
When Birds Die:

Making Population Protocols Fault-Tolerant

Carole Delporte-Gallet1, Hugues Fauconnier1,
Rachid Guerraoui2, and Eric Ruppert3

1 Université Paris 7, France
2 MIT, USA and EPFL, Switzerland

3 York University, Canada

At vobis male sit, malae tenebrae
Orci, quae omnia bella devoratis:

tam bellum mihi passerem abstulistis. [6]

Abstract. In the population protocol model introduced by Angluin et
al. [2], a collection of agents, which are modelled by finite state machines,
move around unpredictably and have pairwise interactions. The ability
of such systems to compute functions on a multiset of inputs that are ini-
tially distributed across all of the agents has been studied in the absence
of failures. Here, we show that essentially the same set of functions can
be computed in the presence of halting and transient failures, provided
preconditions on the inputs are added so that the failures cannot imme-
diately obscure enough of the inputs to change the outcome. We do this
by giving a general-purpose transformation that makes any algorithm for
the fault-free setting tolerant to failures.

1 Introduction

Consider an ad hoc mobile network in which each agent is a very simple
component, such as a tiny sensor with very severe constraints on memory and
power. Such systems have been envisioned, for example, in Berkeley’s Smart
Dust project [10]. An agent can communicate with other nearby agents through
wireless communication. To make use of data collected by the agents of such a
system, it is necessary to aggregate the data in some way [11, 13].

Angluin et al. [2] introduced the notion of a computation by a population
protocol to model this situation. In their model, the computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come into contact with each other. The goal is to ensure that every agent
can eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur). The agents are simple
devices, and can be represented as finite state machines. The abstraction also
makes absolutely minimal assumptions about the movement of the system’s com-
ponents. In particular, the algorithms designed for such systems cannot dictate

the movement of the agents. Can interesting computations still be performed in
such a model? Angluin et al. showed the answer is yes, assuming no agents fail.
For example, protocols exist to compute parity, majority and constant-threshold
functions, as well as boolean combinations of such functions.

A motivating example for their model was a flock of birds, in which each
bird carries a monitoring device that measures the bird’s body temperature.
The devices can signal other devices within a small distance. They showed that
this sensor network could be used, for example, to determine whether at least five
birds in the flock have an elevated temperature, to trigger an alert indicating that
there might be an illness sweeping across the flock. In this paper, we study what
happens when some of those ill birds drop dead: Can interesting computations
be done in the population protocol model in a way that tolerates failures?

If malicious failures can occur, it is very difficult to do anything useful in the
model: a single Byzantine agent (in collusion with the adversarial scheduler of
interactions) could move around the system, driving each agent into an arbitrary
reachable state by having a sequence of interactions with it. Thus, we consider
two types of less catastrophic failures. A crash failure causes an agent to cease
interacting with other agents. A transient failure is a momentary failure that
can arbitrarily corrupt the state of an agent. The agent continues executing its
algorithm correctly after the transient failure occurs. Transient failures include,
as a special case, sensing failures, which cause the input to an agent to be
incorrect. This is because the input is part of the state of an agent and can
therefore be corrupted by the transient failure. However, transient failures are
more general, since they can affect the entire state of the agent. For example,
they can corrupt any partial data that the agent has collected, as well as its
“programme counter” which keeps track of what part of the algorithm it is
executing. (Such general transient failures might be caused by electromagnetic
interference from the environment during an interaction or by soft errors due to
alpha particle strikes.) We shall assume that both crash failures and transient
failures can occur in an execution and that we have a known upper bound on
the number of failures of each type that should be tolerated.

Clearly, some functions that can be computed without failures will be im-
possible to compute in a model with failures. For example, if we consider the
possibility of experiencing a single halting failure, a population will not be able
to compute with certainty a threshold function that is 1 if at least five of the
birds are ill and 0 otherwise. Consider an execution with exactly five ailing birds,
one of which dies (along with its sensor) before the bird comes into contact with
any other birds. The output should be 1, but this run cannot be distinguished
by any live agent from a run where there are four feverish birds and the output
should be 0. However, with at most one failure, we can still distinguish whether
the number of ill birds is greater than five or less than five. We discuss two ways
to formalize this. We can restrict the domain of the function to be computed,
by adding a precondition that the number of ill birds will either be greater than
five or less than five. Alternatively, we can say that the protocol will compute
the result correctly when the number of sick birds is different from five, but may

output either 0 or 1 in the case where exactly five birds are sick. We explore
both approaches: the former in Sect. 5 and the latter in Sect. 6.

In short, we show that, for any function that can be computed by a popula-
tion protocol in a failure-free environment, it is possible to design a population
protocol that computes the function in a way that tolerates crash failures and
transient failures, provided preconditions are added or incorrect responses are
permitted for inputs that are very close to other inputs that have a different
response, as described above for the example about birds.

