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Introduction
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Networks and Time Series are Ubiquitous
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Network of Time Series
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Binary Time Series
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Active Components
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Problem Statement
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Problem Statement

Given:
• A graph,

• An matrix     representing the 
time series, where       is the status 
of node   at time    

We want to compute     , the set of 
active components at time step   , for  
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Why Do We Care?
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Applications

Technological networksSocial networks Biological networks
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Road Networks

Road Network
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Background
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Graph Theory Background

• DFS-tree
• Heavy-Light Decomposition & Shallow Tree
• DFS-tree Enumeration 
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DFS-tree

none-tree edgesgraph G
DFS-tree of G
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Heavy Light Decomposition & Shallow Tree

heavy light decomposition shallow treeDFS-tree

nodePath
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DFS-tree Enumeration (dfs-id)
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Methodology
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Overview
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Updating the Shallow Tree

1. Delete inactive nodes from ST
2. Set the nodePath for all active nodes
3. Set the parent of each nodePath
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ActiveComp

ActiveComp(G, T, T*, u) 
u.nodePath = p
DFS on the shallow tree:
• Add the nodePath p to the 

partially grown spanning-tree T*
• Fill Efficient_AL for all the nodes 

on p
• Continue with calling ActiveComp

recursively on nodes in 
Efficient_AL for all the nodes on p

p1

p2

p3
p4
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Query to the Data Structure

query(node u, nodePath p)

query(7,p1)

• returns a vertex on the p that 
is connected to u if there is 
any otherwise returns nullptr

• u has to be on one of the p’s 
descendant

p1

p2

p3
p4
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Computing Efficient Adjacency List

Vertices on a nodePath p can only have edges to 
the p’s ancestors or descendants in the shallow 
tree

For each node u on the nodePath p that is being 
attached to T* we need to make two categories of 
queries to fill its Efficient_AL:

1. queries from u to an ancestor of p which is not 
attached yet

2. queries from nodes on each descendant of p to 
p
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Data Structure

For each node u of the original graph 
and its corresponding DFS-tree T we 
save u's ancestors in T that u has an 
edge to.
For example:
dfs_id:

Data structure Anc_Nbr:

T
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Time Complexity

Time complexity of ActiveComp is bounded by Compute_Efficient_AL
Compute_Efficient_AL time complexity is bounded by the number of 
calls to function query
For each node u we make a query to a path in the two following 
scenarios:
• u is not visited, one of u.nodePath’s ancestors is being attached to 
T*

• u.nodePath is being attached to T* and the query is from u to one of 
u.nodePath’s ancestors who are not attached

The height of shallow tree ST is d
Maximum number of calls to query from all n nodes is nd
Each query takes log(n)
In total we the time complexity is
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Experimental Evaluation
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Synthetic Graph generation

Using small-world model 

regular network 

high average shortest path
high clustering coefficient

small-world network

low average shortest path
high clustering coefficient

random network

low average shortest path
low clustering coefficient
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Synthetic Time Series Data Generation

matrix     representing time 
series, nodes’ status through time 1 2 3 4 5

A 1 1 1 1 0

B 1 1 0 0 0

C 0 1 1 1 0

D 0 1 1 1 0

E 0 1 1 1 1

F 0 0 0 1 1

Time Steps

Ve
rti

ce
sTwo scenarios:

1. Random
2. Forest Fire
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Other Baselines

• Simple DFS

• Dynamic DFS [Baswana et al.,2019]

• Edge Deletion [Albert et al., 1997]

29 of 38



Percentage Active Nodes

We show the result in two different categories:
1 . High percentage active nodes

more than 99 percentage of nodes are on

2 . Low percentage active nodes
less than 1.5 percentage of nodes are on
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Performance of all Four Algorithms

• small-world network
• 10,000 nodes 
• random scenario
• 1000 time steps
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High Percentage Active Nodes

n=50k, k=250 n=50k, k=500

n=50k, k= 750 n=50k, k =1000

• small-world network with 50,000 nodes
• random scenario with 1000 time steps
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Low Percentage Active Nodes

n=50k, k=250
n=50k, k =500

n=50k, k =750 n=50k, k=1000
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Conclusion, Limitations & Future Work
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Conclusion
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• Introduce a new problem of 
finding active components in 
a network of time series.

• Introduce ActiveComp
• Show the time complexity
• Empirically compare it to 

other baselines 
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Limitations

1. Scalability to Very Large Graphs
2. Underperforming in Specific Instances of the Problem
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Future Work

1. Employing Parallel Computations
2. Fine-tuning to Accommodate Different Network 

Topologies
3. Extending the Comparative Empirical Analysis
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Thank You
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