
Text Classification for Skewed Label Sets using Modified
TextGCN and Human Pseudo-Labels

Khoa Tran
tlmkhoa@yorku.ca
York University

Toronto, Ontario, Canada

ABSTRACT
This project presents a novel approach to text classification for
skewed label sets using modified TextGCN and human pseudo-
labels in the context of identifying high-level feedback at TD Bank.
The proposed approach generates pseudo-label data using key-
words, modifies the TextGCN framework to leverage unlabeled data,
adds virtual nodes to handle new samples, and evaluates the model
performance using variome metrics. The experimental results show
that the modified TextGCN model outperforms the baseline and
existing internal models in terms of accuracy, F1-score, recall, and
precision. A sensitivity analysis is performed to show the trade-
off between memory and performance for different semi-samples,
PMI thresholds, and preprocessing methods. In addition, a general
guide for balancing the two metrics is provided for future industrial
and internal development of textGCN. Finally, the implementation
challenges, the limitations of the approach, and the future work
directions are discussed.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Neural networks; Neural networks; Cross-validation.

KEYWORDS
Text classification, skewed label set, modified TextGCN, human
pseudo-labels, graph convolutional network, NLP

1 INTRODUCTION
1.1 Background
This project report is submitted by Khoa Tran to the Faculty of
Graduate Studies in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science with a specializa-
tion in Artificial Intelligence at York University. The project is a
result of a collaboration between the author, Khoa Tran, and vari-
ous departments at Toronto Dominion Bank (TD). The project was
conducted during an internship period under the management of
Senior Data Scientist Desai Sneha and under the supervision of
Professor Manos Papagelis. The main objective of this project and
internship was to explore and apply state-of-the-art machine learn-
ing models to different problems and evaluate their performance
and improvement over existing techniques at TD Bank. In this re-
port, I present my implementation and modification of TextGCN, a
graph convolutional network for text classification, for the task of
high-level feedback detection. I will also discuss the trade-offs and
challenges of the proposed model.

1.2 Project timeline
The internship session where the project is researched and imple-
mented lasts 4 months from September 2023 to December 2023. The
following is my timeline broken down by tasks achieved over the
period.

• Research the problem and TD system: September 1, 2023
- September 15, 2023

• Research solution and propose methods: September 15,
2023 - October 1, 2023

• Write and submit project proposal: September 21, 2023 -
October 07, 2023

• Collect and submit data for labeling : October 1, 2023 -
October 14, 2023

• Implement text GCN model: October 1, 2023 - October
15, 2023

• Modify text GCN model: October 15, 2023 - October 30,
2023

• Evaluate models and post analysis: November 01, 2023 -
November 21, 2023

• Write and proofread the project report: November 21,
2023 - December 10, 2023

• Deployment of model to TD system: December 01, 2023 -
December 22, 2023

• Submit the report: December 22, 2023

1.3 TD Privacy
Due to the high sensitivity of the project, many technical details will
be omitted, especially the data distribution or information that can
imply the distribution. I will only go through an abstract description
of the dataset and will mainly focus on the TextGCN model and its
behavior in different configurations.

1.4 Problem Description
TD Bank, with its 1,060 branches, serves 27.5 million customers
and receives a large number of feedback in my system every day.
High-level feedback (HLF), is defined as feedback that needs to be
escalated, reviewed, and followed up, and by nature, there is always
a need for accurate detection of this type of feedback. Within the
institution, an existing model is currently in use for HLF detection.
This model, which is based on Convolutional Neural Networks
(CNN), was initially trained for multiple-label prediction. However,
its performance has been found to be subpar and there is room
for improvement. This situation underscores the pressing need to
develop a state-of-the-art model for HLF prediction that includes
comprehensive and well-documented functions.

1.4.1 Labeling HLF: . I also faced a minor problem with labeling.
HLF is inherently rare. This rarity, combined with the company’s
limited labeling capacity at this time frame, presents a unique prob-
lem. The challenge lies in presenting an optimal set of data to the
labeling team to maximize the number of positive labels. This ap-
proach aims to prevent skewness in the label set as much as possible
and reduce reliance on processing techniques.

1.4.2 The Learning Problem: The main challenge is more conven-
tional and pertains to learning from a few sample skewed label
sets. Given multiple feedbacks, the task is to distinguish between
routine feedback, which is more common, and serious issues that
need to be escalated

2 DATASETS
One approach to identifying HLF involves analyzing customer feed-
back regarding their experiences with branch services. This feed-
back can be collected through various channels, such as feedback
forms sent to customers’ emails or directly from customers at the
location. Additionally, summaries of customer feedback, written
and submitted to my system by branch employees, can also serve
as a valuable source of information. Since some of TD’s data is
collected from customer direct input, text from emails or surveys is
noisy due to the lack of control over people’s submissions. More-
over, since French is an official Canadian language, feedback in
French is significant in my dataset. Due to the limited scope, I will
be focusing on English and removing other languages from my set.

3 RELATEDWORK
3.1 Text classification
Text classification is a fundamental task in natural language pro-
cessing that assigns predefined labels to text documents based on
their content. It has various applications in sentiment analysis
[Ojo et al.(2023)], topic detection [Asgari-Chenaghlu et al.(2020)],
spam filtering [Tida and Hsu(2022)], etc. Traditional methods for
text classification relied on hand-crafted features or word embed-
ding. Some more complex features have been designed, such as
n-grams [Wang and Manning(2012)] which may not capture the
semantic and syntactic information of the text adequately. Deep
learning methods for text classification use neural networks such
as CNNs [Kim(2014)], RNNs [Liu et al.(2016)], and Transformers
[Park et al.(2022)] to learn text representations from raw inputs.
However, these methods mainly focus on local consecutive word
sequences but do not explicitly use global word co-occurrence in-
formation in a corpus.