As one might expect, we use replication to achieve fault-tolerance, but in a
way that is different from traditional approaches. Given a protocol that computes
a function in a failure-free environment, we run several copies of the protocol.
Because of the severe limitation on the memory of each agent, we need a con-
stant fraction of the agents to cooperate to simulate one instance of the original
protocol; otherwise there would not be enough space to store the states of all of
the simulated agents. We divide the agents into g groups of approximately equal
size. Each group simulates one instance of the failure-free protocol by having
each agent in the group simulate approximately g agents of the original proto-
col. The value of g is chosen to ensure that the output produced by the largest
number of groups’ simulations is correct.

2 Related Work

The population protocol model was introduced by Angluin, Aspnes, Diamadi,
Fischer and Peralta [2]. They defined the concept of stable computation of a
function in this model, focussing on stable computation of predicates, which
are functions whose output is a binary value. They showed that the predicates
computable in this model include all that can be expressed using Presburger
arithmetic and that they are all included within the complexity class NL.

They also considered variants of the model where interactions are restricted.
First, the interactions can be constrained by considering a particular communi-
cation graph, which has an edge between the nodes that represent two agents if
those agents are permitted to come into contact with each other. Second, they
considered a randomized version of the model, where interactions are chosen ran-
domly and uniformly, and the output must be computed with high probability.
In both cases, the power of the system is increased.

Angluin, Aspnes, Chan, Fischer, Jiang and Peralta [1] further studied the
model with a non-complete communication graph. They described properties
of the communication graph itself that can be computed by the agents in the
system. For example, the system can determine whether it contains an odd cycle.

Angluin, Aspnes, Eisenstat and Ruppert [4] considered population protocols
where the interactions between pairs of agents are one-way. Each interaction has
a sender and a receiver, and the sender cannot discover any information about
the receiver’s state in such an interaction. Full or partial characterizations of the
predicates that can be stably computed (with no failures) in several variants of
this model were given.

The question of tolerating failures in the population protocol model was
raised by Delporte-Gallet, Fauconnier and Guerraoui [7]. They described how an
example protocol can be adapted to tolerate failures. However, their approach
is not generally applicable to all population protocols.

The transient failures that we consider in this paper can corrupt the inter-
nal states of agents arbitrarily. We assume that the number of such failures is
bounded. Research on self-stabilizing systems [8] assumes that any number of
processes can have corrupted states, requiring that the system eventually return
to a correct configuration. Angluin, Aspnes, Fischer and Jiang incorporated the
notion of self-stabilization into the population protocol model [5]. They gave
some self-stabilizing protocols for classical problems such as leader election and
token passing. The types of problems they studied differ from the problems
we discuss here. They concentrated on stably maintaining some property (e.g.
having a unique leader, having a legal colouring of the communication graph),
whereas we focus on computing functions of inputs initially distributed across
the system. This makes it necessary for us to assume a bound on the number of
transient failures, so that those inputs are not lost. Also, we are concerned with
creating a general-purpose transformation that converts an arbitrary algorithm
that works in the failure-free setting into a fault-tolerant algorithm.

The way we transform the specification of a problem for the failure-free pop-
ulation protocol model into a specification for the fault-tolerant model is, in
spirit, analogous to the way such transformations have been done in traditional
distributed systems. Consider for instance the seminal atomic commit problem
from distributed databases [9]. In a failure-free distributed system, one would
typically require a transaction to commit if and only if all servers vote “yes”, i.e.,
none detected a concurrency conflict. Such a specification is clearly impossible
to implement (even in a synchronous system) if one server can fail: it is indeed
impossible to distinguish an execution where all servers voted “yes” and one ini-
tially crashed, from an execution where this initially crashed server voted “no”.
It is thus typical to allow a transaction to sometimes abort even if all servers
vote “yes” (and one of them fails or is suspected to have failed), or commit a
transaction even if a minority of servers vote “no” (e.g., in a replicated system).

Our approach to describing functions that can be computed in the failure-
prone population protocol model is also related to the condition-based approach
of Mostefaoui, Rajsbaum and Raynal [12]. They described exactly what sort of
precondition must be placed on the possible inputs to the consensus problem in
order for it to become solvable in an asynchronous system with f halting failures
using shared read-write registers.

3 Population Protocols

Our formalization of the population protocol model is based on the work of
Angluin et al. [2]. We present a version that assumes non-deterministic, two-
way interactions can take place between any pair of agents, but also allows
halting failures and transient failures. A halting failure causes an agent to cease

functioning and play no further role in the execution. A transient failure corrupts
the state of an agent, but the agent otherwise follows its algorithm correctly.

Each agent in the system is modelled as a finite state machine, and algorithms
must be uniform: each finite state machine is “programmed” identically and the
programming does not depend on the number of agents in the system. This
makes the model strongly anonymous, since there is not enough space in the
state to give each agent a unique identifier.

