
An Introduction to
Population Protocols

James Aspnes∗

Yale University
Eric Ruppert†

York University

September 11, 2007

Abstract

The population protocol model describes a collection of tiny mobile agents
that interact with one another to carry out a computation. The agents are identi-
cally programmed finite state machines. Interactions between pairs of agents cause
the two agents to update their states. These interactions are scheduled by an ad-
versary, subject to a fairness constraint. Input values areinitially distributed to the
agents, and the agents must eventually converge to the correct output value. This
framework can be used to model mobilead hocnetworks of tiny devices or collec-
tions of molecules undergoing chemical reactions. We survey results that describe
what can be computed in various versions of the population protocol model.

1 Introduction

The population protocol model [3] was designed to representsensor networks consist-
ing of very limited mobile agents with no control over their own movement. It also
bears a strong resemblance to models of interacting molecules in theoretical chem-
istry [16,17]. The defining features of the basic model are:

1. Anonymous, finite-state agents. The system consists of a large population of
indistinguishable finite-state agents.

2. Computation by direct interaction. In the original model, agents do not send
messages or share memory; instead, aninteraction between two agents updates
both of their states according to a joint transition table. The actual mechanism of
such interactions is abstracted away.

3. Unpredictable interaction patterns. The choice of whichagents interact is made
by an adversary. Agents have little control over which otheragents they inter-
act with, although the adversary may be limited to pairing only agents that are

∗Supported in part by NSF grant CNS-0435201.
†Supported in part by the Natural Sciences and Engineering Research Council of Canada.

1

adjacent in aninteraction graph, typically representing distance constraints. A
strong globalfairness condition is imposed on the adversary to ensure the pro-
tocol makes progress.

4. Distributed inputs and outputs. The input to a populationprotocol is distributed
across the initial state of the entire population. Similarly, the output is distributed
to all agents.

5. Convergence rather than termination. Population protocols generally cannot de-
tect when they have finished; instead, the agents’ outputs are required to converge
after some finite time to a common, correct value.

A formal definition is given in Section 2.
The population protocol model was inspired in part by work byDiamadi and Fis-

cher [13] on trust propagation in a social network. Theurn automata of [2] can be
seen as a first draft of the model that retained in vestigial form several features of
classical automata: instead of interacting with each other, agents could interact only
with a finite-state controller, complete with input tape. The motivation given for the
current model in [3] was the study of sensor networks in whichpassive agents were
carried along by other entities; the canonical example was sensors attached to a flock
of birds. The name of the model was chosen by analogy topopulation processes[22]
in probability theory.

A population protocol often looks like an amorphous soup of lost, nearly mindless,
anonymous agents blown here and there at the whim of the adversary. But though indi-
vidual agents lack much intelligence or control over their own destinies, the population
as a whole is nonetheless capable of performing significant computations—under some
conditions, it has the same power as a traditional computer with the same total storage
capacity. Some examples of simple population protocols aregiven in Section 2.

Much of the work so far on population protocols has concentrated on characterizing
what predicates on the input configuration can be computed indifferent variants of the
model and under various assumptions, such as a bounded-degree interaction graph or
random scheduling.

If the interaction graph is unrestricted, the worst case forcomputation turns out to
be a complete interaction graph, since any other interaction graph can simulate a com-
plete interaction graph by shuffling agents between the nodes [3]. In a complete inter-
action graph, all agents with the same state are indistinguishable, and only the counts
of agents in each state affect the outcome of the protocol. The set of computable pred-
icates in most variants of the basic model for such a graph is now known to be either
exactly equal to or closely related to the set ofsemilinearpredicates, those definable in
first-order Presburger arithmetic [18, 25]. These results, which originally appeared
in [1,3,5,7–9,12], are summarized in Sections 3, 4, 5, 7 and 9. Sometimes the struc-
ture of incomplete interaction graphs can be exploited to simulate a Turing machine,
which implies that a restricted interaction graph can make the system stronger than the
complete graph.

More recent work has concentrated on performance. Because the weak schedul-
ing assumptions in the basic model allow the adversary to draw out a computation

2

indefinitely, the worst-case adversary scheduler is replaced by a random scheduling as-
sumption, where the pair of agents that interacts at each step is drawn uniformly from
the population as a whole. This gives a natural notion oftime equal to the total number
of steps to convergence andparallel time equal to the average number of steps initi-
ated by any one agent (essentially the total number of steps divided by the number of
agents).

As with adversarial scheduling, for random scheduling the best-understood case is
that of a complete interaction graph. In this case, it is possible to construct a regis-
ter machine, where subpopulations of the agents hold tokensrepresenting the various
register values in unary. It is not hard to implement register operations like addition,
subtraction, and comparison by local operations between pairs of agents; with the elec-
tion of a leader, we can further construct a finite-state control. The main obstacle to
implementing a complete register machine is to ensure that every agent completes any
needed tasks for each instruction cycle before the next cycle starts. In [3], this was
handled by having the leader wait a polynomial number of steps on average before
starting the next cycle, a process which gives an easy proof of polynomially-bounded
error but which also gives an impractically large slowdown.Subsequent work has
reduced the slowdown to polylogarithmic by using epidemicsboth to propagate infor-
mation quickly through the population and to provide timing[4, 6]. These results are
described in more detail in Section 6.

In addition to work on the basic population protocol model, there have been sev-
eral extensions of the model to more accurately reflect the requirements of practical
systems. The basic model requires coordinated two-way communication between in-
teracting agents; this assumption is relaxed in Section 4. Work on incorporating agent
failures into the model are discussed in Sections 7 and 9. Versions of the model that
give agents slightly increased memory capacity are discussed in Section 8.