3.2 Graph neural networks
Graph neural networks (GNNs) [Kipf and Welling(2016)] is a type
of neural network that can operate on graph-structured data, such
as social networks, citation networks, and knowledge graphs. The
topic of Graph Neural Networks has received growing attention re-
cently [Cai et al.(2018)]. GNNs can learn node representations that
capture both local and global information from the graph topology
and node features. GNNs have been applied to various domains
such as traffic prediction [Jiang and Luo(2021)], recommendation
[Wu et al.(2020)], and NLP. In the context of NLP, GNNs have been

used to model the syntactic structure of sentences, the relationships
between entities, and the semantic similarity between texts.

3.3 GNNs for text classification
Several works have explored the use of GNNs for text classification,
where the text is represented as a graph of words and documents.
[Yao et al.(2019)] proposed TextGCN, which builds a single text
graph for a corpus based on word co-occurrence and document-
word relations, and learns word and document embeddings jointly.
GCN was also explored in several NLP tasks such as semantic
role labeling [Marcheggiani and Titov(2017)], relation classifica-
tion [Li et al.(2018)], andmachine translation [Bastings et al.(2017)],
where GCN is used to encode the syntactic structure of sentences.
Some recent studies explored graph neural networks for text classifi-
cation [Henaff et al.(2015), Defferrard et al.(2016), Peng et al.(2018),
Zhang et al.(2018)]. However, they either use an identity matrix as
embeddings or only leverage fully supervised learning. They also
do not pay attention to dealing with skewed data.

4 METHODOLOGY
4.1 Labeling
Currently, thanks to the auditing process, I have obtained small
samples of HLFs. I proposed the usage of a pre-trained model like
SBERT [Reimers and Gurevych(2019)] to encode the positive labels
and no-label sets into a vector space. This process is represented in
Equation 1. By identifying the positive cluster, I can measure the
cosine similarity between the cluster positive centroid and other
unlabeled instances, and then rank them from most to least similar.

Rank(Vector𝑖) = sort
(

Vector𝑖 · TargetVector
| |Vector𝑖 | | | |TargetVector| |

)
∀𝑖 ∈ [1, 𝑁]

(1)

Theoretically, this can provide the labeling team with an optimal
set where the instances closest to the positive will be presented first
and noise will be last. This approach heavily depends on the general
knowledge of the model. Further improvement can be applied by
using the Doc2Vec [Le and Mikolov(2014)] model to train on an
internal dataset and gain knowledge directly from the dataset rather
than pre-train from a public set.

4.2 Text GCN
Text Graph Convolutional Networks (Text GCN) [Yao et al.(2019)],
a variant of Graph Convolutional Networks (GCN) introduced in
2019, is utilized for the automatic classification of text into corre-
sponding labels. GCNs have proven to be effective for tasks with
rich text, as they can preserve the global structural information of
a dataset in graph embeddings. A sample of the textGCN graph
is provided in Figure 1, where it is built from 2 examples. The se-
lection of Text GCN for this project is motivated by its top-tier
performance in various text classification and sentiment analysis
tasks. For instance, Roberta [Nakajima and Sasaki(2022)] or SGNN
[Karl and Scherp(2023)], variants of Text GCN, consistently rank
first on the Ohsumed dataset. This high level of performance is also
observed on other datasets such as 20NEWS, MR, and R8.

2

Figure 1: Sample textGCN graph. Built from 2 example sentences, “I love TD service” and “I am not satisfied”. Each unique
word and document is treated as a node. A solid line shows the TF-IDF relationship between a word and a node, which every
word had. The dashed line portrates the PMI connection. The arrow line illustrates a self-connect at each node.

In TextGCN, the graph is represented as an adjacency matrix.
This matrix is symmetric, meaning it mirrors along the main di-
agonal. Each row or column in this matrix corresponds to a node
in the graph. In equation 2, I have shown how the edges of the
graph represented in the adjacency matrix follow the rule from the
original [Yao et al.(2019)] paper

𝐴𝑖 𝑗 =


PMI(𝑖, 𝑗) if 𝑖, 𝑗 are words and PMI(𝑖, 𝑗) > 0
TF-IDF𝑖 𝑗 if 𝑖 is document and 𝑗 is word
1 if 𝑖 = 𝑗

0 otherwise

(2)

For adjacency matrix ordering, referring to figure 2, let’s define
Ntrain as the number of samples in the training set, and Nvocab as
the number of unique words in my graph vocabulary. I arranged
the top Ntrain nodes for the document and the next Nvocab for the
unique word. The purple area will be populated by TF-IDF values,
and the blue is for PMI edges. The green area would be 0 since
there is no connection between two documents. Each element on
the diagonal line will also have one added representing the self-
connection. After constructing the Adjacency matrix, I inputted the
graph into a simple two-layer Graph Convolutional Network (GCN)
as in [Kipf and Welling(2017)]. The embeddings of the second layer
nodes (word/document) have the same size as the label set and are
input into a softmax classifier:

𝑍 = softmax(𝐴ReLU(𝐴𝑋�̂�0)�̂�1) (3)

where 𝐴 = 𝐷− 1
2𝐴𝐷− 1

2 , and softmax(𝑥𝑖) = 1
𝑍
exp(𝑥𝑖) with 𝑍 =∑

𝑖 exp(𝑥𝑖)

