
Efficient Mining of Active Components in a
Network of Time Series

York University, Toronto, Canada

M.Sc. Thesis of Mahta Shafieesabet

1 of 38

Introduction

2 of 38

Networks and Time Series are Ubiquitous

time seriesnetworks

B

A C

D

3 of 38

Network of Time Series

static topology

B

A C

D

4 of 38

Binary Time Series

B

A C

D

Active at >= 3000

1 1

Time

0 0 1 0 1 …

t=1 t=2 t=3 t=4 t=5 t=6 t=7

5 of 38

Active Nodes

Inactive Active

B

A C

D

Nodes at t = 2

0, 1, 1,…

B

A C

D
1, 1, 0,…

1, 0, 0,…

0, 1, 0,…

6 of 38

Active Components

A B

D

C

G

F

E

A B

D

C

G

F

E

t = 2t = 1 t = 3

A B

D

C

G

F

E

{ {AB}, {FG} } {{ADC}} {{ ADCG}}

7 of 38

Problem Statement

8 of 38

Problem Statement

Given:
• A graph,

• An matrix representing the
time series, where is the status
of node at time

We want to compute , the set of
active components at time step , for

B

A C

D

9 of 38

Why Do We Care?

10 of 38

Applications

Technological networksSocial networks Biological networks

11 of 38

Road Networks

Road Network

B

A C

D

12 of 38

Background

13 of 38

Graph Theory Background

• DFS-tree
• Heavy-Light Decomposition & Shallow Tree
• DFS-tree Enumeration

14 of 38

DFS-tree

none-tree edgesgraph G
DFS-tree of G

15 of 38

Heavy Light Decomposition & Shallow Tree

heavy light decomposition shallow treeDFS-tree

nodePath

16 of 38

DFS-tree Enumeration (dfs-id)

(a,1)
(b,2)
(c,3)
(d,4)
(e,5)
(f,6)
(g,7)
(h,8)
(i,9)
(j,10)
(k,11)
(l,12)
(m,13)
(n,14)
(o,15)
(p,16)
(q,17)
(r,18)

DFS-tree T

17 of 38

Methodology

18 of 38

Overview

19 of 38

Updating the Shallow Tree

1. Delete inactive nodes from ST
2. Set the nodePath for all active nodes
3. Set the parent of each nodePath

p1

p2

p3

p1’

p2

p4
p3’

p1’

p2

p4
p3’

p2

20 of 38

ActiveComp

ActiveComp(G, T, T*, u)
u.nodePath = p
DFS on the shallow tree:
• Add the nodePath p to the

partially grown spanning-tree T*
• Fill Efficient_AL for all the nodes

on p
• Continue with calling ActiveComp

recursively on nodes in
Efficient_AL for all the nodes on p

p1

p2

p3
p4

21 of 38

Query to the Data Structure

query(node u, nodePath p)

query(7,p1)

• returns a vertex on the p that
is connected to u if there is
any otherwise returns nullptr

• u has to be on one of the p’s
descendant

p1

p2

p3
p4

22 of 38

Computing Efficient Adjacency List

Vertices on a nodePath p can only have edges to
the p’s ancestors or descendants in the shallow
tree

For each node u on the nodePath p that is being
attached to T* we need to make two categories of
queries to fill its Efficient_AL:

1. queries from u to an ancestor of p which is not
attached yet

2. queries from nodes on each descendant of p to
p

23 of 38

Data Structure

For each node u of the original graph
and its corresponding DFS-tree T we
save u's ancestors in T that u has an
edge to.
For example:
dfs_id:

Data structure Anc_Nbr:

T

24 of 38

Time Complexity

Time complexity of ActiveComp is bounded by Compute_Efficient_AL
Compute_Efficient_AL time complexity is bounded by the number of
calls to function query
For each node u we make a query to a path in the two following
scenarios:
• u is not visited, one of u.nodePath’s ancestors is being attached to
T*

• u.nodePath is being attached to T* and the query is from u to one of
u.nodePath’s ancestors who are not attached

The height of shallow tree ST is d
Maximum number of calls to query from all n nodes is nd
Each query takes log(n)
In total we the time complexity is

25 of 38

Experimental Evaluation

26 of 38

Synthetic Graph generation

Using small-world model

regular network

high average shortest path
high clustering coefficient

small-world network

low average shortest path
high clustering coefficient

random network

low average shortest path
low clustering coefficient

27 of 38

Synthetic Time Series Data Generation

matrix representing time
series, nodes’ status through time 1 2 3 4 5

A 1 1 1 1 0

B 1 1 0 0 0

C 0 1 1 1 0

D 0 1 1 1 0

E 0 1 1 1 1

F 0 0 0 1 1

Time Steps

Ve
rti

ce
sTwo scenarios:

1. Random
2. Forest Fire

28 of 38

Other Baselines

• Simple DFS

• Dynamic DFS [Baswana et al.,2019]

• Edge Deletion [Albert et al., 1997]

29 of 38

Percentage Active Nodes

We show the result in two different categories:
1 . High percentage active nodes

more than 99 percentage of nodes are on

2 . Low percentage active nodes
less than 1.5 percentage of nodes are on

30 of 38

Performance of all Four Algorithms

• small-world network
• 10,000 nodes
• random scenario
• 1000 time steps

31 of 38

High Percentage Active Nodes

n=50k, k=250 n=50k, k=500

n=50k, k= 750 n=50k, k =1000

• small-world network with 50,000 nodes
• random scenario with 1000 time steps

32 of 38

Low Percentage Active Nodes

n=50k, k=250
n=50k, k =500

n=50k, k =750 n=50k, k=1000
33 of 38

Conclusion, Limitations & Future Work

34 of 38

Conclusion

B

A C

D

A B

D
C

G
F

E

A B

D
C

G
F

E

t = 1 t = 2 t = 3

A B

D
C

G
F

E

• Introduce a new problem of
finding active components in
a network of time series.

• Introduce ActiveComp
• Show the time complexity
• Empirically compare it to

other baselines

35 of 38

Limitations

1. Scalability to Very Large Graphs
2. Underperforming in Specific Instances of the Problem

36 of 38

Future Work

1. Employing Parallel Computations
2. Fine-tuning to Accommodate Different Network

Topologies
3. Extending the Comparative Empirical Analysis

37 of 38

Thank You

38 of 38