Let X be a finite input alphabet and Y be a finite output alphabet. Each
agent is provided with an input drawn from X . Since agents are essentially inter-
changeable, an input to the system can be thought of as a multiset of elements
from X . Let X be a set of all multisets of elements from X . Let D ⊆ X be the
set of all input multisets that can actually occur. In general, D may be a proper
subset of X , since there may be preconditions on what inputs are permitted.
The goal of an algorithm is to compute a function f : D → Y . Each agent
must eventually output the value of this function for the input multiset that was
initially provided to the agents.

We now describe how to specify a population protocol. Let Q be the finite
set of states that each agent may take. A population protocol is defined by an
input assignment i : X → Q, a transition function δ : Q×Q → P(Q×Q)−{∅},
and an output assignment o : Q → Y . (The notation P(S) is used to denote the
power set of S.) If two agents in states q1 and q2 encounter each other, they can
change into states q′1 and q′2, where (q′1, q

′
2) ∈ δ(q1, q2). Without loss of generality,

assume the transition function is symmetric: δ(q1, q2) = δ(q2, q1). The protocol
is called deterministic if δ(q1, q2) is a singleton set for all q1, q2 ∈ Q.

Let I ∈ D be an input for the system. An execution of the protocol on input
I is an infinite sequence of configurations, C0, C1, C2, . . ., each of which is a
multiset of states drawn from Q. The initial configuration C0 is the multiset
{i(x) : x ∈ I}. The configuration Ck must be obtainable from Ck−1 by one of
the following four types of transitions:

Ordinary transition: Ck = Ck−1 −{q1, q2}∪{q′1, q
′
2} where {q1, q2} ⊆ Ck−1 and

(q′1, q
′
2) ∈ δ(q1, q2).

Halting failure: Ck = Ck−1 − {q}.
Transient failure: Ck = Ck−1 − {q} ∪ {q′}.
Null step: Ck = Ck−1.

The output of an agent in state q is o(q). We say that the execution stably
outputs v ∈ Y if every agent eventually outputs v and never changes its output
thereafter. Formally, this means there is an i such that for all j > i, o(q) = v for
every q ∈ Cj .

If every sequence of interactions is considered to be a possible execution in
the model, it would be possible to have isolated agents that never interact with
one another. So the model must incorporate a fairness guarantee. Simply re-
quiring that every pair of agents eventually meet is insufficiently strong for some
interesting protocols, since the two agents might meet only at inopportune times,
when their states prevent a particular kind of interaction from happening. So the
research on population protocols has assumed a stronger fairness condition. In a

fair execution, if a configuration C occurs infinitely often and a configuration C′

can be reached from C by an ordinary transition, then C′ occurs infinitely often.
If, for example, we associate probabilities with different interactions, then an
execution will be fair with probability 1. A protocol stably computes a function
f : D → Y if, for every input I ∈ D, every fair execution on input I stably
outputs f(I).

4 The Simulation

In this section, we describe how any population protocol A that stably com-
putes a function f in a failure-free setting can be adapted to run in a setting
where a bounded number of crash and transient failures can occur. To do this, we
construct an algorithm B that divides agents into groups and simulates, within
each group, an execution of the original protocol A. We shall show in Sect. 5 that,
if we add a precondition on the inputs, this simulation will correctly compute f .
We first define the kind of precondition on the inputs that will be required.

Recall that X and Y are an input and output alphabet, X denotes the set
of all multisets of elements from X , and D ⊆ X .

Definition 1. Let a, b ∈ IN. A function f : X → Y is called (a, b)-robust for D
if, for any input multiset I ∈ D and any input I ′ ∈ X that can be formed from
I by removing up to a elements and then adding up to b elements, f(I) = f(I ′).

Example 2. Let X = Y = {0, 1}. Let f be the majority function: for any
multiset S of 0’s and 1’s, f(S) = 1 if and only if S contains more 1’s than 0’s.
Let D be the set of all input multisets where the number of 0’s differs from the
number of 1’s by at least k. Then f is (a, b)-robust for D for any parameters
a and b satisfying a + b < k. This is because, starting from any input multiset
in D, the number of input values that would have to be added and removed to
change the output of f total at least k.

Let f : X → Y be any function that can be stably computed by a population
protocol in the failure-free environment. We shall show that if f is (c + t, t)-
robust for D, then f restricted to inputs from D can also be stably computed in
an environment where up to c crash failures and up to t transient failures may
occur.

Let A be a population protocol that stably computes f in the failure-free
setting. The algorithm A is specified by the state set QA, input and output
assignment functions iA and oA, and the transition function δA. Let Qinit =
{iA(x) : x ∈ X}. We shall build an algorithm B which simulates A in a way
that tolerates up to c crash failures and t transient failures. We first describe the
simulation. Its correctness is argued in Sect. 5.