Figure 2: Arrangement of edges in train adjacency matrix for
my implementation. Fully described in the text

4.3 Proposed modification of Text GCN
Another reason for choosing Text GCN is its ability to leverage unla-
beled data. The original textGCN [Yao et al.(2019)] paper only uses
the model in the context of full-supervised learning. However, as a
GCN [Kipf and Welling(2017)] based method, Text GCN can utilize
the unlabeled data for semi-supervised learning. This means that
I can incorporate millions of unlabeled feedback that TD receives
daily to interpret the minimal labeled set I have access to. Unlabeled

3

data will be represented as document nodes in the graph connected
to words that are contained within themselves. These will allow la-
beled nodes, especially positive samples, to leverage not only other
label documents but unlabeled documents to gain more context to
the problem. Text GCN’s ability to leverage different types of em-
beddings is another point of interest. While the original Text GCN
[Yao et al.(2019)] uses one-hot encoding as node embedding as X =
I. I believe that this can be further explored by applying different
embeddings to convey more information across the network. For
instance, looking at equation 4, simple TF-IDF could be used, or
the power of pre-trained models can be leveraged to capture the
relationship between words and documents could be harnessed. Pre-
trained encoder models like SBERT [Reimers and Gurevych(2019)]
are promising candidates. Alternatively, to avoid reliance on exter-
nal data and maintain control over the model structure for embed-
dings, a Doc2Vec [Le and Mikolov(2014)] model could be trained. I
believe these are better alternatives to the original one-hot encod-
ing.

𝑋 =


TF-IDF if TF-IDF embeddings
Doc2Vec if Doc2Vec embeddings
SBERT if SBERT embeddings

(4)

One-hot encoding also limits the model to transitive learning, as
no new predictive samples can be added. By using an alternative
method such as TF-IDF, I facilitated inductive learning. However,
this raises the question of how to represent the new samples in
the training graph. I proposed adding them as virtual nodes and
removing them after prediction. The new document nodes would
be connected to the word nodes contained in their sentences. In
terms of the validation matrix, looking at Figure 3, a new row and
column will be added at the end of the two dimensions, creating
an expanded matrix that uses the training information to predict
new data and support inductive learning. The newly added yellow
area is represented by the TF-IDF weights of the validation set. The
same process can be done for the test set. This allows me to easily
extend the text graph to include new data and make predictions
using the trained Text GCN model.

4.4 Loss
4.4.1 Normal Loss. The loss function is defined in equation 5 as
the cross-entropy error over all labeled documents:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙 = −
∑︁
𝑑∈𝑌𝐷

𝐹∑︁
𝑓 =1

𝑤 𝑓 𝑌𝑑𝑓 ln𝑍𝑑𝑓 (5)

where 𝑌𝐷 is the set of document indices that have labels and 𝐹 is
the dimension of the output features, which is equal to the number
of classes. 𝑌 is the label indicator matrix.𝑊𝑓 is the weight for the
class, to account for class imbalance, the majority class will have
less weight and the minority class will have more weight

4.4.2 Keyword Loss. Inspired by the graph pseudo-labelingmethod
of [Lee(2013)], where a model’s high-confidence prediction in the
previous epoch is selected to be pseudo-labeled in the next epoch,
I proposed developing a potential keyword loss function. Instead
of using the model’s confident prediction, I can use keywords as
human confident predictions. Keywords that are likely to appear in
a positive label will be determined by the TD business team. Given

Figure 3: Arrangement of edges in validation adjacency ma-
trix after adding virtual nodes. Fully described in the text

my limited positive labels and labeling capacity, this approach will
help me detect more positive pseudo-labels and compel the model
to learn sentences containing these keywords. I acknowledged
that in many cases, these groups may not have negative samples,
which could potentially lead to overfitting on these specific samples.
Therefore, I propose adding a class weight by the factor of 1/(𝑁𝑃+1)
to control the size of the group described in equation 6, where 𝑁𝑃

is the number of pseudo-positive samples found in keywords. I
also anticipate finding labeled negative classes in these keywords.
Therefore, I will apply the same weight formula, replacing 𝑁𝑃 with
𝑁𝑁 , the number of negative samples found from keywords.

𝑤𝑖 =

{
1

𝑁𝑃+1 if 𝑓 is a pseudo-positive class
1

𝑁𝑁 +1 if 𝑓 is a negative class
(6)

𝐿𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = −
𝑁∑︁
𝑖=1

𝑤𝑦𝑖 ·𝑦𝑖 · log(𝑝 (𝑦𝑖)) + (1−𝑦𝑖) · log(1−𝑝 (𝑦𝑖)) (7)

Keywords can be categorized into multiple groups, each associated
with a different loss. For instance, one group is likely associated
with keywords, which suggests that sentences containing these
words highly indicate HLFs. Another group is more neutral words
that are less indicative due to their usage in various contexts. Finally,
I can aggregate all the losses by assigning them weights (denoted
as lambda) in equation 8, allowing me to control their impact.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑛𝑜𝑟𝑚𝑎𝑙 + 𝜆1𝐿𝑙𝑖𝑘𝑒𝑙𝑦 + 𝜆2𝐿𝑛𝑒𝑢𝑡𝑟𝑎𝑙 (8)

5 EVALUATION
For the evaluation process, I will employ the F1 score as a metric
shown in equation 9. However, it will be adjusted based on the
inverse proportionality of each class. This implies that the majority
class will be assigned a lower weight, while the minority class will

4

be given a higher weight-adjusted in equation 10.

