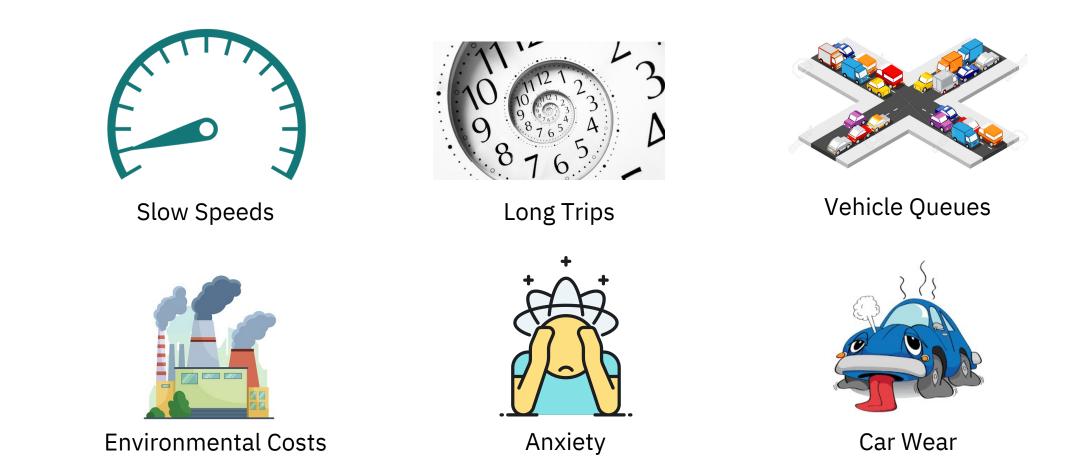
Evaluating and Forecasting the Operational Performance of Road Intersections

Supervisor: Manos Papagelis

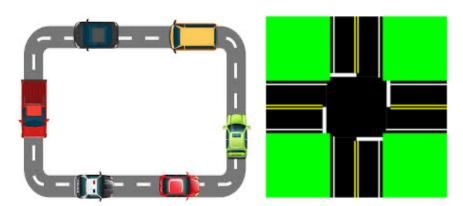

M.SC. THESIS OF ALI NEMATICHARI

Motivation

Traffic Congestion Consequences

Road Intersection Effect on Traffic Management

Complex Configurations



Great Part of Travel Times

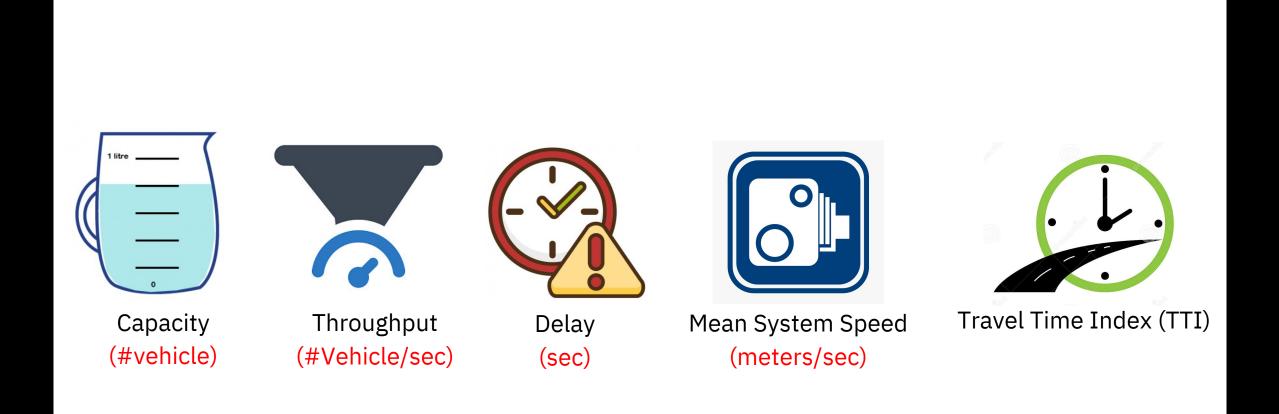
High Percentage of Accidents

Limitations of Current Approaches

Limited Focus on Road Intersection Performance

Industry Standards Measures of Effectiveness (MOEs)

How can we compute the road operational performance using the MOEs?