2 The basic model

In the basic population protocol model, a collection of agents are each given an input
value, and agents have pairwise interactions in an order determined by a scheduler,
subject to some fairness guarantee. Each agent is a kind of finite state machine and the
“program” for the system describes how the states of two agents can be updated by an
interaction. The agents’ output values change over time andmust eventually converge
to the correct output value for the inputs that were initially distributed to the agents.

A protocol is formally specified by

• Q, a finite set of possible states for an agent,
• Σ, a finite input alphabet,
• ι, an input map fromΣ to Q, whereι(σ) represents the initial state of an agent

whose input isσ,
• ω, an output map fromQ to the output rangeY , whereω(q) represents the output

value of an agent in stateq, and
• δ ⊆ Q4, a transition relation that describes how pairs of agents can interact.

3

We now describe how a computation proceeds according to sucha protocol. The
computation takes place amongn agents, wheren ≥ 2. Each agent is given an in-
put value fromΣ. Each agent’s initial state is determined by applyingι to its input
value. This determines an initial configuration for an execution. A configuration of
the system can be described by a vector of all the agents’ states. Because agents with
the same state are indistinguishable, each configuration can be summarized as an un-
ordered multiset of states.

An execution of a protocol proceeds from the initial configuration by interactions
between pairs of agents. Suppose two agents in statesq1 andq2 meet and have an
interaction. They can change into statesq′1 and q′2 as a result of the interaction if
(q1, q2, q

′

1, q
′

2) is in the transition relationδ. We sometimes describeδ by listing
all possible interactions using the notation(q1, q2) → (q′1, q

′

2). (We assume a null
transition(q1, q2) → (q1, q2) if no others are specified with(q1, q2) on the left hand
side.) If there is only one possible transition(q1, q2) → (q′1, q

′

2) for each pair(q1, q2),
then the protocol isdeterministic. If C andC′ are configurations, we writeC → C′

if C′ can be obtained fromC by a single interaction of two agents. This means that
C contains two statesq1 andq2 andC′ is obtained fromC by replacingq1 andq2 by
q′1 andq′2, where(q1, q2, q

′

1, q
′

2) is in δ. An executionof the protocol is an infinite
sequence of configurationsC0, C1, C2, . . ., whereC0 is an initial configuration and
Ci → Ci+1 for all i ≥ 0. Thus, an execution is a sequence of snapshots of the
system after each interaction occurs. In a real distributedexecution, interactions could
take place simultaneously, but when writing down an execution we can order those
simultaneous interactions arbitrarily.

The order in which pairs of agents interact is unpredictable: we think of the sched-
ule of interactions as being chosen by an adversary, so that protocols must work cor-
rectly under any schedule the adversary may choose. In orderfor meaningful com-
putations to take place, we must put some restrictions on theadversarial scheduler;
otherwise it could divide the agents into isolated groups and schedule interactions only
between agents that belong to the same group.

The fairness condition that we impose on the scheduler is quite simple to state,
but is somewhat subtle. Essentially, we do not allow the scheduler to avoid a possible
step forever. More formally, ifC is a configuration that appears infinitely often in
an execution, andC → C′, thenC′ must also appear infinitely often in the execution.
Another way to think of this is that anything that is always possible eventually happens:
it is equivalent to require that any configuration that is always reachable is eventually
reached.

At any point during an execution of a population protocol, each agent’s state deter-
mines its output at that time. If the agent is in stateq, its output value isω(q). Thus,
an agent’s output may change over the course of an execution.The fairness constraint
allows the scheduler to behave arbitrarily for an arbitrarily long period of time, but does
require that it behave nicely eventually. It is therefore natural to phrase correctness as
a property to be satisfied eventually too. For example, the scheduler could schedule
only interactions between agents 1 and 2, leaving the othern − 2 agents isolated, for
millions of years, and it would be unreasonable to expect anysensible output during
the period when only two agents have undergone state changes. Thus, for correctness,
we require that all agents produce the correct output (for the input values that were

4

initially distributed to the agents) at some time in the execution and continue to do so
forever after that time.

To summarize, we say that a protocol computes a functionf that maps multisets of
elements ofΣ to Y if, for every such multisetI and every fair execution that starts from
the initial configuration corresponding toI, the output value of every agent eventually
stabilizes tof(I).

Example 1. Suppose each agent is given an input bit, and we want all agents to output
the ‘or’ of those bits. There is a very simple protocol to accomplish this: each agent
with input 0 simply outputs 1 as soon as it discovers that another agent had input 1.
Formally, we haveΣ = Y = Q = {0, 1} and the input and output maps are the
identity functions. The only interaction inδ is (0, 1) → (1, 1). If all agents have input
0, no agent will ever be in state 1. If some agent has input 1 thenumber of agents with
state 1 cannot decrease and fairness ensures that it will eventually increase ton. In
both cases, all agents stabilize to the correct output value.

Example 2. Suppose the agents represent dancers. Each dancer is (exclusively) a
leader or a follower. We wish to determine whether there are more leaders than follow-
ers. We useY = {0, 1}, with 1 indicating that there are more leaders than followers. A
centralized solution would count the leaders and the followers and compare the totals.
A more distributed solution is to ask everyone to start dancing with a partner (who
must dance the opposite role) and then see if any dancers are left without a partner. We
formalize this cancellation procedure as a population protocol with Σ = {L, F} and
Q = {L, F, 0, 1}. The input mapι is the identity, and the output mapω mapsL and1
to 1 and mapsF and0 to 0. The transitions ofδ are (L, F) → (0, 0), (L, 0) → (L, 1),
(F, 1) → (F, 0) and(0, 1) → (0, 0). The first rule ensures that, eventually, either no
L’s or noF ’s will remain. At that point, if there areL’s remaining, the second rule
ensures that all agents will eventually produce output 1. Similarly, the third rule takes
care of the case whereF ’s remain. In the case of a tie, the third rule ensures that the
output stabilizes to 0.