𝐹1 = 2 ∗ precision ∗ recall
precision + recall

(9)

𝐹1weighted =

𝑁∑︁
𝑖=1

𝑤𝑖 ∗ 𝐹1𝑖 (10)

6 RESULTS
6.1 Labeling
I decided to use SBERT [Reimers and Gurevych(2019)] as my label-
ing model. SBERT stands for Sentence Embeddings using Siamese
BERT-Networks and is implemented by SBERT.net. SBERT is a
variation of the pre-trained BERT network that uses siamese and
triplet network structures to derive semantically meaningful sen-
tence embeddings that can be compared using cosine similarity.
This specific triplet network structure allows SBERT to excel in the
task of sentence comparison in my use case. This method heavily
depends on the pre-trained model knowledge of SBERT. However,
thanks to this methodology, the TD business team was able to
find significantly more positive HLF samples than the expected
distribution. Unfortunately, due to the TD privacy policy and the
highly sensitive nature of the problem, I could not disclose the data
distribution I found or a sample of these data.

6.2 Preprocessing
In my problem, I defined 2 vocabularies, vocab graph and vocab
feature. I found that separation helps me gain more flexibility in
processing and fine-tuning the model.

6.2.1 vocab graph. for graph building, specifically for word node
creation and PMI’s edge calculation. Only training data will be used
to create this vocab to control the number of nodes in the graph.

6.2.2 vocab feature. for feature transform, specifically for creating
a feature for each node. Sentences and words are transformed from
text to vector by using a set of vocab. For this, I employed both
train and semi-set to build the set.

I applied standard reprocessing techniques to my data set, in-
cluding the following:

• Drop NA: Remove rows with missing values.
• Drop Duplicates: Remove duplicate rows.
• RemoveNumbers: Replace all numberswith a special token
<num>.

• Lemmatize: Convert words to their base form using lemma-
tization.

• Stopword Removal: Remove common stop words
• Filter English: Remove non-English sentences by removing
sentences that did not contain any English stop words.

• Remove Corrupt: Remove sentences that were corrupted
or unreadable.

• Minimum Character Threshold: Remove sentences with
fewer than a threshold.

• Train-Validation-Test Split: Split the data into training,
validation, and test sets.

• GraphThreshold: Removewords that appear less frequently
than a certain threshold in the training set.

Figure 4: Unique word count before and after replace number
with token <num> for both vocab graph and vocab feature

• Feature Threshold: Remove words that appear less fre-
quently than a certain threshold in the training and semi-
supervised sets.

Sentences with a low character count are removed due to their
limited informational value. Numbers are also replaced by a place-
holder <num>, as they often occur frequently but also carry mini-
mal information related to my target of HLF detection. These steps
helped me to eliminate noise and conserve computing resources.
As I expected, observed in feature 4, this technique reduced my
vocabulary sizes significantly, over 24% for the vocab feature and
2% for the vocab graph, in turn, this also reduced the overall graph
size and complexity. I did not apply lemmatization and stopword
removal in my final model. The effects of these techniques will be
mentioned in the analysis section 6.5.4. I also encountered a large
number of French samples in my dataset. Instead of relying on a
deep learning model to detect French, which is computationally
expensive, I opted for a simpler approach. I removed sentences that
do not contain English stop words. The idea behind this is that
stop words should appear in most English sentences. Therefore,
if a sentence contains stop words, it should be English. Although
there may be an overlap between French and English stop words, I
found the error rate to be acceptable. Additionally, this approach
has the added benefit of removing short English sentences that
usually contain no information related to my problem, such as “TD
good”.

6.3 Text GCN
I found that the model structure and proposed solution of textGCN
worked well with my problem. After the processing mentioned
earlier, the model contained 3,133 tokens for the vocab graph and
72,350 for the vocab feature. I used these two sets of vocab to build
a train graph of 450,023 nodes and 16,970,415 edges, which included
all of my semi and fully-labeled samples. The graph statistics are
shown in Table 1. As we can observe, the number of isolated nodes
is 0 simply due to the design of textGCN, which forces every word

5

Figure 5: The decrease in different types of loss for textGCN
using TF-IDF embedding over 100 epochs.

node to be connected to a document node. After appending new
samples to the validation graph, the number of nodes increased
to 450,092 and the number of edges increased to 16,975,800. The
increase in both metrics is attributed to the additional virtual node
for validation later on.

Our findings suggest that there are no significant benefits to the
model when leveraging advanced embeddings. Looking into the
comparison in Table 2, TF-IDF is the best option for my problem.
Due to the sparsity of TF-IDF, the actual values only populate
around 0.05% of the feature matrix.

For the neural network layer, I employed the standard 1 hidden
layer with 300 hidden nodes for each GCN layer. The feature matrix
is passed through this fully connected layer and then multiplied
with the adjacency matrix to apply the GCN operation. I attempted
to increase the number of hidden layers and hidden nodes between
GCN layers; however, no increase in performance was found. I also
went with the conventional 2-layer GCN since increasing these
layers will lead to information being evenly distributed across every
node, hammering the model’s ability to learn.

