unpredictable communication, with the goal of conveggima common consensus
value at all nodes eventually (as in a population proto@iher than terminating with
one. The paper gives protocols for solving consensus instiisilizing sense with
both crash and Byzantine failures. The model used devietesthe basic population
protocol model in several strong respects: agents havéitigsr(and theD(log n)-bit
memories needed to store them), and though the destinatiomkich messages are
delivered are unpredictable, communication itself is syanous.

Fischer and Jiang [15] return to the anonymous, asynchyremd finite-state
world of standard population protocols to consider the gjggaroblem of leader elec-
tion. As observed above, a difficulty with the simple coatesme algorithm for leader
election is that it fails if there is no leader to begin withiséher and Jiang propose
adding to the model a negwentual leader detectoycalled2?, which acts as an oracle
that eventually correctly informs the agents if there isewsuler. Self-stabilizing leader
election algorithms based dpi? are given for complete interaction graphs and rings.
Curiously, the two cases distinguish between the standabébfairness condition as-
sumed in most population protocol work and a local fairnessddion that requires
only that each action occurs infinitely often (but not neaébsin every configuration
in which it is enabled). The latter condition is sufficienttitow self-stabilizing leader
election in a complete graph but is provably insufficient img. Many of these results
are further elaborated in Hong Jiang’s Ph.D. disserta6h

8 Larger states

The assumption that each agent can only stie bits of information is rather restric-
tive. One direction of research is to slowly relax this coaisit to obtain other models
that are closer to real mobile systems while still keepirgrttodel simple enough to
allow for a complete analysis.

Unique identifiers As noted in Section 2, the requirements that populatiorogas
be independent of and use)(1) space per agent imply that agents cannot have unique
identifiers. This contrasts with the vast majority of modgislistributed computing,
in which processes do have unique identifiers that are ofterueial component of
algorithms. Guerraoui and Ruppertinvestigated a modkédeommunity protocols,
that preserve the tiny nature of agents in population pasydut allow agents to
be initially assigned unique identifiers drawn from a large [49]. Each agent is
equipped withO(1) memory locations that can each store an identifier. It israssu
that transition rules cannot be dependent on the valuesadiéntifiers: the identifiers
are atomic objects that can only be tested for equality wik another. (For example,
bitwise operations on identifiers are not permitted.) Thissprves the property that

13

protocols are independent af They gave the following precise characterization of
what can be computed in this model.

Theorem 7 ([19]). A predicate is computable in the community protocol modahd
only if it is in NSPACE(nlogn) and permuting the input characters does not affect
the output value.

The necessity of the second condition (symmetry) followmadiately from the
fact that the identifiers cannot be used to order the inpubsysn The proof that any
computable predicate is iNSPACFE(nlogn) uses a non-deterministic search of the
graph whose nodes are configurations of the community pobtoed whose edges
represent transitions between configurations.

Conversely, the proof that any symmetric predicateM§ PAC E(nlogn) can
be computed by a community protocol uses Schonhage'sgraimachines [26] as a
bridge. A pointer machine is a sequential machine modelrtiveg a program using
only a directed graph structure as its memory. A communittqmol can emulate
a pointer machine by having each agent represent a node grdlpé data structure.
Some care must be taken to organize the agents to work togegimulate the sequen-
tial machine. It was known that a pointer machine that @es) nodes can simulate a
Turing machine that use&3(n log n) space [27].

It follows that the restriction that agents can use theiiitamithl memory space only
for storingO(1) identifiers can essentially be overcome: the agents carstiagumuch
as they could if they each h&@(log n) bits of storage that could be used arbitrarily.

Heterogeneous systemsOne interesting direction for future research is allowing
some heterogeneity in the model, so that some agents haeammputational power
than others. As an extreme example, consider a network df sexasors that interact
with one another, but also with a base station that has uelthapacity.

Beauquieet al.[11] studied a scenario like this, focusing on the problemadfing
the base station compute the number of mobile agents. They replaced the fairness
condition of the population protocol model by a requiremtbiatt all pairs of agents
interact infinitely often. They considered a self-stalmilizversion of the model, where
the mobile agents are initialized arbitrarily. (Otherwike problem can be trivially
solved by having the base station mark each mobile agenisaitinted.) The problem
cannot be solved if each agent’s memory is constant size. greved a tight lower
bound ofn on the number of possible states the mobile agents must beaabiore.

9 Failures

The work described so far assumes that the system expesianciilures. This as-
sumption is somewhat unrealistic in the context of mobilgems of tiny agents, and
was made to obtain a clean model as a starting point. Some hawlstudied fault-
tolerant population protocols, although this topic id $itgely unexplored.