It may not be obvious why the protocol of in Example 2 must converge. Con-
sider, for example, the transitions{L, L, F} → {0, L, 0} → {1, L, 0} → {0, L, 0} →
{0, L, 1} → {0, L, 0}, where in each configuration, the agents that are about to in-
teract are underlined. By repeating this loop, we obtain a non-converging execution
in which every pair of agents interacts infinitely often. However, this execution is not
fair: the configuration{0, L, 1} appears infinitely often and{0, L, 1} → {1, L, 1}, but
{1, L, 1} never appears. This is because the first two agents only interact at “incon-
venient” times,i.e., when third agent is in state 0. The definition of fairness rules this
out. Thus, in some ways, the definition of fairness is stronger than saying that each pair
of agents must interact infinitely often. (In fact, the two conditions are incomparable,
since there can be fair executions in which two agents never meet. For example, an ex-
ecution where every configuration is{L, L, L} and all interactions take place between
the first two agents is fair.)

Exercise 3. Show the protocol of Example 2 converges in every fair execution.

The definition of fairness was chosen to be quite weak (although it is still strong
enough to allow useful computations). Many models of mobilesystems assume that the

5

mobility patterns of the agents follow some particular probability distribution. The goal
of the population protocol model is to be more general. If there is an (unknown) un-
derlying probability distribution on the interactions, which might even vary with time,
and that distribution satisfies certain independence properties and ensures that every
interaction’s probability is bounded away from 0, then an execution will be fair with
probability 1. Thus, any protocol will converge to the correct output with probability
1. So the model captures computations that are correct with probability 1 for a wide
range of probability distributions, even though the model definition does not explicitly
incorporate probabilities.

Other predicates can be computed using an approach similar to Example 2.

Exercise 4. Design a population protocol to determine whether more than40% of the
dancers are leaders.

Some predicates, however, require a different approach.

Example 5. Suppose each agent is given an input fromΣ = {0, 1, 2, 3} and we wish to
find the sum of the inputs, modulo4. The protocol can gather the sum (modulo4) into
a single agent. Once an agent has given its value to another agent, its value becomes
null, and it obtains its output values from the eventually unique agent with a non-null
value. Formally, we haveQ = {0, 1, 2, 3,⊥0,⊥1,⊥2,⊥3}, where⊥v represents a null
value with outputv. Let ι(v) = v andω(v) = ω(⊥v) = v for v = 0, 1, 2, 3. The
transition rules ofδ are (v1, v2) → (v1 + v2,⊥v1+v2

) and (v1,⊥v2
) → (v1,⊥v1

),
wherev1 andv2 are0, 1, 2 or 3. (The addition is modulo 4.)

In some cases, agents may know when they have converged to thecorrect output,
but in general they cannot. While computing the ‘or’ of inputbits (Example 1), any
agent in state 1 knows that its state will never change again:it has converged to its final
output value. However, no agent in the protocol of Example 5 can ever be certain it has
converged, since some additional agents with input 1 could always join the computation
and change the required output value.

Two noteworthy properties of the population protocol modelare its uniformity and
anonymity. A protocol isuniform because its specification has no dependence on the
number of agents that take part. In other words, no knowledgeabout the number of
agents is required by the protocol. The system isanonymousbecause the agents are
not equipped with unique identifiers and all agents are treated in the same way by the
transition relation. Indeed, because the state set is finiteand does not depend on the
number of agents in the system, there is not even room in the state of an agent to store
a unique identifier.

3 Computability

In studying what functions can be computed in the populationprotocol model, there
is no loss of generality in restricting attention to predicates,i.e., functions with range
Y = {0, 1}. For any functionf with rangeY , let Pf,y be a predicate defined by
Pf,y(x) = 1 if and only if f(x) = y. Then,f is computable if and only ifPf,y is
computable for eachy ∈ Y . The “only if” part of this statement is trivial. For the

6

converse, a protocol can compute all the predicatesPf,y in parallel, using a separate
component of each agent’s state for eachy. Note thatY is finite because each distinct
output value corresponds to at least one state in the original protocol.

For the basic population protocol model, there is an exact characterization of the
computable predicates: they are precisely thesemilinear predicates, which we now
define. A multiset over the input alphabetΣ can also be thought of as a vector with
d = |Σ| components, where each component is a natural number representing the
multiplicity of one input character. For example, the inputmultiset{a, a, a, b, b} over
the input alphabetΣ = {a, b, c} can be represented by the vector(3, 2, 0) ∈ N

3.
A semilinear set is a subset ofNd that is a finite union oflinear sets of the form
{~b + k1~a1 + k2~a2 + · · ·+ km~am}, where~b is ad-dimensional base vector,~a1 through
~am are basis vectors, andk1 throughkm are non-negative coefficients. Asemilinear
predicateon inputs is one that is true precisely on a semilinear set.

An alternative characterization of semilinear predicatesis that they can be described
by first-order logical formulas in Presburger arithmetic, which is arithmetic on the nat-
ural numbers with addition but not multiplication [25]. Presburger arithmetic allows
for quantifier elimination , replacing universal and existential quantifiers with formu-
las involving addition,<, the mod-k congruence relation≡k for each constantk, and
the usual logical connectives∧, ∨, and¬.