6.4 Train and Performance
I divided the loss function into three different categories: normal
loss, likely keyword loss, and neutral keyword loss. These 3 losses
and the combined total loss are shown in Figure 5 over 100 epochs.
As mentioned, likely keywords are words that the TD business
team determined to be highly likely to be positive if a sample con-
tains them. Interestingly, the search operation also found some
sentences that real negative labels containing likely keywords. This
fact is good news for me since it will allow the model to learn to
discriminate between real negative classes with likely keywords
and pseudo-label positive classes. The same can be said for the
neutral keyword class. To control the loss function, I assigned a
lambda of 0.5 to the likely group and 0.2 to the neutral group with
the idea that the likely group is more important than the neutral

Figure 6: F1 score weighted and Inference time in seconds

group. I do not want them to have too much effect on the real label
data.

Upon analyzing the loss graph in Figure 5, I can observe that the
normal loss decreased as expected over the course of 100 epochs.
Both keyword losses were optimized without any trade-off between
them and the normal loss. However, the neutral loss was a bit more
difficult to optimize, as it contained samples that were less likely.
This shows me that the keyword loss is effective in helping assist in
learning the total problem without adding additional noises. Based
on Table 3, my newly trained model has outperformed the existing
internal model that TD is currently using. I believe a large con-
tribution to this performance is to the specialized dataset. Since
the internal model was initially trained for multi-category predic-
tion for multiple purposes, a binary model that focuses on HLFs
would naturally be better at the task. This can be observed via the
baseline LSTM [Hochreiter and Schmidhuber(1997)] model, which,
with no modification, would be able to perform better than the
internal model. The textGCN family outperforms the LSTM base-
line in many metrics. This is due to the textGCN model’s ability to
leverage not only the predicted sample but also the surrounding
neighborhood to aggregate data, including positive, negative, and
unlabelled sets. Compared to other embeddings, I can observe that
TF-IDF is significantly better than other embeddings in many as-
pects. Firstly, pre-trained models such as Doc2Vec or BERT require
separate training or fine-tuning processes. Although this helps the
model to capture more information in the embedding, it also causes
TextGCN to inherit errors from these pre-trained models. The fact
that using simple transformations like TF-IDF on TextGCN creates
slightly better or comparable performances to these models shows
that the TextGCNmodel structure is state-of-the-art for text classifi-
cation and suffices to understand the problem. Secondly, pre-trained
models can be a black box due to their complexity, and relying on
these could open the door to security risks for TD, especially in
a high-security environment. Finally, looking at inference time,
shown in Figure 6, TF-IDF is significantly faster compared to all the
mentioned baselines. This is thanks to the sparsity of TF-IDF, and
the model also consumes less memory and computing resources.

6

Nodes Edges Selfloops Isolates Coverage
Train Graph 450023 16970415 0 0 1.0
Val Graph 450092 16975800 0 0 1.0

Table 1: Graph Statistics for the final model using TF-IDF embedding

Train Validate
Model Acc F1 weighted R P Acc F1 weighted R P
Intertal _ _ _ _ 0.700 0.772 0.5 0.272
LSTM 0.88 0.908 0.833 0.384 0.826 0.854 0.667 0.285

textGCN Doc2Vec 0.985 0.985 0.909 0.909 0.956 0.954 0.667 0.800
textGCN SBERT 0.992 0.992 1.000 0.916 0.927 0.938 0.833 0.556
textGCN TF-IDF 0.992 0.992 1.000 0.916 0.971 0.9729 1.000 0.75

Table 2: Model Performance Comparison with textGCN different embeddings

Figure 7: F1 weighted and number of validation samples in
an exponential scale

6.5 Analysis
6.5.1 Inference samples vs Performance . Given the nature of the
GCN model, each layer averages the surrounding neighbor nodes
to generate a new embedding for the target node. As I proposed
to expand the training graph each time a prediction is made, I hy-
pothesize that if the validation set is too large, it could increase the
variance in model predictions and consequently affect performance.
By plotting the graph comparing the number of samples in the
validation set against validation performance in Figure 7, I found
this decrease in performance to be true, but only with exponential
samples. Our model’s performance remained stable until around
1,000 validation samples, after which it dropped dramatically. I at-
tribute this to the introduction of a large volume of unseen data as
neighbors, which is incorporated into the graph by the GCN layers
and reduces the quality of the seen node embeddings in the graph.
Due to this phenomenon, I would recommend splitting future in-
ference sets into multiple small sets and predicting them in small
quantities.

Figure 8: F1 weighted vs additional semi-samples appended
to the original train graph to expand the model, break down
by whether applying lemmatization and stopword removal.

6.5.2 Number of semi samples vs Performance . Memory usage
is a significant concern for TextGCN due to the necessity of the
entire graph for each forward pass, particularly when incorpo-
rating unlabeled data. Our objective is to evaluate the trade-off
between unlabeled data and model performance. In this section, I
studied the effect of semi-samples on my F1-weighted performance.
I trained multiple TextGCN models with an exponential increase in
semi-samples and found that the increase in semi-samples does in-
crease the model performance. As seen on Figure 8, The relationship
between semi-samples and model performance is not completely
linear, especially when looking at models that have stop words
removed and are lemmatized. The performance peaked at around
10,000 samples but decreased again when going up to 100,000. In
contrast, models that have their stop words kept and are not lem-
matized have a more consistent relationship, with the performance
peaking when using the full set.