The fault-tolerant algorithm B will divide agents up into g groups (where
g is a constant to be chosen later), and simulate the original algorithm within
each group. There will be roughly n/g agents in each group, where n is the
number of agents in the system. (Recall that agents do not know the value of

n.) Each of the agents that comprise a group will simulate up to 2g distinct
agents of the original algorithm A. (For clarity, we shall hereafter refer to the
agents of algorithm B as “agents”, and the simulated agents of algorithm A as
“threads”.) No thread will be simulated by two agents in the same group (except
as the result of a transient failure).

In B, each agent’s state contains seven fields:

– init stores an initial value from Qinit, initialized to iA(x), where x is the
input for the agent. (This field is never changed by the algorithm.)

– joined is a boolean variable that says whether the agent has joined a group
yet. Initially, it is set to false.

– group stores a value from {1, 2, . . . , g}, initially g, which will eventually be
the name of the group this agent joins.

– sum will be used for a division subroutine and can take values in the range
{0, . . . , group − 1}, initially 1.

– sim stores a multiset of up to 2g elements from QA representing the states
of the threads that the agent is simulating, initially ∅.

– given[1..g] stores an array of g boolean values, with each entry initially set
to false. This will keep track of which groups contain a thread that has been
given a copy of this agent’s input value.

– output[1..g] stores an array of g values from Y , representing the output values
from the simulations carried out by each of the g groups. It can be initialized
arbitrarily.

Note that the state set of algorithm B has |Qinit|g(g +1)
(

2g+|QA|
2g

)

2g|Y |g states,
and this quantity is independent of n, the number of agents in the system, as
required by the model. (The number of bits needed to represent an agent’s state
in the simulation is O(g log |Q|).)

The first phase of an agent’s actions is devoted to assigning the agent to one
of the g groups. This phase ends when the agent’s joined field is changed to
true. The second phase will be devoted to gathering input values from approx-
imately g other agents and simulating, within each group, an execution of the
original algorithm. We shall guarantee that each non-faulty agent’s input value
is eventually given to exactly one thread of exactly one agent in each group.
Whenever two agents in the same group meet, they nondeterministically choose
an interaction of two of their threads to simulate. In those groups that have
no faulty agents, the simulation will be a faithful simulation of algorithm A,
and the output of each thread within that group will eventually stabilize to the
correct value. We shall choose g large enough so that agents will be able to rec-
ognize (and output) a value that is being produced by a group of agents that
experienced no failures.

In phase 1, we first execute the division-by-g algorithm described by Angluin
et al. [2] to split off, from the rest of the agents, group number g, which will
contain approximately n/g agents. The remaining agents then execute a division-
by-(g− 1) algorithm to split off group number g − 1 (again of size roughly n/g).
The remaining agents then divide by g − 2, and so on. The group field of the
state keeps track of which division is currently being worked on by the agent.

An agent is said to join group i when it sets its joined field to true, if its
group field contains i at that time. Joining a group is an irreversible action for
a non-faulty agent: once the joined variable is set to true, none of the fields
joined, group or sum will ever change again.

To accomplish phase 1, if two agents whose joined, group and sum fields are
(false, i, s) and (false, i, s′) with i > 2 meet, they transition to (false, i− 1, 1)
and (false, i, s + s′) if s + s′ < i and to (false, i, s + s′ − i) and (true, i, 0) if
s + s′ ≥ i. We shall argue below that this has the effect of making about 1/i of
the agents that set their group field to i eventually join group i: the sum field
accumulates a count of agents who set their group field to i and when one count
reaches i, an agent can join group i. When an agent whose group field is i has
been counted (but does not join group i), it changes its group field to i − 1.
When two agents whose joined, group and sum fields are both (false, 2, 1), one
transitions to (true, 2, 0) and the other transitions to (true, 1, 0). This has the
effect of splitting the agents whose group field is set to 2; half of them join group
1 and half join group 2.

When an agent p joins group i, it sets its sim field to ∅ (if p’s given[i] field is
true) or to {init} (if p’s given[i] field is false). In the latter case, p also changes
its given[i] field to true. If, at any time, an agent p1 whose value of given[i] is
false meets another agent p2 that has joined group i and does not have a full
sim field, p2 adds p1’s init field to its sim field and p1 sets given[i] to true.
Interactions of this type will have the effect of creating, for each correct agent p
(and possible some faulty ones), a thread inside the sim field of exactly one agent
in group i initialized with the initial state that p would have in algorithm A.

Whenever two agents p1 and p2 that have joined the same group meet, the
transition function non-deterministically chooses two elements q and q′ from the
union of the two agents’ sim multisets (both elements could possibly be from
the same agent’s sim multiset) and changes the two states q and q′ to a pair of
states given by δA(q, q′). If the union of the two sim multisets contains fewer
than two elements, no state change occurs in either agent.