Problem Definition

Road Network and Intersection Definition

Measures of Effectiveness (MOEs)

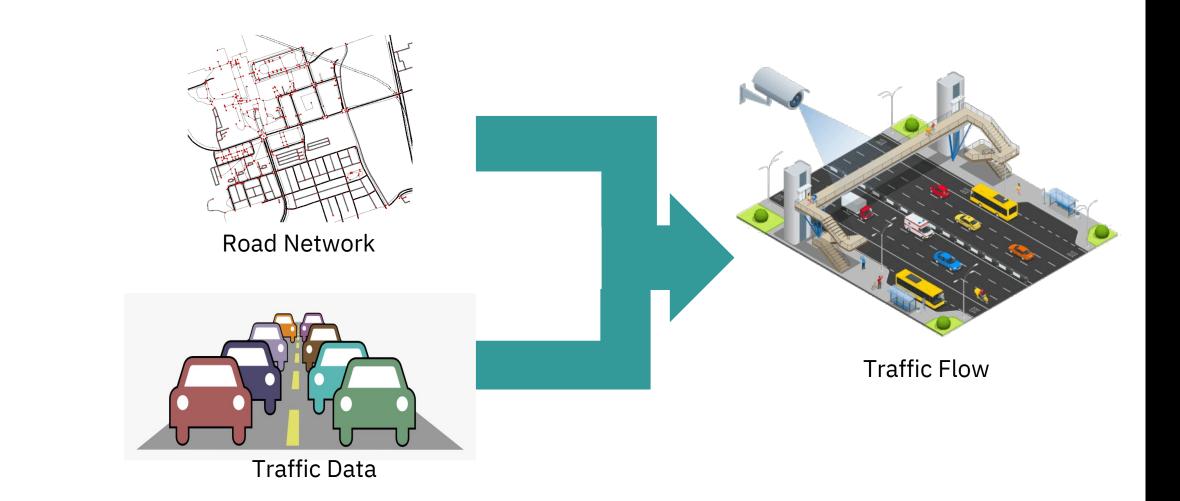
Problem

Definitions:

- Road network G := (V, E, s, t)
- Observation time period [0, T]
- Set of trajectories $\tau = \{Ci\}$
- Registry of vehicles Ci = {(ti, e)}

Problem 1 (Real time analysis)

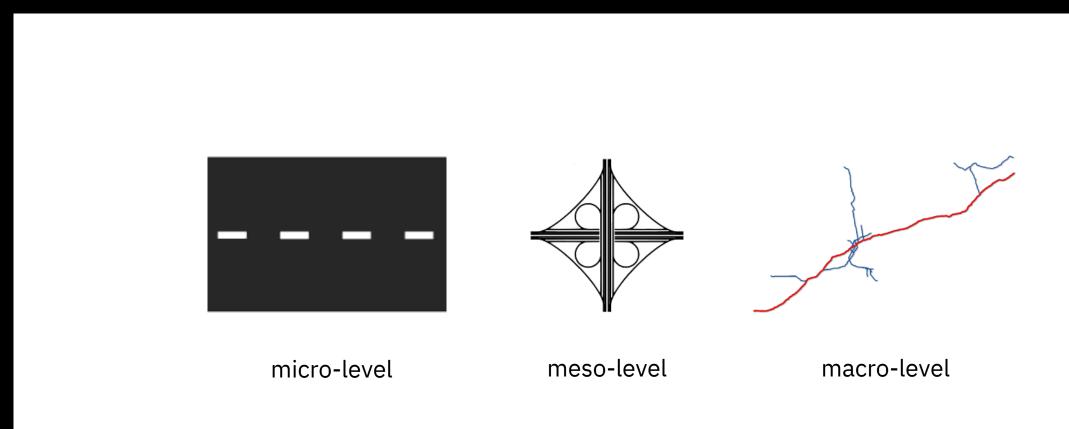
Given a road intersection $v \in V$ of the road network G and τ , we want to compute the TTI of the intersection during [0, T]


Problem 2 (Time series forecasting)

Given a road intersection $v \in V$ of the road network G and τ , we want to forecast the TTI of the intersection for the period [T, T + Δ], where $\Delta > 0$

Methodology

Data Representation


Graph Representation of a Road Network

Problem 1

System Abstractions

Road Network MOEs Evaluation

> RoadNetworkModel

- Junctions
- Edges
- Edge systems

EdgeSystem

- Vehicles
- Distance gone
- Total ideal time
- Update entered ()
- Update left ()
- Compute metrics ()