Angluin et al. [3] gave protocols to compute any threshold predicate or remainder
predicate; the protocols are similar to those in Examples 2 and 5. This gives< and≡k.
They further observed that addition is trivially obtained by renaming states: to compute
A + B from A andB we pretend that anyA or B token is really anA + B token.
Finally, Boolean combinations (∧, ∨) of these predicates can be computed by running
the protocols for each of the basic predicates in parallel, using separate components
of the agents’ states, and negation (¬) simply involves relabeling the output values. It
follows that population protocols can compute all predicates definable with Presburger
formulas,i.e., all semilinear predicates.

Amazingly, the converse also holds: only semilinear predicates can be computed by
population protocols. For the basic model this result was shown by Angluin, Aspnes,
and Eisenstat [5] by applying results from partial order theory. The proof is quite
involved, but the essential idea is that, like finite-state automata, population protocols
can be “pumped” by adding extra input tokens that turn out notto affect the final output.
By carefully considering exactly when this is possible, it can be shown that the positive
inputs to a population protocol (considered as sets of vectors) can be separated into a
collection of cones over some finite set of minimal positive inputs, and that each of
these cones can be further expressed using only a finite set ofbasis vectors. This is
sufficient to show that the predicate corresponds to a semilinear set as described above.
We thus have:

Theorem 6 ([3, 5, 7]). A predicate is computable in the basic population protocol
model if and only if it is semilinear.

Similar results with weaker classes of predicates hold for restricted models with
various forms of one-way communication [8]; we describe these results in more detail
in Section 4. Indeed, these results were a precursor to the semilinearity theorem of [5].
The journal paper [7] combines and extends these results.

7

A useful property of Theorem 6 is that it continues to hold unmodified in many
simple variants of the basic model. The reason is that any change that weakens the
agents can only decrease the set of computable predicates, while any model that is still
strong enough to compute congruence modulok and comparison can still compute all
the semilinear predicates. So the semilinear predicates continue to be those that are
computable when the inputs are not given immediately but stabilize after some finite
time [1] or when one agent in an interaction can see the other’s state but not vice
versa [7], as in each case it is still possible to compute congruence and threshold in the
limit. A similar result holds when a small number of agents can fail [12]; here a slight
modification must be made to allow for partial predicates that can tolerate the loss of
part of the input. We describe all of these results in later sections.

4 One-way communication

In the basic population protocol model, it is assumed that two interacting agents can
simultaneously learn each other’s state before updating their own states as a result of the
interaction. This requires two-way communication betweenthe two agents. Angluinet
al. [7] studied several weaker interaction models where, in an interaction, information
flows in one direction only. Areceiveragent learns the state of asenderagent, but the
sender learns nothing about the state of the receiver. The power of a system with such
one-way communication depends on the nature of the communication mechanism.

The model is called atransmission model if the sender is aware that an interac-
tion has happened (and can update its own state, although theupdate cannot depend
on the state of the receiver). In anobservationmodel, on the other hand, the sender’s
state is passively observed by the receiver. Another independent attribute is whether an
interaction happens instantaneously (immediate transmissionandimmediate obser-
vation models) or requires some interval of time (delayed transmissionanddelayed
observationmodels). Thequeued transmissionmodel is similar to the delayed trans-
mission model, except that receivers can temporarily refuse incoming messages so that
they are not overwhelmed with more incoming information than they can handle. The
queued transmission model is the closest to traditional message-passing models of dis-
tributed computing.

The weakest of these one-way models is the delayed observation model: protocols
can detect whether any particular input symbol is present orabsent (and compute any
predicate that depends only on this information) simply by observing other agents’
input values. Nothing else can be computed: there is no way todistinguish between
a sequence of observations of several agents with the same input and a sequence of
observations of a single agent.

The immediate observation model is slightly stronger: it can count the number of
agents with a particular input, up to some constant threshold. For example, a protocol
can determine whether the number of copies of input symbola is 0, 1, 2, 3 or more than
3. Consequently, any predicate that depends only on this kind of information can be
computed. A kind of pumping lemma can be used to show that no other predicates are
computable.

Angluin et al.also showed that the immediate and delayed transmission models are

8

equivalent in power. They gave a characterization of the computable predicates that
shows the power of these models is intermediate between the immediate observation
model and the standard two-way model.

Finally, the queued transmission model is equivalent in power to the standard two-
way model: any protocol designed for the two-way model can besimulated using
queued transmission and vice versa. This holds even though the set of configurations
in queued transmission is in principle unbounded; the ability to generate large numbers
of buffered messages does not help the protocol, largely because there is no guarantee
of where or when they will be delivered.

5 Restricted interaction graphs

In some cases the mobility of agents will have physical limitations, and this will limit
the possible interactions that can occur. We can represent this information in aninter-
action graph, where nodes represent agents and edges represent possibleinteractions.
The basic model corresponds to the case where the graph is complete. In this model,
a configuration is always represented as a vector of states. (The agents are no longer
indistinguishable, so we cannot use a multiset.) IfC andC′ are configurations, we
write C → C′ if C′ can be obtained fromC through a single interaction ofadjacent
agents, and the definitions of executions and fairness are asbefore, using this modified
notion of a step.

Having a non-complete (but connected) interaction graph does not make the model
any weaker, since adjacent agents can swap states to simulate free movement [3]. For
some interaction graphs, the model becomes strictly more powerful. For example, con-
sider a straight-line graph. It is not difficult to simulate alinear-space Turing machine
by using each agent to represent one square of the Turing machine tape. This allows
computation of any function or predicate in LINSPACE, many of which are not semi-
linear and thus not computable in the complete interaction graph of the basic model.