Whenever an agent p1 meets an agent p2 that has joined some group i and
has a non-empty sim field, p1 sets its output[i] field to oA(q), where q is the first
element of p2’s sim field. The output assignment function for B is defined by
taking the element that appears with the highest multiplicity in the field output.

Our simulation B is non-deterministic, even if the original protocol A is de-
terministic: when two agents in the same group meet, they non-deterministically
choose which two threads should interact. However, it is not difficult to remove
this non-determinism of B by making use of the non-determinism of the order
in which interactions occur, using the technique described by Angluin et al. [1].
Each agent stores a “choice counter” which dictates which of the finite number
of possible outcomes should result from an interaction. The counters are incre-
mented by a circulating token. However, in our model, the token could be lost
when a failure occurs. So instead, we can increment the choice counter of an
agent when it encounters an agent in another group.

5 Correctness

Consider an infinite fair execution C0, C1, C2, . . . of the simulation B on input
multiset I ∈ D. We first show that eventually about n/g agents join each group.
Let

ci = the number of crash failures of agents which have group = i

immediately before the crash,

ti = the number of transient failures of agents which have group = i

immediately before the failure,

t′i = the number of transient failures of agents which have group = i

immediately after the failure,

xg(j) = n,

xi(j) = the number of ordinary steps in C0, . . . , Cj that caused an agent to

set its group field to i, for i < g,

Wi(j) = {p ∈ Cj : p.group = i and p.joined = false}, and

Ji(j) = {p ∈ Cj : p.group = i and p.joined = true}.

Note that Wi(j) and Ji(j) are multisets. They represent the agents in con-
figuration Cj that are waiting to finish the division-by-i algorithm and those
that have joined group i, respectively. Consider the sum Si(j) = i|Ji(j)| +

∑

p∈Wi(j)

p.sum. Initially, Si(0) = xi(0). The only time an interaction between

two agents changes this sum is when one agent sets its group field to i, which
increases the value of Si by 1. Thus, an ordinary step changes the values of Si

and xi in the same way. If an agent’s group value is i when it crashes, the crash
decreases the value of the sum by at most i. If an agent’s group value is i just
before it experiences a transient failure, that failure can decrease the sum by at
most i. If an agent’s group value is i just after it experiences a transient failure,
that failure can increase the sum by at most i, since the process’s sum field
cannot exceed its group field. Thus, we have

xi(j) − i(ci + ti) ≤ Si(j) ≤ xi(j) + it′i (1)

If the interaction that causes the change from Cj to Cj+1 happens because
two agents in Wi(j) meet, one agent is removed from Wi(j) to form the set
Wi(j+1), and never returns to Wi(j

′) for j′ > j (unless by a transient failure). So,
eventually (i.e. for sufficiently large values of j), Wi(j) will contain at most one
element, so we shall have 0 ≤

∑

p∈Wi(j)

p.sum ≤ i. So (1) implies that, eventually,

xi(j)−ici−iti−i ≤ Si(j)−i ≤ Si(j)−
∑

p∈Wi(j)

p.sum = i|Ji(j)| ≤ Si(j) ≤ xi(j)+it′i.

(2)

Dividing the bounds in (2) by i yields the following bounds on the size of Ji(j).

xi(j)/i − ci − ti − 1 ≤ |Ji(j)| ≤ xi(j)/i + t′i. (3)

If an agent has set its group field to i (either by a legitimate interaction or
by having a transient failure) before Cj , but did not subsequently change it to
i−1, then either it is still in Wi(j) or Ji(j), or it has failed. For sufficiently large
j, Wi(j) contains at most one agent, so for i > 1 we shall have

xi−1(j) ≥ xi(j) + t′i − |Ji(j)| − ci − ti − 1. (4)

Combining (3) and (4) yields, for large j,

xi−1(j) ≥ xi(j) + t′i − (xi(j)/i + t′i)− ci − ti − 1 = xi(j)
i − 1

i
− ci − ti − 1. (5)

Solving recurrence (5), using the boundary condition xg(j) = n, gives us (for
all i)

xi(j) ≥ ni/g −

g
∑

ℓ=i+1

(cℓ + tℓ + 1) ≥ ni/g − c − t − g. (6)

Finally, combining (3) and (6) yields

|Ji(j)| ≥
n

g
−2c−2t−g−1 ≥

n + t

2g
(as long as n ≥ 2g(2c+2t+g+1)+t). (7)

This means that there will eventually be at least n+t
2g

agents in each group. We

call group i correct if t′i = ti = ci = 0. Note that each agent’s sim field is big
enough to simulate 2g threads, so each correct group will be able to simulate
enough threads to handle all n agents, plus t extra, bogus threads that could be
generated by transient failures. (A transient failure could cause an agent that has
already given an initial value to group i to give another initial value to group i.)

Let simi(j) be the union of all the multisets that are stored in sim fields of
states in Ji(j). Consider the interactions that take place after Cj that set the
given[i] field of some agent to true. Let futurei(j) be the multiset of the values
in the init fields of those agents. These are the values that get added to the sim
fields of agents in group i after Cj .

