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Abstract

Mining trajectory data to find interesting patterns is of increasing research interest due to a broad

range of useful applications, including analysis of transportation systems, location-based social networks,

and crowd behavior. The primary focus of this research is to leverage the abundance of trajectory data

to automatically and accurately learn latent semantic relationships between different geographical areas

(e.g., semantically correlated neighborhoods of a city) as revealed by patterns of moving objects over time.

While previous studies have utilized trajectories for this type of analysis at the level of a single geographical

area, the results cannot be easily generalized to inform comparative analysis of different geographical areas.

In this work, we study this problem systematically. First, we present a method that utilizes trajectories

to learn low-dimensional representations of geographical areas in an embedded space. Then, we develop a

statistical method that allows to quantify the degree to which real trajectories deviate from a theoretical null

model. The method allows to (a) distinguish geographical proximity to semantic proximity, and (b) inform

a comparative analysis of two (or more) models obtained by trajectories defined on different geographical

areas. This deep analysis can improve readers understanding of how space is perceived by individuals and

inform better decisions of urban planning. Our experimental evaluation aims to demonstrate the effectiveness

and usefulness of the proposed statistical method in two large-scale real-world data sets coming from the

New York City and the city of Porto, Portugal, respectively. The methods we present are generic and

can be utilized to inform a number of useful applications, ranging from location-based services, such as

point-of-interest recommendations, to finding semantic relationships between different cities.
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1 Introduction

Advances in location acquisition and tracking devices have given rise to the generation of enormous tra-

jectory data consisting of spatial and temporal information of moving objects, such as persons, vehicles or

animals. These trajectories can either be physically constrained (e.g., a pedestrian walking on a sidewalk,

vehicles driving on road network) or unconstrained (e.g., a birds flight). Discovering patterns and extracting

knowledge from trajectories is critically important to many real-world applications, including human mo-

bility understanding (e.g., pedestrian mobility mining), health care (e.g., detecting changes in gait patterns

of seniors), smart transportation and urban planning (e.g., traffic forecasting and optimization), location-

based services (e.g., recommendations of points of interest), to name a few. Harnessing the abundance of

trajectory data and being able to design accurate predictive models can inform decision-making, and can

enable cities to improve their operational efficiency and help their citizens to improve everyday living. Of

great research interest have been problems related to trajectory similarity [34,35], trajectory clustering and

outlier detection [18, 42], or crowd behavioral analysis [6, 10, 29, 32, 43]. A comprehensive survey of classical

trajectory data mining can be found in [44]. Recent advances on trajectory data mining look on network

dynamics of trajectories, such as mining group patterns of trajectories [28,30] and mining the importance of

a moving object in trajectory networks [26].

More recently, there is an increasing interest on utilizing geospatial information coming from trajectories

to improve location-based recommendations using deep neural networks. The main idea of these approaches

is to learn representations (embeddings) of points-of-interest (POIs) together with user profiles at the same

low-rank space and then use the obtained embeddings to inform downstream data mining tasks [5, 21, 39].
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Towards that end, different types of user trajectory profile properties have been exploited, such as social

influence or homophily - users tend to follow their social network friends; geographical proximity - users tend

to visit locations that are close to each other, around home or work; periodicity - users tend to visit same

places at specific time intervals.

The primary focus of this research is to leverage the trajectory data to automatically and accurately

learn latent semantic relationships between different geographical areas (e.g., semantically correlated neigh-

borhoods of a city) as revealed by patterns of moving object trajectories over time.

1.1 Research Questions & Contributions

While previous studies have utilized trajectories for a similar type of analysis at the level of a single geograph-

ical area (e.g., a city), the results cannot be easily generalized to inform comparative analysis of different

geographical areas. How people perceive different areas/neighborhood of their city? To what extend people

in a city rely on geographical proximity of areas? Is the behavior of people of different geographical areas

(e.g., two different cities) the same? If not, to what extend the behaviors are different? These are some of

the motivating questions that we strive to answer in this research. we study these questions systematically

and make the following major contributions:

• We present a method that utilizes trajectories to learn low-dimensional representations of the geo-

graphical areas that the trajectories span in an embedded space. The method relies on random-walk

based methods for learning node representation of a graph and is able to reveal latent relationships

of geographical areas, effectively defining semantic relationships between them. These latent semantic

relationships can improve our understanding of how space is perceived by individuals (through their

trajectories) and inform better decisions of urban planning.

• We develop a statistical method that allows to quantify the degree to which real trajectories deviate

from a theoretical null model in a geographical area. The method allows to (a) distinguish geographical

proximity to semantic proximity, (b) measure the extent of that difference (if any). Since the method is
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based on embedding trajectories on the same low-rank space, it allows to inform a comparative analysis

between patterns of two (or more) models obtained by trajectories defined on different geographical

areas (e.g., compare patterns in two different cities).

• We demonstrate the effectiveness and usefulness of the proposed embedding and statistical method

in two case studies utilizing real-world data coming from the New York City and the city of Porto,

Portugal, respectively.

• Lastly, we discuss the consequences of our work and how it can be extended to cover analysis on a

different level of granularity, for example to include semantic analysis of points-of-interest (POIs).

The main contributions of the thesis have been published in the Proceedings of the 21st IEEE International

Conference on Mobile Data Management 2020 [23].

1.2 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 reviews the existing work related to our

research. Chapter 3 presents our method for learning semantic relationships of geographical areas and

also extension discussing semantic analysis of points-of-interest. Chapter 4 formally presents the statistical

model. In Chapter 5, we present two real-world case studies to demonstrate how the model can be applied

in practice. After discussing the framework in Chapter 6, we conclude in Chapter 7.
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2 Related Work

A number of important works related to our research has already been cited in introduction. Here we further

elaborate on other related work.