In addition to computing predicates on the inputs to agents,it also makes sense in
this model to ask whether properties of the interaction graph itself can be computed
by the agents in the system. Such problems, which were studied by Angluinet al. [1],
could have useful applications in determining the network topology induced by anad
hocdeployment of mobile agents.

As a simple example, one might want to determine whether the interaction graph
has maximum degreek or more, for some fixedk. This can be done by electing a
single moving leader token. Initially, all agents hold a leader token. When two leader
tokens interact, the tokens coalesce, and when a leader agent interacts with a non-leader
agent the leader token may change places. To test the maximumdegree, the leader may
instead choose to mark up tok distinct neighbors of its current node. By counting how
many nodes it successfully marks, the leader can get a lower bound on the degree of
the node.

A complication is that the leader has no way to detect when it has interacted with all
neighbors of the current node. The best it can do is nondeterministically wait for some
arbitrary but finite time before gathering in its marks and trying again. In doing so it
relies on the fairness condition to eventually drive it to a state where it has correctly

9

computed the maximum degree. Because the original population model used determin-
istic transitions, some additional machinery is needed to simulate a nondeterministic
transition function by exploiting the nondeterminism of the interaction schedule. Note
that the unmarking step does not require nondeterminism: since the leader keeps track
of how many marks it has placed, it can simply wait until it hasencountered each
marked neighbor again.

During the initial leader election phase, two leaders deploying marks could interfere
with each other. To handle this, the survivor of any interaction between two leaders
collects all outstanding marks from both and resets its degree estimate.

A similar mechanism can be used to assign unique colors to allneighbors of each
node in a bounded-degreegraph: a wanderingcolorizer token deploys pairs of marks to
its neighbors and recolors any it finds with the same color. Once this process converges,
the resultingdistance-2 coloring (so called because all nodes at distance2 have dis-
tinct colors) effectively provides local identifiers for the neighbors of each node. These
can be used to carry out arbitrary distributed computationsusing standard techniques
(subject to theO(1) space limit at each node). An example given in [1] is the construc-
tion of a rooted spanning tree, which can be used to simulate aTuring machine tape (as
in the case of a line graph) by threading the Turing machine tape along a traversal of
the tree. It follows that arbitrary LINSPACE-computable properties of bounded-degree
graphs can be computed by population protocols.

6 Random interactions

An alternative assumption that also greatly increases the power of the model is to re-
place the adversarial (but fair) scheduler of the basic model with a more constrained
interaction pattern. The simplest such variant assumesrandom interactions: each pair
of agents is equally likely to interact at each step.

Protocols for random scheduling were given in the initial population protocol paper
of Angluin et al. [3], based in part on similar protocols for the related modelof urn au-
tomata [2]. The central observation was that the main limitation observed in trying to
build more powerful protocols in the basic model was the inability to detect the absence
of agents with a particular state. However, if a single leader agent were willing to wait
long enough, it could be assured (with reasonably high probability) that it would meet
every other agent in the population, and thus be able to verify the presence or absence
of particular token values stored on the other agents by direct inspection. The method
used was to have the leader issue a single special marked token to some agent; when the
leader encountered this special agentk times in a row it could be reasonably confident
that the number of intervening interactions was close toΘ(nk+1). This is sufficient to
build unary counters supporting the usual increment, decrement, and zero test opera-
tions (the last probabilistic). With counters, a register machine with anO(log n) bit
random-access memory can be simulated using a classic technique of Minsky [23].

The cost of this simulation is a polynomial blowup for the zero test and a further
polynomial blowup in the simulation of the register machine. A faster simulation was
given by Angluin, Aspnes, and Eisenstat [4], based on epidemics to propagate infor-
mation quickly through the population. This simulation assumes a single designated

10

leader agent in the initial configuration, which acts as the finite-state controller for the
register machine. Register values are again stored in unaryas tokens scattered across
the remaining agents.

To execute an operation, the leader initiates an epidemic containing an operation
code. This opcode is copied through the rest of the population in Θ(n log n) inter-
actions on average and with high probability; the latter result is shown to follow by
a reduction to a concentration bound for coupon collector due to Kamathet al. [21].
Arithmetic operations such as addition, comparison, subtraction, and multiplication
and division by constants can be carried out by the non-leader agents inO(n logc n)
interactions (orO(logc n) parallel time units) each. Some of these algorithms are quite
simple (addingA to B requires only adding a newB token to each agent that already
holds anA token, possibly with an additional step of unloading extraB tokens onto
empty agents to maintainO(1) space per agent), while others are more involved (com-
paring two values in [4] involves up toO(log n) alternating rounds of doubling and
cancellation, because simply havingA andB tokens cancel each other as in Exam-
ple 2 might require as many asΘ(n2) expected interactions for the last few survivors
to meet). The most expensive operation is division, atO(n log4 n) interactions (or
O(log4 n) parallel time units).

Being able to carry out individual arithmetic operations isof little use if one can-
not carry out more than one. This requires that the leader be able to detect when an
operation has finished, which ultimately reduces down to being able to detect when
Θ(n logn) interactions have occurred. Here the trick of issuing a single special mark
is not enough, as the wait needed to ensure a low probability of premature termination
is too long.

Instead, aphase clockbased on successive waves of epidemics is used. The leader
starts by initiating a phase0 epidemic which propagates through the population in
parallel to any other activity. When the leader meets an agent that is already infected
with phase0, it initiates a phase1 epidemic that overwrites the phase0 epidemic, and
similarly with phase2, 3, and so on, up to some fixed maximum phasem− 1 that is in
turn overwritten by phase0 again. Angluinet al. show that, while the leader might get
lucky and encounter one of a small number of newly-infected agents in a single phase,
the more typical case is that a phase takesΘ(n log n) interactions before the next is
triggered, and overm phases the probability that all are too short is polynomially small.
It follows that for a suitable choice ofm, the phase clock gives a high-probability
Θ(n logn)-interaction clock, which is enough to time the other parts of the register
machine simulation.