Lemma 3. For each correct group i, futurei(j) will be empty eventually (i.e.
for sufficiently large j).

Proof. There will eventually be at least n+t
2g

agents that join group i and each
can hold 2g values in its sim field. At most n + t values will be added to these
fields (in total), so each agent whose given[i] field is false will eventually either
fail or meet an agent in group i that has enough room to take that agent’s initial
value. Eventually every agent’s given[i] field will become true and stay that way
forever, so futurei(j) will eventually become empty (and remain so forever). ⊓⊔

Lemma 4. Let i be a correct group in the execution of B. There is a failure-free
execution D0, D1, . . . of the population protocol A with input set futurei(0) such
that, for all j, Dj = simi(j) ∪ futurei(j).

Proof. The only steps of B’s execution that alter the multiset simi(j)∪futurei(j)
are those involving interactions between two agents that have already joined
group i and have at least two elements in total in their sim multisets. For each
such step, two elements q1 and q2 in the sim multisets are changed to q′1 and
q′2, where (q′1, q

′
2) ∈ δ(q1, q2). Thus, the corresponding step in the constructed

execution of A is legal. All other steps of the constructed execution are null
steps.

We must still show that the constructed execution is fair. Consider any con-
figuration D that occurs infinitely often in the constructed execution. There is
an infinite increasing sequence j1, j2, . . . such that D = Dj1 = Dj2 = · · · . Let
D′ be a configuration that can be reached from D by some ordinary transition
of A that changes two agents in states q1 and q2 to states q′1 and q′2. We must
show that D′ occurs infinitely often in the constructed execution too.

Consider the sequence of steps Cj1 , Cj2 , Since there are only a finite
number of possible configurations, some configuration C must occur infinitely
often in this sequence. By Lemma 3 the set futurei(j) must be empty for all
occurrences C, because it eventually becomes empty. So, in C, the union of the
sim fields of agents in group i is equal to D, and therefore includes q1 and q2.
Thus, there is an ordinary transition of the simulation B that changes q1 and
q2 in those sim fields of C to q′1 and q′2 to form a new configuration C′. By the
fairness property of the execution of B, C′ must occur infinitely often. Note that
the configuration of the constructed execution that corresponds to each of these
occurrences of C′ is equal to D′. So D′ occurs infinitely often in the constructed
execution. ⊓⊔

The following corollary follows immediately from the preceding lemma and
the fact that A stably computes f .

Corollary 5. Eventually, for every x in the sim field of any agent that has
joined a correct group i, oA(x) = f(futurei(0)).

Now we show that the set futurei(0) is sufficiently close to the input multiset
I for correct groups.

Lemma 6. For any correct group i, futurei(0) = I∪I+−I− where I+, I− ∈ X
and |I+| ≤ t and |I−| ≤ c + t.

Proof. Consider the multiset I+ that contains, for each transient failure during
the execution that leaves an agent in a state with the given[i] field equal to
false, the init field of the agent immediately after it experiences the transient
failure. This set contains at most t elements. Each of the values in I ∪ I+ can be
given to a sim field of an agent in group i∗ at most once, since doing so changes
the given[i∗] field of an agent from false to true, and it remains true until the
agent experiences a transient failure. Thus, futurei(0) ⊆ I ∪ I+.

Furthermore, as argued in the proof of Lemma 3, every value in I ∪ I+ will
eventually be transferred to the sim field of some agent in group i, unless the
agent holding that value experiences a failure before the transfer occurs. So, at
most c + t of the elements of I ∪ I+ are not in futurei(0). Let I− be the set of
those elements. Then |I−| ≤ c + t, and futurei(0) = I ∪ I+ − I−. ⊓⊔

Now, by choosing g appropriately, we can guarantee that the output produced
by each agent in the simulation is the output produced by the simulated thread
of some correct group, and this will be the correct output value.

Theorem 7. If f : X → Y is stably computable in an environment with no
failures and f is (c+ t, t)-robust for D ⊆ X , then f : D → Y is stably computable
in an environment with up to c crashes and t transient failures, provided n ≥
2((|Y | + 2)(c + 2t) + 2)2.

Proof. We use the simulation B described above, taking g = |Y |(c+2t)+1. The
assumption that n ≥ 2((|Y |+ 2)(c + 2t) + 2)2 guarantees that n ≥ 2g(2c + 2t +
g + 1) + t for our choice of g, so the requirement for inequality (7) is satisfied.

Consider any execution of the simulation. By Corollary 5, there is some time
after which every thread in every correct group i outputs f(futurei(0)). Also,
there is a time after which no agent experiences a failure. After these two times
have both passed, every agent will eventually meet an agent in each correct
group i and store f(futurei(0)) in its local variable output[i]. Let Cj be the
configuration of the execution of B when all of this has happened.