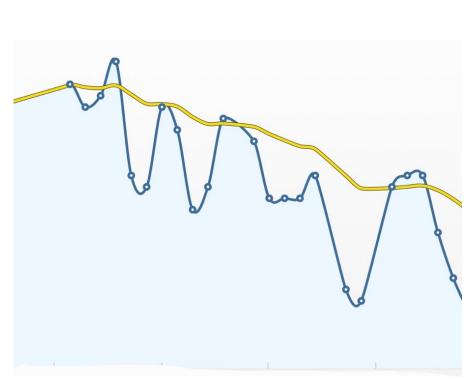
Maintaining Hierarchies of MOEs

- RoadNetworkModel
 - Multi edge systems
- > Multi Edge System
 - Edge systems
 - Overwritten update entered vehicle

Problem 2

Time Series Forecasting

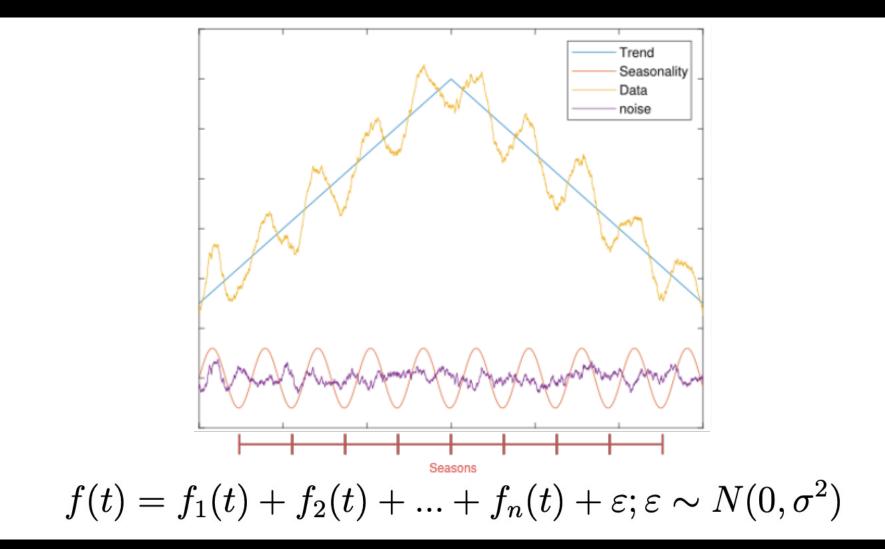
- > What is a time series forecasting problem?
 - Scientific predictions based on historical time stamped data.
- > What is structural time series?
 - Exhibiting some periodic patterns


- > Why is this a time series forecasting problem?
 - TTI time series for each intersection
- > Is my time series structural?
 - Hourly and daily patterns

Structural Time Series (STS)

Smoothing

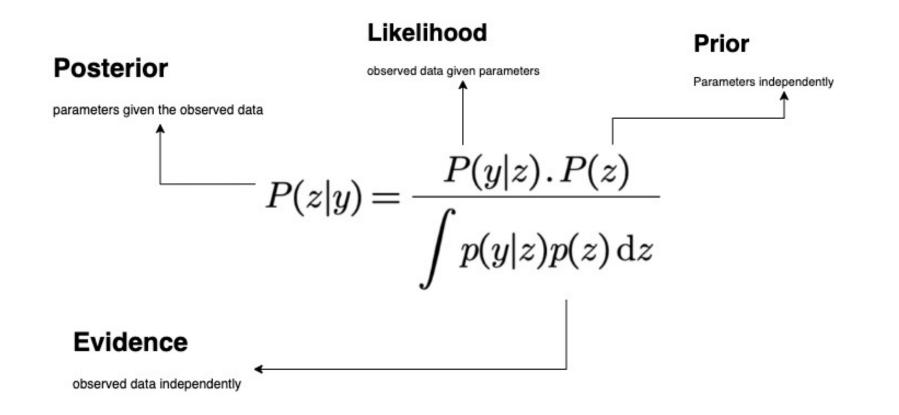
2



> Solution: smoothing the time series

$$\bar{y_t} = \frac{y_t + y_{t-1} + \dots + y_{t-w-1}}{w}$$

STS Components



STS Components

- > Trend: Local linear trend component
- > Seasonality: Fourier component
- > External data: Regressor component
- > Noise: Auto regressive component