A curious result in [4] is that even though the register machine simulation has a
small probability of error, the same techniques can computesemilinear predicates in
polylogarithmic expected parallel time with no error in thelimit. The trick is to run a
fast error-prone computation to get the answer quickly mostof the time, and then switch
to the result of a slower, error-free computation using the mechanisms of [3] after some
polynomially long interval. The high time to converge for the second algorithm is
apparent only when the first fails to produce the correct answer; but as this occurs only
with polynomially small probability, it disappears in the expectation.

This simulation leaves room for further improvement. An immediate task is to re-
duce the overhead of the arithmetic operations. In [6], the same authors show how

11

to drop the cost of the worst-case arithmetic operation toO(n log2 n) interactions by
combining a more clever register encoding with a fastapproximate majority primitive
based on dueling epidemics. This protocol has only three states: the decision valuesx
andy, andb (for “blank”). When anx token meets ay token or vice versa, the second
token turns blank. When anx ory token meets a blank agent, it converts the blank token
to its own value. Much of the technical content of [6] involves showing that this process
indeed converges to the majority value inO(n log n) interactions with high probability,
which is done using a probabilistic potential function argument separated into several
interleaved cases. The authors suggest that simplifying this argument would be a very
useful target for future research. It is also possible that further improvements could re-
duce the overhead for arithmetic operations down to theO(n log n) interactions needed
simply for all tokens to participate.

A second question is whether the distinguished leader in theinitial configuration
could be replaced. The coalescing leader election algorithm of [3] takesΘ(n2) inter-
actions to converge, which may dwarf the time for simple computations. A heuristic
leader-election method is proposed in [6] that appears to converge much faster, but
more analysis is needed. The authors also describe a more robust version of the phase
clock of [4] that, by incorporating elements of the three-state majority protocol, ap-
pears to self-stabilize inO(n log n) interactions once the number of leaders converges
to a polynomial fraction, but to date no proof of correctnessfor this protocol is known.

7 Self-stabilization and related problems

A series of papers [9,10,15] have examined the question of when population protocols
can be made self-stabilizing [14], or at least can be made to tolerate input values that
fluctuate over some initial part of the computation. Either condition is a stronger prop-
erty than the mere convergence of the basic model, as both require that the population
eventually converge to a good configuration despite an unpredictable initial configura-
tion. Many of the algorithms designed to start in a known initial configuration (even if
it is an inconvenient one, with, say, all agents in the same state) will not work if started
in a particularly bad one. An example is leader election by coalescence: this algorithm
can reduce a population of many would-be leaders down to a single unique leader, but
it cannot create a new leader if the initial population contains none.

Angluin et al.[9] gave the first self-stabilizing protocols for the population protocol
model, showing how to carry out various tasks from previous papers without assum-
ing a known initial configuration. These include a distance-2 coloring protocol for
bounded-degree graphs based on local handshaking instead of a wandering colorizer
token (which is vulnerable to being lost). Their solution has each node track whether it
has interacted with a neighbor of each particular color an odd or even number of times;
if a node has two neighbors of the same color, eventually its count will go out of sync
with that of one or the other, causing both the node and its neighbor to choose new
colors. This protocol is applied in a framework that allows self-stabilizing protocols
to be composed, to give additional protocols such as rooted spanning tree construction
for networks with a single special node. This last protocol is noteworthy in part be-
cause it requiresO(log D) bits of storage per node, whereD is the diameter of the

12

network; it is thus one of the earliest examples of pressure to escape the restrictive
O(1)-space assumption of the original population protocol model. Other results in
this paper include a partial characterization of which network topologies do or do not
support self-stabilizing leader election.

This work was continued by Angluin, Fischer, and Jiang [10],who considered the
issue of solving the classicconsensus problem[24] in an environment characterized
by unpredictable communication, with the goal of converging to a common consensus
value at all nodes eventually (as in a population protocol) rather than terminating with
one. The paper gives protocols for solving consensus in thisstabilizing sense with
both crash and Byzantine failures. The model used deviates from the basic population
protocol model in several strong respects: agents have identities (and theO(log n)-bit
memories needed to store them), and though the destinationsto which messages are
delivered are unpredictable, communication itself is synchronous.

Fischer and Jiang [15] return to the anonymous, asynchronous, and finite-state
world of standard population protocols to consider the specific problem of leader elec-
tion. As observed above, a difficulty with the simple coalescence algorithm for leader
election is that it fails if there is no leader to begin with. Fischer and Jiang propose
adding to the model a neweventual leader detector, calledΩ?, which acts as an oracle
that eventually correctly informs the agents if there is no leader. Self-stabilizing leader
election algorithms based onΩ? are given for complete interaction graphs and rings.
Curiously, the two cases distinguish between the standard global fairness condition as-
sumed in most population protocol work and a local fairness condition that requires
only that each action occurs infinitely often (but not necessarily in every configuration
in which it is enabled). The latter condition is sufficient toallow self-stabilizing leader
election in a complete graph but is provably insufficient in aring. Many of these results
are further elaborated in Hong Jiang’s Ph.D. dissertation [20].

8 Larger states

The assumption that each agent can only storeO(1) bits of information is rather restric-
tive. One direction of research is to slowly relax this constraint to obtain other models
that are closer to real mobile systems while still keeping the model simple enough to
allow for a complete analysis.