Let r be any agent. We shall show that, after Cj , r stably outputs a correct
value. The most common value in r’s output[1..g] field occurs with multiplicity
at least c + 2t + 1. Therefore, it is output[i∗] for some correct group i∗, since at
most c + 2t groups can be incorrect. Therefore, the value that r outputs will be
f(futurei∗(0)) for the correct group i∗.

Let I ′ = futurei∗(0). By Lemma 6, I ′ = I ∪ I+ − I−, where |I−| ≤ c+ t and
|I+| ≤ t. By the robustness property of f , we have f(I) = f(I ′). Thus, agent r
stably outputs f(I ′) = f(I), which is correct. ⊓⊔

We have shown that (c+ t, t)-robustness is sufficient to compute the function
f in an environment with c crash failures and t transient failures. We now show
that a weaker robustness condition is necessary.

Proposition 8. Suppose that f : D → Y can be stably computed by a population
protocol in an environment with up to c crash failures. Then f can be extended
to the domain X so that f : X → Y is (c, 0)-robust for D.

Proof. Let y0 be any element of Y . Let A be a population protocol that stably
computes f . We extend f to all input multisets I ∈ X as follows: if A produces
a stable output in some fair, failure-free execution EI with input I, let f(I) be
that output value. Otherwise, define f(I) = y0. Note that this is an extension of
f since, for I ∈ D, A stably computes f .

We now show that the extension of f is (c, 0)-robust. Let I ∈ D and let
I ′ = I − I−, where I− ∈ X and |I−| ≤ c. We must show that f(I ′) = f(I).

Consider an execution of A on input I in which the agents with inputs from I−

immediately fail, and then the remaining agents execute EI′ . By the hypothesis
of the proposition, this execution must stably output f(I). But this execution
was used to define f(I ′), so f(I ′) = f(I). ⊓⊔

There is a gap between the (c + t, t)-robustness condition which is sufficient
to compute a function in the presence of failures (Theorem 7) and the (c, 0)-
robustness condition that is necessary (Proposition 8). Closing this gap remains
an open question. However, for systems in which there are only crash failures
(i.e. t = 0) the condition of (c, 0)-robustness is both necessary and sufficient.

6 Computing Multivalued Functions

We now generalize the model used for stably computing functions to cover
the possibility that the output is not uniquely determined by the input multiset.
As before, let X and Y be finite input and output alphabets, and let X be
the set of all multisets of elements from X . Let F : X → P(Y) − {∅} be a
function, where F (I) represents the set of legal outputs for the input multiset
I ∈ X . A population protocol is defined exactly as in Sect. 3. However, we have
a weaker definition of stable computation for such multi-valued functions. We
say that a protocol stably computes F if, in every fair execution on input I, there
is a time after which every agent outputs only values in F (I). Notice that the
output of an individual agent may oscillate forever, but it eventually stabilizes
in the sense that it eventually becomes a legal output and remains so forever.
Furthermore, different processes may output different values. This definition of
stable computation coincides with the original one in the case where F (I) is a
singleton set for all I.

This formulation of stable computation for multi-valued functions allows us
to describe the performance of our simulation in a different way.

Theorem 9. Let c, t ≥ 0. Suppose F : X → P(Y)−{∅} is a multivalued function
that can be stably computed in an environment with no failures. Then the function
Fc,t : X → P(Y) − {∅} defined by Fc,t(I) =

⋃

|I−|≤c+t

|I+|≤c

F (I ∪ I+ − I−) is stably

computable in an environment with up to c crash failures and t transient failures,
provided n ≥ 2((|Y | + 2)(c + 2t) + 2)2.

Proof (Sketch). We can run the simulation described in Sections 4 and 5, again
taking g = |Y |(c + 2t) + 1. The proof is very similar to the proof of Theorem 7.
Consider any execution on input I. It follows from Lemma 4 that the threads in
each correct group i eventually stabilize to produce outputs in F (futurei(0)).
Consider the portion of the execution after this has occurred and all failures
have occurred, and then every agent has met some agent in each correct group.
Consider any moment after all of this has occurred. For any agent r, the most
common value in r’s output field at that time appears in its output[i∗] field for

some correct group i∗. Let I ′ = futurei∗(0). By Lemma 6, I ′ = I ∪ I+ − I−

where |I+| ≤ t and |I−| ≤ c+t, so F (I ′) ⊆ Fc,t(I). Thus the value that is output
by r is in Fc,t(I), as required. ⊓⊔

Remark: It follows from this proof that, in an execution of the simulation on
input I where c′ ≤ c crash failures and t′ ≤ t transient failures actually occur, the
value produced as the output will be in Fc′,t′(I). In particular, if the execution
happens to be failure-free, the value produced will be in F (I).