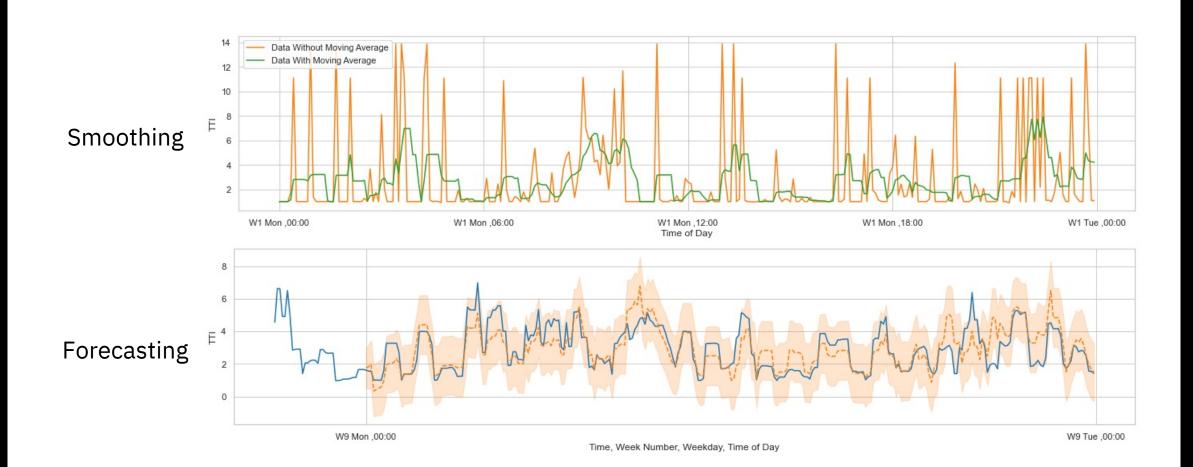
Bayesian Forecasting

Approximations

- > **Prior**: Independence assumption, and distribution assumption
- **> Likelihood**: Production rule, analytical form computed
- **Evidence (marginal likelihood)**: Complex to solve, becoming constant after observations
- > **Posterior**: Has to be approximated numerically using variational inference and ELBO

Predictions

 $p(x_T \mid y_{1:T}, z) \rightarrow p(x_{T+1} \mid y_{1:T}, z) \rightarrow p(x_{T+2} \mid y_{1:T}, z) \rightarrow \dots \rightarrow p(x_{T+i} \mid y_{1:T}, z)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $p(y_{T+1} \mid y_{1:T}, z) \rightarrow p(y_{T+2} \mid y_{1:T}, z) \rightarrow \dots \rightarrow p(y_{T+i} \mid y_{1:T}, z)$

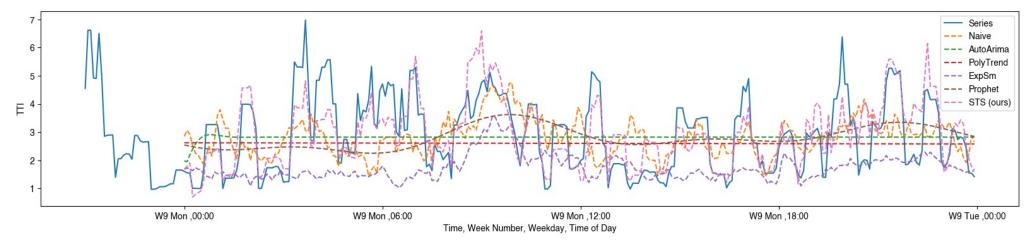

Experimental Evaluation

Data Description

- > Network data: map of York University area between Keele st, Jane st, Steeles ave, and Finch ave.
- > Traffic flow data: Synthetic traffic flow dataset using the generator described in the next section.
- > Duration: 9 weeks
- > Training set: 8 weeks
- > Test set: 1 week
- > Total population residing in the network: 10,000
- > Number of intersection in map: 28
- > Observation rate: 5 minutes