14

Crash failures Crash failures are a relatively benign type of failure: faw@gents
simply cease having any interactions at some time duringeeeution. Delporte-
Galletet al.[12] examined how crash failures affect the computatiooalgr of popu-
lation protocols. They showed how to transform any prottltal computes a function
in the failure-free model into a protocol that can toler@té) crash failures. However,
this requires some inevitable weakening of the problemifipation.

To understand how the problem specification must change wttzesh failures are
introduced, consider the majority problem described inrfple 2. We saw that this
problem is solvable if there are no failures. Now consideeesion of the majority
problem where up to 5 agents may crash. Consider an exeaution: followers and
m + 5 leaders. According to the original problem specificatitie, dutput of any such
execution must be 1. Suppose, however, that the agentsassowith 5 of then + 5
leaders crash before having any interactions. There is gdived the non-faulty agents
can distinguish such an execution from a failure-free etienunvolving m followers
andm leaders. In the latter execution, the output must be 0. Sanidority problem,
in its original form, cannot be solved when crash failuresuscNevertheless, we can
solve a closely related problem. Suppose that we imposepditons on the problem,
requiring that the margin of the majority is at leastMore precisely, we impose the
requirement on the inputs that either the number of leadearsesls the number of
followers by more than 5 or the number of followers exceedsiiimber of leaders by
at least 5. Under this precondition, it can be shown that tarity problem becomes
solvable even when up to 5 agents may crash.

The above example can be generalized in a natural way: If vgl ta solve a
problem in a way that tolerates up focrash failures, wher¢ is a constant, we must
impose a precondition that says the removaf of the input values cannot change the
output value. To prove that this is sufficient to make the {weteé computable in a
fault-tolerant way (assuming that the original predicateamputable in the failure-free
model), Delporte-Galledt al.[12] designed an automatic transformation that converts
a protocol P for the failure-free model into a protocé! that will tolerate up tof
failures.

The transformation uses replication. R, agents are divided (in a fault-tolerant
way) into ©(f) groups, each of siz&(n/f). Each group simulates an execution of
P on the entire set of inputs. Each agent/®fcan store, in its own memory, the
simulated states ad(f) agents ofP, sincef is a constant, so each group®f{n/ f)
agents has sufficient memory space to collectively simwltagents ofP. To get a
group’s simulation started, agents within the group gatieinitial states (inP) of all
agents. Up tg° agents may crash before giving their initial states to aeywithin that
group, but the precondition ensures that this will not dffee output of the simulated
run. Thus, any group whose members do not experience anyesrasll eventually
produce the correct output. The number of groups is chosemgiare that a majority of
the groups run correct simulations, and this allows eachtageletermine the correct
output.

A variant of the simulation handles a combination of a finitenter of transient
failures (where an agent spontaneously changes state)rasid failures [12]. It can
also be used in the community protocol model described iti&e8 [19].

15

Byzantine failures An agent that has a Byzantine failure may behave arbittaitily
can interact with all other agents, pretending to be in amggor each interaction. This
behavior can cause havoc in a population protocol since abtiee usual techniques
used in distributed computing to identify and contain thie@t of Byzantine agents
can be used. Indeed, it is known that no non-trivial preéicain be computed by a
population protocol in a way that tolerates even one Bypargigent [19]. Two ways
of circumventing this fact have been studied.

In the community protocol model of Section 8, if we assumé #ggent identifiers
cannot be tampered with, then some failure detection isifplessSuerraoui and Rup-
pert give a protocol that solves the majority problem, taig a constant number of
Byzantine failures, if the margin of the majority is suffiotey wide [19].

Byzantine agents also appear in the random-scheduling wfof&], where it is
shown that the approximate majority protocol quickly cagess to a configuration in
which nearly all non-faulty agents possess the correcsaetivalue despite the actions
of a small(o(y/n)) minority of Byzantine agents. Here there is no extensiorhef t
basic population protocol model to include identifiers, th& convergence condition
is weak, and the Byzantine agents can eventually—afterrexql time—drive the
protocol to any configuration, including stable configurasi in which no agent holds
a decision value. Determining the full power of random scitied in the presence of
Byzantine agents remains open.

References

[1] Dana Angluin, James Aspnes, Melody Chan, Michael J.HéscHong Jiang,
and René Peralta. Stably computable properties of netgaghs. InProc.
Distributed Computing in Sensor Systems: 1st IEEE Intéonat Conference
pages 63-74, 2005.

[2] Dana Angluin, James Aspnes, Zoé Diamadi, Michael JHés, and René Per-
alta. Urn automata. Technical Report YALEU/DCS/TR-128@leYUniversity
Department of Computer Science, November 2003.

[3] Dana Angluin, James Aspnes, Zoé Diamadi, Michael ies and René Peralta.
Computation in networks of passively mobile finite-statasses. Distributed
Computing 18(4):235-253, March 2006.