Unique identifiers As noted in Section 2, the requirements that population protocols
be independent ofn and useO(1) space per agent imply that agents cannot have unique
identifiers. This contrasts with the vast majority of modelsof distributed computing,
in which processes do have unique identifiers that are often acrucial component of
algorithms. Guerraoui and Ruppert investigated a model, called community protocols,
that preserve the tiny nature of agents in population protocols, but allow agents to
be initially assigned unique identifiers drawn from a large set [19]. Each agent is
equipped withO(1) memory locations that can each store an identifier. It is assumed
that transition rules cannot be dependent on the values of the identifiers: the identifiers
are atomic objects that can only be tested for equality with one another. (For example,
bitwise operations on identifiers are not permitted.) This preserves the property that

13

protocols are independent ofn. They gave the following precise characterization of
what can be computed in this model.

Theorem 7 ([19]). A predicate is computable in the community protocol model ifand
only if it is in NSPACE(n log n) and permuting the input characters does not affect
the output value.

The necessity of the second condition (symmetry) follows immediately from the
fact that the identifiers cannot be used to order the input symbols. The proof that any
computable predicate is inNSPACE(n logn) uses a non-deterministic search of the
graph whose nodes are configurations of the community protocol and whose edges
represent transitions between configurations.

Conversely, the proof that any symmetric predicate inNSPACE(n log n) can
be computed by a community protocol uses Schönhage’s pointer machines [26] as a
bridge. A pointer machine is a sequential machine model thatruns a program using
only a directed graph structure as its memory. A community protocol can emulate
a pointer machine by having each agent represent a node in thegraph data structure.
Some care must be taken to organize the agents to work together to simulate the sequen-
tial machine. It was known that a pointer machine that usesO(n) nodes can simulate a
Turing machine that usesO(n log n) space [27].

It follows that the restriction that agents can use their additional memory space only
for storingO(1) identifiers can essentially be overcome: the agents can do just as much
as they could if they each hadO(log n) bits of storage that could be used arbitrarily.

Heterogeneous systemsOne interesting direction for future research is allowing
some heterogeneity in the model, so that some agents have more computational power
than others. As an extreme example, consider a network of weak sensors that interact
with one another, but also with a base station that has unlimited capacity.

Beauquieret al.[11] studied a scenario like this, focusing on the problem ofhaving
the base station computen, the number of mobile agents. They replaced the fairness
condition of the population protocol model by a requirementthat all pairs of agents
interact infinitely often. They considered a self-stabilizing version of the model, where
the mobile agents are initialized arbitrarily. (Otherwisethe problem can be trivially
solved by having the base station mark each mobile agent as itis counted.) The problem
cannot be solved if each agent’s memory is constant size: they proved a tight lower
bound ofn on the number of possible states the mobile agents must be able to store.

9 Failures

The work described so far assumes that the system experiences no failures. This as-
sumption is somewhat unrealistic in the context of mobile systems of tiny agents, and
was made to obtain a clean model as a starting point. Some workhas studied fault-
tolerant population protocols, although this topic is still largely unexplored.

14

Crash failures Crash failures are a relatively benign type of failure: faulty agents
simply cease having any interactions at some time during theexecution. Delporte-
Galletet al. [12] examined how crash failures affect the computational power of popu-
lation protocols. They showed how to transform any protocolthat computes a function
in the failure-free model into a protocol that can tolerateO(1) crash failures. However,
this requires some inevitable weakening of the problem specification.

To understand how the problem specification must change whencrash failures are
introduced, consider the majority problem described in Example 2. We saw that this
problem is solvable if there are no failures. Now consider a version of the majority
problem where up to 5 agents may crash. Consider an executionwith m followers and
m + 5 leaders. According to the original problem specification, the output of any such
execution must be 1. Suppose, however, that the agents associated with 5 of them + 5
leaders crash before having any interactions. There is no way that the non-faulty agents
can distinguish such an execution from a failure-free execution involvingm followers
andm leaders. In the latter execution, the output must be 0. So, the majority problem,
in its original form, cannot be solved when crash failures occur. Nevertheless, we can
solve a closely related problem. Suppose that we impose preconditions on the problem,
requiring that the margin of the majority is at least5. More precisely, we impose the
requirement on the inputs that either the number of leaders exceeds the number of
followers by more than 5 or the number of followers exceeds the number of leaders by
at least 5. Under this precondition, it can be shown that the majority problem becomes
solvable even when up to 5 agents may crash.

The above example can be generalized in a natural way: If we wish to solve a
problem in a way that tolerates up tof crash failures, wheref is a constant, we must
impose a precondition that says the removal off of the input values cannot change the
output value. To prove that this is sufficient to make the predicate computable in a
fault-tolerant way (assuming that the original predicate is computable in the failure-free
model), Delporte-Galletet al. [12] designed an automatic transformation that converts
a protocolP for the failure-free model into a protocolP ′ that will tolerate up tof
failures.

The transformation uses replication. InP ′, agents are divided (in a fault-tolerant
way) intoΘ(f) groups, each of sizeΘ(n/f). Each group simulates an execution of
P on the entire set of inputs. Each agent ofP ′ can store, in its own memory, the
simulated states ofO(f) agents ofP , sincef is a constant, so each group ofΘ(n/f)
agents has sufficient memory space to collectively simulateall agents ofP . To get a
group’s simulation started, agents within the group gatherthe initial states (inP) of all
agents. Up tof agents may crash before giving their initial states to anyone within that
group, but the precondition ensures that this will not affect the output of the simulated
run. Thus, any group whose members do not experience any crashes will eventually
produce the correct output. The number of groups is chosen toensure that a majority of
the groups run correct simulations, and this allows each agent to determine the correct
output.