I hypothesize that this could be due to the lack of information
that removing stop words and lemmatizing causes. As semi-samples

7

Figure 9: F1 weighted vs PMI thresholds. The figure shows the
histogram distribution of the PMI edges. Each of the black
horizontal lines is a cut-off threshold, where PMI edges below
that number will be cut and trained to find the performance.
The right axis shows the validation F1 score weighted of the
model after that action is performed.

increase, more information is averaged into a node, and the node
neighborhood becomes more complex to learn. Since I am remov-
ing the quality of information by performing this operation, this
neighborhood is more noisy and can affect the quality of prediction.
This would explain the peak in performance for the first model type
as 10,000 is an appropriate amount of information for a node, and
more will generate more noise. This will also explain the consistent
increase when stop words are kept and not lemmatized since the
quality is consistent as the semi-samples increase. However, this
phenomenon could contribute to limited validation data, where
a small variation in prediction can affect the F1 score, especially
when the minority class has a significant weight. I would recom-
mend more research into these effects with more labeled validation
samples.

This shows that the model performance increases marginally
with the exponential incline of unlabelled samples. However, this
relationship is not consistent throughout different configurations,
and the trade should be carefully considered in future projects.

6.5.3 PMI vs Performance. Since I am only considering the positive
PMI (PPMI), the following is my final model PPMI distribution in
Figure 9. On top of the histogram, I overlay different PMI thresholds
that I cut off the final model. By measuring the performance of these
models, I can understand the effect of these thresholds.

𝑝𝑝𝑚𝑖 (𝑤𝑜𝑟𝑑1,𝑤𝑜𝑟𝑑2) = max
(
log2

𝑝 (𝑤𝑜𝑟𝑑1,𝑤𝑜𝑟𝑑2)
𝑝 (𝑤𝑜𝑟𝑑1)𝑝 (𝑤𝑜𝑟𝑑2) , 0

)
(11)

I found that raising the PMI threshold does affect the model perfor-
mance. The decrease in performance level was down to around 0.94
after the threshold was raised to 5, however, it stayed at that point
even after the complete removal of PMI edges. This shows the case
that the performance only decreases down to a point and remain
stable afterward. This also indicates that the PMI edges are essen-
tial for model learning, but only to a point. Without these edges,

Figure 10: The effectiveness of preprocessing operation to
model performance. The figure illustrates 4 combinations
between lemmatization and stopword removal and how these
models with different combinations performed on the vali-
dation set.

TextGCN can still reliably learn the problem, just with weaker
performances.

6.5.4 Stop word removal and lemmatization vs Performance. Finally,
recent research from [Pradana and Hayaty(2019)] in addition to
[DiPietro(2022)] suggest that refraining from removing stop words
and not applying lemmatization could enhance the performance of
mymodel. I believe this will be particularly true for TextGCN, as the
model relies on words for both information transfer and prediction.
I benchmarked the performance of my model with and without
the application of stop word removal and lemmatization. The re-
sults in Figure 10 show that my model with stop word removal
and lemmatization significantly underperforms compared to not
applying both processes. This is due to many reasons. First of all,
many available stop word libraries not only contain common Eng-
lish stop words like ‘a’ and ‘the’, but also many sentiment-related
words like ‘not’ and ‘no’. Removing these can dramatically alter
the context of a sentence, especially shorter sentences without any
additional information. Moreover, lemmatization could reduce the
model’s confidence by converting a highly sentimental token like
‘the best’ to the root ‘good’. There is also a trade-off between the
number of nodes when applying and not applying both operations.
With lemmatization and stop word removal, the number of nodes
decreases by about 6,000. However, this also reduces the model
performance from 0.97 to 0.93 in F1 validation.

6.5.5 Overall trade-off between memory and performance. In this
section, I will take a look into how to balance the memory con-
sumption of the modified version of textGCN for industrial usage.
Noticed that, so far, I have not mentioned memory consumption
in MBs this decision is due to my belief that Mbs usage is affected
by many factors, from dataset, length of each sample, number of
unique tokens, and how noisy is the data. Instead, I want to base
my analysis on graph information like nodes and edges to give an

8

overview of the relationship. The trade-off between memory and
performance is complex, and many different variables interact with
each other and affect this trade-off. For my use case, to maximize the
model performance, I leverage the maximum semi-sample, keeping
the PMI threshold to 0, and do not perform stop word removal and
lemmatization. These configs will use memory to a maximum level
but also optimize my model performance. Based on my analysis of
semi-sample, PMI, and preprocess pipeline, I suggest the following
general recommendations for balancing memory and performance
for further development and other use cases in an industrial set-
ting. I found an exponential relationship between semi-sample and
performance. Therefore, I recommend reducing the number of semi-
samples if a reduction in memory is needed since you would have to
reduce a significant amount to observe a large drop in performance.
This relationship only holds true if I keep stop words and do not
apply lemmatization, therefore I would recommend keeping these
configs. For the PMI threshold, the model’s performance decreases
significantly after raising, but only up to a point, the metric will
level down and will not decline even after complete PMI removal. If
a significant decrease in memory is needed, I recommend the total
removal of PMI edges rather than raising the threshold. I acknowl-
edge that the problem is empirical and depends on the problem.
However, I found these relationships to be generally true for most
of my textGCN applications internally. I also provided a grid search
in Table 3 for parameter interaction based on different configura-
tions for anyone interested in studying the interactions or needing
a reference for model development.