[4] Dana Angluin, James Aspnes, and David Eisenstat. Faspatation by popula-
tion protocols with a leader. IRroc. Distributed Computing, 20th International
Symposiunpages 61-75, September 2006.

[5] Dana Angluin, James Aspnes, and David Eisenstat. Stedayputable predi-
cates are semilinear. IRroc. 25th Annual ACM Symposium on Principles of
Distributed Computingpages 292-299, 2006.

[6] Dana Angluin, James Aspnes, and David Eisenstat. A smppbtocol for fast
robust approximate majority. IRroc. Distributed Computing, 21st International
Symposiunpages 20-32, 2007.

16

[7] Dana Angluin, James Aspnes, David Eisenstat, and ErgpRrt. The computa-
tional power of population protocoldDistributed Computing To appear; pub-
lished online in 2007.

[8] Dana Angluin, James Aspnes, David Eisenstat, and EnpRrt. On the power of
anonymous one-way communication.Rroc. Principles of Distributed Systems,
9th International Conferenc@ages 396—411, 2005.

[9] Dana Angluin, James Aspnes, Michael J. Fischer, and Hdiagg. Self-
stabilizing population protocols. IRroc. Principles of Distributed Systems, 9th
International Conferenggpages 103-117, 2005.

[10] Dana Angluin, Michael J. Fischer, and Hong Jiang. Siebg consensus in
mobile networks. IrProc. Distributed Computing in Sensor Systems, 2nd IEEE
International Conferenggages 37-50, 2006.

[11] Joffroy Beauquier, Julien Clement, Stephane Messlkarent Rosaz, and
Brigitte Rozoy. Self-stabilizing counting in mobile sensetworks. Technical
Report 1470, LRI, Université Paris-Sud 11, 2007.

[12] Carole Delporte-Gallet, Hugues Fauconnier, Rachidi@oui, and Eric Ruppert.
When birds die: Making population protocols fault-toleraim Proc. 2nd IEEE
International Conference on Distributed Computing in Se1%y/stemspages 51—
66, 2006.

[13] Zoé Diamadi and Michael J. Fischer. A simple game fa $tudy of trust in
distributed systemsWuhan University Journal of Natural Scienc@&$1-2):72—
82, March 2001. Also appears as Yale Technical Report TRALRM. 2001.

[14] E. W. Dijkstra. Self-stabilizing systems in spite ofttibuted controlCommuni-
cations of the ACM17(11):643-644,1974.

[15] Michael J. Fischer and Hong Jiang. Self-stabilizingder election in networks
of finite-state anonymous agents.Rroc. Principles of Distributed Systems, 10th
International Conferencgpages 395-409, 2006.

[16] Daniel T. Gillespie. Exact stochastic simulation ofupted chemical reactions.
Journal of Physical Chemistrg1(25):2340-2361, 1977.

[17] Daniel T. Gillespie. A rigorous derivation of the charai master equatioriPhys-
ica A, 188:404-425, 1992.

[18] Seymour Ginsburg and Edwin H. Spanier. Semigroupsimger formulas, and
languagesPacific Journal of Mathemati¢c46:285-296, 1966.

[19] Rachid Guerraouiand Eric Ruppert. Even small birdsiaigue: Population pro-
tocols with identifiers. Technical Report CSE-2007-04, &ément of Computer
Science and Engineering, York University, 2007.

[20] Hong Jiang.Distributed Systems of Simple Interacting AgemkD thesis, Yale
University, 2007.

17

[21] A. P. Kamath, R. Motwani, K. Palem, and P. Spirakis. Bailinds for occupancy
and the satisfiability threshold conjecturBandom Structures and Algorithms
7:59-80, 1995.

[22] Thomas G KurtzApproximation of Population Processé¢umber 36 in CBMS-
NSF Regional Conference Series in Applied MathematicsieBptor Industrial
and Applied Mathematics, Philadelphia, 1981.

[23] M. L. Minsky. Computation: Finite and Infinite Machine$rentice-Hall, Inc.,
1967.

[24] M. Pease, R. Shostak, and L. Lamport. Reaching agresmethe presence of
faults. Journal of the ACM27(2):228-234, April 1980.

[25] Mojzesz Presburgetiber die Vollstandigkeit eines gewissen Systems der Arith
metik ganzer Zahlen, in welchem die Addition als einzige @pen hervortritt.
In Comptes-Rendus du | Corigrde MatBématiciens des Pays Slaygsges 92—
101, Warszawa, 1929.

[26] A. Schonhage. Storage modification machin€&AM Journal on Computing
9(3):490-508, August 1980.

[27] Peter van Emde Boas. Space measures for storage muadifio@achinesinfor-
mation Processing Letter80(2):103-110, January 1989.

18