A variant of the simulation handles a combination of a finite number of transient
failures (where an agent spontaneously changes state) and crash failures [12]. It can
also be used in the community protocol model described in Section 8 [19].

15

Byzantine failures An agent that has a Byzantine failure may behave arbitrarily: it
can interact with all other agents, pretending to be in any state for each interaction. This
behavior can cause havoc in a population protocol since noneof the usual techniques
used in distributed computing to identify and contain the effects of Byzantine agents
can be used. Indeed, it is known that no non-trivial predicate can be computed by a
population protocol in a way that tolerates even one Byzantine agent [19]. Two ways
of circumventing this fact have been studied.

In the community protocol model of Section 8, if we assume that agent identifiers
cannot be tampered with, then some failure detection is possible. Guerraoui and Rup-
pert give a protocol that solves the majority problem, tolerating a constant number of
Byzantine failures, if the margin of the majority is sufficiently wide [19].

Byzantine agents also appear in the random-scheduling workof [6], where it is
shown that the approximate majority protocol quickly converges to a configuration in
which nearly all non-faulty agents possess the correct decision value despite the actions
of a small(o(

√
n)) minority of Byzantine agents. Here there is no extension of the

basic population protocol model to include identifiers, butthe convergence condition
is weak, and the Byzantine agents can eventually—after exponential time—drive the
protocol to any configuration, including stable configurations in which no agent holds
a decision value. Determining the full power of random scheduling in the presence of
Byzantine agents remains open.

References

[1] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang,
and René Peralta. Stably computable properties of networkgraphs. InProc.
Distributed Computing in Sensor Systems: 1st IEEE International Conference,
pages 63–74, 2005.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-
alta. Urn automata. Technical Report YALEU/DCS/TR-1280, Yale University
Department of Computer Science, November 2003.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.
Computation in networks of passively mobile finite-state sensors. Distributed
Computing, 18(4):235–253, March 2006.

[4] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by popula-
tion protocols with a leader. InProc. Distributed Computing, 20th International
Symposium, pages 61–75, September 2006.

[5] Dana Angluin, James Aspnes, and David Eisenstat. Stablycomputable predi-
cates are semilinear. InProc. 25th Annual ACM Symposium on Principles of
Distributed Computing, pages 292–299, 2006.

[6] Dana Angluin, James Aspnes, and David Eisenstat. A simple protocol for fast
robust approximate majority. InProc. Distributed Computing, 21st International
Symposium, pages 20–32, 2007.

16

[7] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computa-
tional power of population protocols.Distributed Computing. To appear; pub-
lished online in 2007.

[8] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the power of
anonymous one-way communication. InProc. Principles of Distributed Systems,
9th International Conference, pages 396–411, 2005.

[9] Dana Angluin, James Aspnes, Michael J. Fischer, and HongJiang. Self-
stabilizing population protocols. InProc. Principles of Distributed Systems, 9th
International Conference, pages 103–117, 2005.

[10] Dana Angluin, Michael J. Fischer, and Hong Jiang. Stabilizing consensus in
mobile networks. InProc. Distributed Computing in Sensor Systems, 2nd IEEE
International Conference, pages 37–50, 2006.

[11] Joffroy Beauquier, Julien Clement, Stephane Messika,Laurent Rosaz, and
Brigitte Rozoy. Self-stabilizing counting in mobile sensor networks. Technical
Report 1470, LRI, Université Paris-Sud 11, 2007.

[12] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert.
When birds die: Making population protocols fault-tolerant. In Proc. 2nd IEEE
International Conference on Distributed Computing in Sensor Systems, pages 51–
66, 2006.

[13] Zoë Diamadi and Michael J. Fischer. A simple game for the study of trust in
distributed systems.Wuhan University Journal of Natural Sciences, 6(1–2):72–
82, March 2001. Also appears as Yale Technical Report TR–1207, Jan. 2001.

[14] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.Communi-
cations of the ACM, 17(11):643–644, 1974.

[15] Michael J. Fischer and Hong Jiang. Self-stabilizing leader election in networks
of finite-state anonymous agents. InProc. Principles of Distributed Systems, 10th
International Conference, pages 395–409, 2006.

[16] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[17] Daniel T. Gillespie. A rigorous derivation of the chemical master equation.Phys-
ica A, 188:404–425, 1992.

[18] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and
languages.Pacific Journal of Mathematics, 16:285–296, 1966.

[19] Rachid Guerraoui and Eric Ruppert. Even small birds areunique: Population pro-
tocols with identifiers. Technical Report CSE-2007-04, Department of Computer
Science and Engineering, York University, 2007.

[20] Hong Jiang.Distributed Systems of Simple Interacting Agents. PhD thesis, Yale
University, 2007.

17

[21] A. P. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tailbounds for occupancy
and the satisfiability threshold conjecture.Random Structures and Algorithms,
7:59–80, 1995.

[22] Thomas G Kurtz.Approximation of Population Processes. Number 36 in CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics, Philadelphia, 1981.

[23] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
1967.

[24] M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of
faults. Journal of the ACM, 27(2):228–234, April 1980.

[25] Mojzesz Presburger.̈Uber die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Comptes-Rendus du I Congrès de Math́ematiciens des Pays Slaves, pages 92–
101, Warszawa, 1929.

[26] A. Schönhage. Storage modification machines.SIAM Journal on Computing,
9(3):490–508, August 1980.

[27] Peter van Emde Boas. Space measures for storage modification machines.Infor-
mation Processing Letters, 30(2):103–110, January 1989.

18