Example 10. Suppose X = {1} and Y = {0, 1, . . . , 99}. Let F (I) = {|I|
mod 100}. Then, F1,2(I) = {F (I)−3, F (I)−2, F (I)−1, F (I), F (I)+1, F (I)+2}
(where addition is done modulo 100). Since F can be stably computed in the
failure-free model [2], our simulation will stably compute F1,2 in an environment
that can have up to 1 crash and 2 transient failures. Thus, it is possible to
count the number of agents modulo 100, even when failures can occur, if we are
satisfied with an approximate answer.

7 Concluding Remarks

If the communication graph G, which specifies which pairs of agents can
come into contact with each other, is not complete, our simulation technique
can be applied in a straightforward way to compute any function that can be
computed in the complete graph, provided G is (c+1)-connected so that c crashes
cannot disconnect the graph. This can be done by having the two agents in each
interaction non-deterministically choose whether to swap states, just as in the
failure-free model [2].

Angluin, Aspnes and Eisenstat have recently shown that the only predicates
that are stably computable in the failure-free population protocol model are
those defined by semilinear sets of inputs [3]. This might make it possible to
use a somewhat streamlined version of our simulation to compute all stably
computable binary predicates in a fault-tolerant way. This is because the known
protocols for computing semilinear predicates have a relatively simple form.

There are a number of directions for future work on fault-tolerant popula-
tion protocols. One is to close the gap between the (c+ t, t)-robustness condition
that is sufficient to compute a function and the (c, 0)-robustness condition that
is necessary. Angluin et al. describe another type of function computation in
the population protocol model, where the output does not come from a finite
alphabet [2]. Instead of producing the output at each agent, the output is dis-
tributed across the system, just as the input is distributed. As an example, the
division-by-g algorithm that we use in our construction starts with n agents and
outputs 1 at n/g of them, and 0 at all others. As is shown by our construction,
we can at least approximate the result of the division algorithm in a failure-prone
environment. It would be interesting to characterize the set of functions that can
be computed in this sense, in a fault-tolerant way, if some limited inaccuracy in
the outcome is permitted.

This paper was concerned with the fundamental computability question: is it
possible to do computations in the presence of failures? Another issue to examine
is how much complexity increases as a result of incorporating failures into the
model. In our model, the powerful adversary can delay convergence to a stable
output for an arbitrarily long time by isolating some agents from one another.
Thus, to measure complexity, one would have to consider a weaker adversary.
One measure would be the expected time to converge (after the last transient
failure), given some probability distribution on the interactions.

Acknowledgements

We thank James Aspnes for helpful conversations. This research was funded
by the Natural Sciences and Engineering Research Council of Canada, the ACI
Fragile, and the Swiss National Science Foundation through NCCR-MICS.

References

1. Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong

Jiang, and René Peralta. Stably computable properties of network graphs.
In Proc. International Conference on Distributed Computing in Sensor Systems,
volume 3560 of LNCS, pages 63–74, 2005.

2. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René

Peralta. Computation in networks of passively mobile finite-state sensors. In
Proc. 23rd ACM Symposium on Principles of Distributed Computing, pages 290–
299, 2004. Expanded version to appear in Distributed Computing.

3. Dana Angluin, James Aspnes, and David Eisenstat. Stably computable pred-
icates are semilinear. In Proc. 25th ACM Symposium on Principles of Distributed
Computing, July 2006. To appear.

4. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the
power of anonymous one-way communication. In Proc. 9th International Confer-
ence on Principles of Distributed Systems, 2005.

5. Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-
stabilizing behavior in networks of nondeterministically interacting sensors. In
Proc. 9th International Conference on Principles of Distributed Systems, 2005.

6. Gaius Valerius Catullus. Carmen 3. In Carmina. “But curse upon you, cursed
shades of Orcus, which devour all pretty things! Such a pretty sparrow you have
taken away.” (Transl. Francis Warre Cornish).

7. Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui.
What dependability for networks of mobile sensors? In Proc. First Workshop on
Hot Topics in System Dependability, 2005.

8. Shlomi Dolev. Self-stabilization. MIT Press, 2000.

9. Vassos Hadzilacos. On the relationship between the atomic commitment and
consensus problems. In Proc. Workshop on Fault-Tolerant Distributed Computing,
pages 201–208, 1990.

10. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for “smart dust”. In Proc. 5th ACM/IEEE International Conference
on Mobile Computing and Networking, pages 271–278, 1999.

11. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong. TAG: a tiny aggregation service for ad-hoc sensor networks. In Proc.
5th Symposium on Operating Systems Design and Implementation, pages 131–146,
2002.

12. Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Conditions
on input vectors for consensus solvability in asynchronous distributed systems.
Journal of the ACM, 50(6), pages 922–954, 2003.

13. Boaz Patt-Shamir. A note on efficient aggregate queries in sensor networks. In
Proc. 23rd ACM Symposium on Principles of Distributed Computing, pages 283–
289, 2004.