6.6 Discussion
In this project, I have implemented and modified TextGCN, a graph-
based neural network model for text classification, to address the
problem of identifying HLFs at TD Bank. I have experimented
with different configurations of the model, such as using TF-IDF or
Doc2Vec features, removing PMI edges, and leveraging both labeled
and unlabeled data via semi-supervised learning. I also incorporate
keyword loss by humans to insert human-confident labels into the
data, which assists the model in learning and converting. Adding
virtual nodes is also proposed to bypass the transitive learning prob-
lem. I have evaluated the model’s performance using a weighted F1
score and compared it with several baseline methods. Our results
show that TextGCN can achieve state-of-the-art results on the HLF
classification task, especially when using TF-IDF embedding and
keyword loss. I have also observed that adding too large a number
of virtual nodes in one inference batch can negatively impact the
model’s ability to predict and should be carefully regulated. Remov-
ing PMI edges can degrade the model’s performance, as it may lose
some semantic information between words. However, the decline is
only to a point and provides an acceptable model if needed. I found
an exponential positive relationship between unlabeled data and
performance and confirmed the research indicating the positive
effect of not applying stop word removal and lemmatization. Based
on these findings, I also provided a recommendation guideline on
how to balance memory and performance. Some of the limitations
and future directions of my project are the following:

• One of the important factors of textGCN is the adjacency
matrix; although powerful, this also limited the model to

the train data distribution. For some other text classifica-
tion tasks, like social media, the distribution would shift
frequently and require frequent retraining. One could re-
place the adjacency matrix with another build based on the
new distribution and study the model’s performance. The-
oretically, assuming that the model learned the interaction
between words, the neural network layer would be able to
generalize with limited loss in performance.

• Due to my limited data capacity, I have used a relatively
small and imbalanced dataset, which may expose my model
to variation in learning and evaluation. A larger and more
balanced dataset may improve the model’s performance and
provide a more accurate analysis.

• The same keyword loss and analysis method could be ap-
plied to other graph-based models or architectures, such as
Graph Attention Networks (GAT) [Veličkovi’c et al.(2018)]
or Graph Convolutional Networks with Edge Features (GCN-
EF) [Liu et al.(2020)], which may offer better performance
or interpretability for the HLF classification task.

6.7 Implementation
The project leveragesmultiple Python libraries for development. For
preprocessing, nltk and sklearn’s TfidfVectorizer are used to process
data and create TF-IDF objects. For graph creation, networkx is
mainly employed. And for the modeling section, I used PyTorch to
train on the problem.

7 ACKNOWLEDGEMENT
I would like to express my sincere gratitude to my industrial su-
pervisor, Sneha, for her guidance, encouragement, and support
throughout this project. She helped me to define the problem, de-
sign the methodology, and evaluate the results. I also thank my
academic supervisor, Prof. Manos for his valuable insights and sug-
gestions on the scope and direction of my research. He provided
me with constructive feedback and useful resources to improve my
work. Finally, I am grateful to Prof. Ruth for serving as a committee
member and reviewing my paper. Her comments and questions
helped me to refine my arguments and presentation.

REFERENCES
[Asgari-Chenaghlu et al.(2020)] Meysam Asgari-Chenaghlu, Mohammad-Reza Feizi-

Derakhshi, Leili farzinvash, Mohammad-Ali Balafar, and Cina Motamed.
2020. TopicBERT: A Transformer transfer learning based memory-graph ap-
proach for multimodal streaming social media topic detection. arXiv preprint
arXiv:2008.06877 (2020).

[Bastings et al.(2017)] Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani,
and Khalil Simaan. 2017. Graph convolutional encoders for syntax-aware neural
machine translation. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing. 1957–1967.

[Cai et al.(2018)] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang.
2018. A comprehensive survey of graph embedding: problems, techniques and
applications. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018),
1616–1637.

[Defferrard et al.(2016)] Micha"el Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information processing systems. 3844–3852.

[DiPietro(2022)] Daniel M DiPietro. 2022. Quantitative Stopword Generation for
Sentiment Analysis via Recursive and Iterative Deletion. arXiv preprint
arXiv:2209.01519 (2022).

[Henaff et al.(2015)] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep con-
volutional networks on graph-structured data. arXiv preprint arXiv:1506.05163
(2015).

9

[Hochreiter and Schmidhuber(1997)] SeppHochreiter and J"urgen Schmidhuber. 1997.
Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.

[Jiang and Luo(2021)] Weiwei Jiang and Jiayun Luo. 2021. Graph Neural Network for
Traffic Forecasting: A Survey. Expert Systems with Applications 207 (2021), 117921.
arXiv:2101.11174 [cs.LG]

[Karl and Scherp(2023)] Fabian Karl and Ansgar Scherp. 2023. Transformers are Short
Text Classifiers: A Study of Inductive Short Text Classifiers on Benchmarks and
Real-world Datasets. arXiv preprint arXiv:2211.16878 (2023).

[Kim(2014)] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classifica-
tion. arXiv preprint arXiv:1408.5882 (2014).

[Kipf and Welling(2016)] Thomas N Kipf and Max Welling. 2016. Semi-supervised
classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
(2016).

[Kipf and Welling(2017)] Thomas N Kipf andMaxWelling. 2017. Semi-supervised clas-
sification with graph convolutional networks. In Proceedings of the International
Conference on Learning Representations (ICLR).

[Le and Mikolov(2014)] Quoc Le and Tomas Mikolov. 2014. Distributed representa-
tions of sentences and documents. arXiv preprint arXiv:1405.4053 (2014).

[Lee(2013)] Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. InWorkshop on challenges
in representation learning, ICML, Vol. 3.

[Li et al.(2018)] Yan Li, Zhi Jin, and Yongkun Luo. 2018. Classifying relations via long
short term memory networks along shortest dependency paths. IEEE Transactions
on Knowledge and Data Engineering 30, 10 (2018), 1790–1803.