Data Preparation

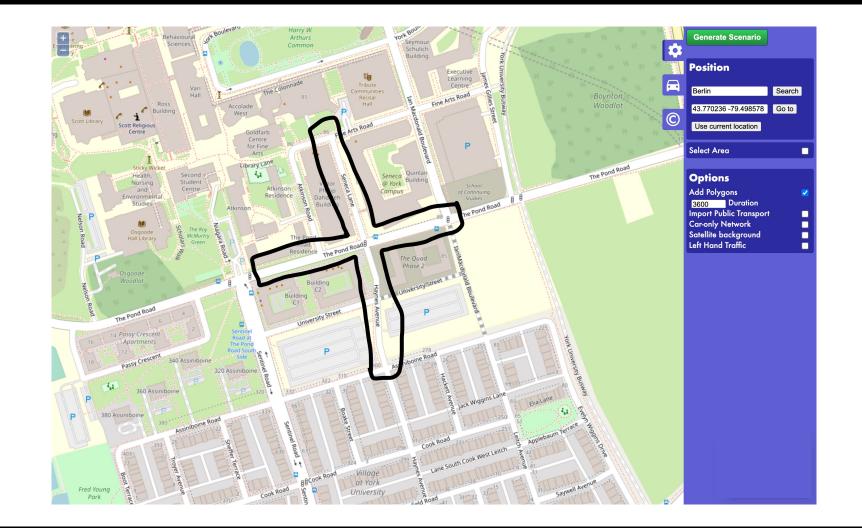
STS Decompositions


Results

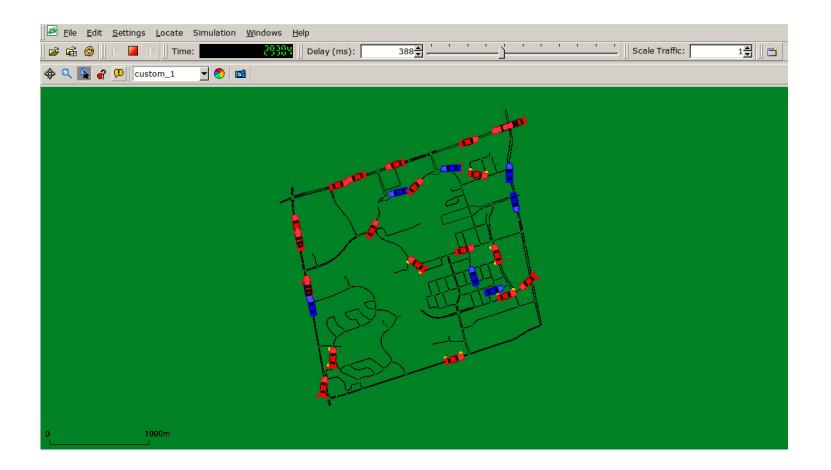
NAIVE	AutoArima	PolyTrend	ЕхрЅм	PROPHET	STS (OURS)
1.24	1.22	1.25	2.25	1.19	0.66
		arfarmanca of th	o forocost	ing models	

Accuracy performance of the forecasting models

Behavior of Methods



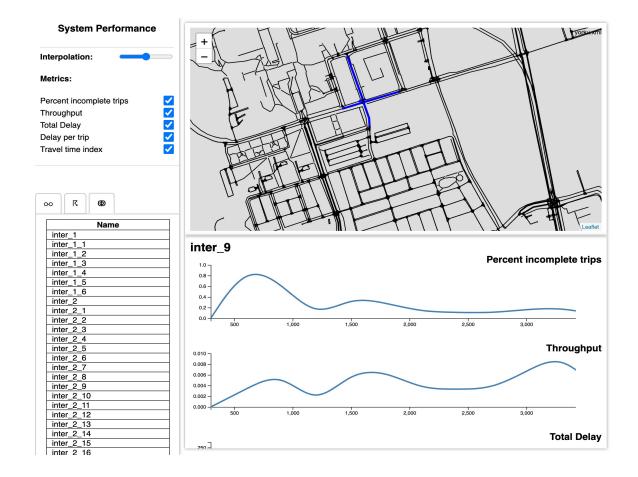
Accuracy performance of the forecasting models (visualization)