[Liu et al.(2016)] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent Neu-
ral Network for Text Classification with Multi-Task Learning. arXiv preprint
arXiv:1605.05101 (2016).

[Liu et al.(2020)] Zhenfeng Liu, Jia Li, Yu Wang, Zhiyuan Li, Guoping Zhou, and
Maosong Sun. 2020. Graph Convolutional Networks with Edge Features. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence.
2249–2255.

[Marcheggiani and Titov(2017)] Diego Marcheggiani and Ivan Titov. 2017. Encod-
ing sentences with graph convolutional networks for semantic role labeling. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. 1506–1515.

[Nakajima and Sasaki(2022)] Hiromu Nakajima and Minoru Sasaki. 2022. Text Classi-
fication Using a Graph Based on Relationships Between Documents. In Proceed-
ings of the 36th Pacific Asia Conference on Language, Information and Computa-
tion. Association for Computational Linguistics, Manila, Philippines, 119–125.
https://doi.org/10.48550/2022.paclic-1.14

[Ojo et al.(2023)] Olumide Ebenezer Ojo, Hoang Thang Ta, Alexander Gelbukh, Hiram
Calvo, Olaronke Oluwayemisi Adebanji, and Grigori Sidorov. 2023. Transformer-
based approaches to Sentiment Detection. arXiv preprint arXiv:2303.07292 (2023).

[Park et al.(2022)] Hyunji Hayley Park, Yogarshi Vyas, and Kashif Shah. 2022. Ef-
ficient Classification of Long Documents Using Transformers. arXiv preprint
arXiv:2203.11258 (2022).

[Peng et al.(2018)] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong
Wang, Yangqiu Song, and Qiang Yang. 2018. Large-scale hierarchical text classifi-
cation with recursively regularized deep graph-cnn. In Proceedings of the 2018
World Wide Web Conference. 1063–1072.

[Pradana and Hayaty(2019)] Aditya Wiha Pradana and Mardhiya Hayaty. 2019. The
effect of stemming and removal of stopwords on the accuracy of sentiment anal-
ysis on indonesian-language texts. Kinetik: Game Technology, Information System,
Computer Network, Computing, Electronics, and Control 4, 4 (2019), 375–380.

[Reimers and Gurevych(2019)] Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
3982–3992.

[Tida and Hsu(2022)] Vijay Srinivas Tida and Sonya Hsu. 2022. Universal Spam De-
tection using Transfer Learning of BERT Model. arXiv preprint arXiv:2202.03480
(2022).

[Veličkovi’c et al.(2018)] Petar Veličkovi’c, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio, and Yoshua Bengio. 2018. Graph attention networks. In
International Conference on Learning Representations.

[Wang and Manning(2012)] Sida Wang and Christopher D. Manning. 2012. Baselines
and Bigrams: Simple, Good Sentiment and Topic Classification. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational Linguistics, 90–94.

[Wu et al.(2020)] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2020.
Graph Neural Networks in Recommender Systems: A Survey. ACM Computing
Surveys (CSUR) 54, 6 (2020), 1–37. arXiv:2011.02260 [cs.IR]

[Yao et al.(2019)] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolu-
tional networks for text classification. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 7370–7377.

[Zhang et al.(2018)] Meishan Zhang, Pengfei Liu, and Yubo Song. 2018. End-to-end
neural relation extraction with global optimization. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers). 88–94.

10

https://arxiv.org/abs/2101.11174
https://doi.org/10.48550/2022.paclic-1.14
https://arxiv.org/abs/2011.02260

Number of Semi Labels PMI Threshold if removeStopword+lemmatized F1 Score
10 0 Yes 0.936
10 0 No 0.914
10 5 Yes 0.912
10 5 No 0.891
10 10 Yes 0.889
10 10 No 0.869
10 15 Yes 0.867
10 15 No 0.848
100 0 Yes 0.903
100 0 No 0.9399
100 5 Yes 0.881
100 5 No 0.919
100 10 Yes 0.86
100 10 No 0.899
100 15 Yes 0.84
100 15 No 0.88
1000 0 Yes 0.9447
1000 0 No 0.9563
1000 5 Yes 0.923
1000 5 No 0.936
1000 10 Yes 0.902
1000 10 No 0.916
1000 15 Yes 0.882
1000 15 No 0.897
10000 0 Yes 0.9457
10000 0 No 0.944
10000 5 Yes 0.924
10000 5 No 0.923
10000 10 Yes 0.904
10000 10 No 0.903
10000 15 Yes 0.885
10000 15 No 0.884
100000 0 Yes 0.902
100000 0 No 0.958
100000 5 Yes 0.882
100000 5 No 0.938
100000 10 Yes 0.863
100000 10 No 0.942
100000 15 Yes 0.845
100000 15 No 0.9

Table 3: Grid search for parameter interaction of textGCN

11

	Abstract
	1 introduction
	1.1 Background
	1.2 Project timeline
	1.3 TD Privacy
	1.4 Problem Description

	2 Datasets
	3 Related Work
	3.1 Text classification
	3.2 Graph neural networks
	3.3 GNNs for text classification

	4 Methodology
	4.1 Labeling
	4.2 Text GCN
	4.3 Proposed modification of Text GCN
	4.4 Loss

	5 Evaluation
	6 Results
	6.1 Labeling
	6.2 Preprocessing
	6.3 Text GCN
	6.4 Train and Performance
	6.5 Analysis
	6.6 Discussion
	6.7 Implementation

	7 acknowledgement