System Proof of Concept

Road Network Extraction

Traffic Flow Generation

Activitygen

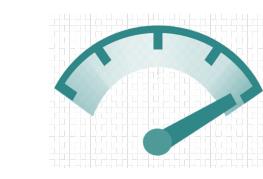


Dashboard

System Configuration	+ + H				
Network: yorku.net.xml ~					
Edges: 3215					MI I
Junctions: 626	The INCLASS OF				N
Paths: 740					N
Length: 90.842 km			٨		M
Shortest paths only:			\mathbb{N}		NN N
Hide internal edges:			-M		NN NN
		EFTTE			M
Simulation: yorku.xml ~		TUHT	SO	N .	N
Obsrv. rate: 300 s			7		
Passenger Car Equivalent:			\sim	(\\\\ //	Leaf
Passenger 1				· · · · · · · · · · · · · · · · · · ·	
Motorcycle 0.5	oo Edges				
Truck 3.5					
Bus 3.5	Create group Group name				All None
	Croab fiame				7 11 110110
Taxi 1	ID	Туре	Lanes		Length
Faxi	35981828#0	railway.subway	1	100 km/h	4519.11 m
Faxi	35981828#0 8630756#1	railway.subway railway.subway	1	100 km/h 100 km/h	4519.11 m 4519.44 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0	railway.subway railway.subway highway.unclassified	1 1 1	100 km/h 100 km/h 30 km/h	4519.11 m 4519.44 m 393.61 m
Faxi	35981828#0 8630756#1 -219267291#0 219267291#0	railway.subway railway.subway highway.unclassified highway.unclassified	1 1 1	100 km/h 100 km/h 30 km/h 30 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m
Taxi 1 Other 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2	railway.subway railway.subway highway.unclassified highway.unclassified highway.footway	1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m
Faxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.footway highway.tertiary	1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.tertiary highway.tertiary	1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m 432.67 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.footway highway.tertiary	1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h 40 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m
axi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0 751431965#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.tertiary highway.tootway	1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h 40 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0 751431965#0 839208338#1 839208339#0 868470361#3	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.tertiary highway.tertiary highway.tootway highway.footway highway.footway highway.footway	1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 40 km/h 40 km/h 10 km/h 10 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m 150.27 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0 751431965#0 839208338#1 839208338#1 839208339#0 868470361#3 868470361#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.tertiary highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h 10 km/h 10 km/h 10 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m 150.27 m 0.2 m
Taxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0 8068384#0 839208338#1 839208339#0 868470361#3 868470361#0 868470361#1	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h 10 km/h 10 km/h 10 km/h 10 km/h 10 km/h	4519.11 m 4519.44 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m 150.27 m 0.2 m 23.33 m
Faxi 1 Dther 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 751431965#0 839208339#0 868470361#3 868470361#3 868470361#1 839208338#0	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.tertiary highway.tertiary highway.tootway highway.tootway highway.tootway highway.footway highway.footway highway.footway highway.footway	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 40 km/h 40 km/h 10 km/h 10 km/h 10 km/h 10 km/h 10 km/h 10 km/h	4519.11 m 4519.44 m 393.61 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m 150.27 m 0.2 m 23.33 m 2.78 m
Taxi 1 Other 1	35981828#0 8630756#1 -219267291#0 219267291#0 839208338#2 -8068384#0 8068384#0 8068384#0 839208338#1 839208339#0 868470361#3 868470361#0 868470361#1	railway.subway railway.subway highway.unclassified highway.unclassified highway.tertiary highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway highway.footway	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 km/h 100 km/h 30 km/h 30 km/h 10 km/h 40 km/h 10 km/h 10 km/h 10 km/h 10 km/h 10 km/h	4519.11 m 4519.44 m 398.07 m 941.29 m 431.96 m 432.67 m 290.41 m 104.06 m 157.95 m 150.27 m 0.2 m 23.33 m

Dashboard

Contributions and Future Work

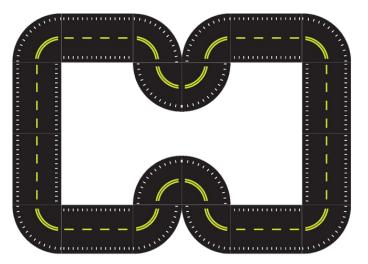

Contributions

Operational Performance

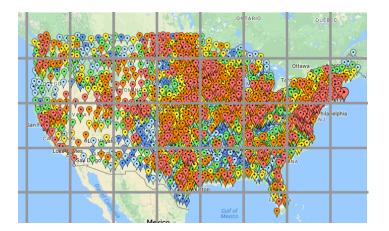
Industry Standards

Real-time MOE Calculation

Realistic Empirical Study


Congestion Forecasting

Safety and Efficiency


Future Work

Real World Data

Travel Time Estimation

Network Summarization

Thank you

Questions?