2.1 Trajectory Data Mining

In this survey paper [44], the authors have explored the connections, correlations, and differences among

trajectory pattern mining, trajectory data preprocessing, outlier detection and trajectory classification tech-

niques. In our approach we are looking at trajectory pattern mining using unsuprevised learning methods,

based on network representation. In [37] authors present a method of profiling moving objects by looking

at their regional typical moving styles, which reflects geoinformation of the observed area and the moving

behavior of objects. Shang et al. [31] are providing parallel collaborative method for trajectory to location

join by addressing the challenges of spatiotemporal correlation between trajectories and locations and prun-

ing the search space effectively. Similarly in [8], authors discuss how to enrich trajectories with semantic

information based on stop points in moving objects. Kumar et al. [16] proposed a model that learns dynamic

trajectory embeddings of users and items from a sequence of temporal interactions. We look at trajectories

and geographical areas in terms of developing and enriching semantic understanding of regions.

2.2 Location-based Recommendations

Urban planning, relieving traffic congestion, and effective location recommendations are important objectives

worldwide and have received increasing attention in recent years. In this survey [38], the authors are
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introducing methods used for location prediction and recommendations and giving an insight into trajectory

data pre-processing for different objectives. In [3] authors are introducing realistic and financial aspects

into trajectory data mining for bike sharing. They are designing a flexible objective function to tune the

benefits between coverage of the number of users and the length of their trajectories. We are introducing

computational aspects into our work by minimizing the cost of relating trajectories with geographical areas.

Recently, with the ease of access to acquire user activity records from large scale location-based social

networks (LBSNs), many recent work has tried to improve location-based recommendation by exploiting

various side effects of object movements [21]. Toblers first law [33] of geography is also an interesting

concept to consider while thinking about semantic correlation between geographical regions i.e., “Everything

is related to everything else, but near things are more related than distant things”. Hao Wang et al. [36]

proposed a latent probabilistic generative model called LSARS to mimic the decision-making process of users

check-in activities both in home-town and out-of-town scenarios by adapting to user interest drift and crowd

sentiments, which can learn location-aware and sentiment-aware individual interests from the contents of

spatial items and user reviews.

2.3 Trajectory-based Graph Embeddings

Understanding user movement behavior is also among the challenges of location-based social networks. Cho

et al. [4] has developed a model that captures human mobility based on periodicity and social ties. In [11]

researchers have used student check-in data based on WiFi log files and proposed a network-based embedding

method called embedding for dense heterogeneous graphs. Christoforidis et al. [5] adds an addition into the

state-of-the-art work on using graph embeddings for points-of-interest recommendations by considering more

spatial attributes around user generated spatiotemporal data-sets. Their work is similar to [5] as they are

embedding different factors of user behavior in the same latent space. In [19] they are defining three types of

different friends i.e., social, location and neighboring friends around user check-ins data. Their goal is also

limited to standard recommendation, new users and new locations recommendations etc. In [48] authors have

developed a framework towards learning trajectory context by adapting the problem to an encoder-decoder
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framework.

The idea of nodes and edges between nodes is fundamental to graph embedding approaches. We define

nodes as small geographical regions and create edges between them based on adjacency. Further we take

walks on these nodes by looking at trajectory paths through them. In [9], they propose an algorithmic

framework for learning continuous feature representations for nodes in networks. Their key contribution

is in defining a flexible notion of a nodes network neighborhood by choosing an appropriate notion using

random walks. Similarly, we treat trajectory paths as walks and embed them in a low dimensional latent

space.

2.4 Spatial Databases

Ahmet et al. [15] introduced a data model PG-TRAJECTORY that is built on PostGIS, the spatial database

extender of PostgreSQL. In their work they have introduced wide range of functions for storing and manipu-

lating spatiotemporal trajectories. In [45–47] authors proposed methods to understand trajectories, mobility

behavior of users and interesting locations by utilizing data-sets of users collected in Geolife project. Another

work [40] utilizes trajectories for traffic state estimation. They have developed a framework that uses deep

neural network to predict traffic states of each road individually from historical traffic information, along

with prediction uncertainty. Further they refine these predictions by an ietartive boosting calibration proce-

dure with embedded trajectories. In our work we are utilizing PostGIS and PostgreSQL to perform spatial

queries on trajectory data-sets and trajectories and mobility behaviors are derived from the movement paths

of objects.

2.5 Expert Finding Techniques

Finding experts in specified areas is an important task and has attracted much attention in the information

retrieval community. Experts refer to people who are knowledgeable or who master in-depth skills in specified

areas. In this survey paper [20] the authors talk about various techniques related to expert profiling such as
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expert resource selection - which extracts the expertise related data and information from which people with

professional knowledge and skills can be discovered and expertise modeling - which builds expertise models

to identify an expert. In [17] researchers are trying to find experts that have social connections and a set

of required skills so that a team can be formed. Zhou et al. [41] have utilized social networking sites such

Quora and Twitter to infer user expertise based on their tweets. They also consider relatedness between

expertise topics as an important aspect in the inference process. Understanding geographical space including

object interaction with points-of-interest leads to an interesting discovery and knowledge that can help us in

developing expert profiles. These profiles can be built automatically by identifying and linking trajectories

to moving objects and further assigning them expertise based on their interaction with points-of-interest and

geographical space they are traversing.
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3 Learning Semantic Relationships of Geographical Areas

In this section we describe a method that given a set of trajectories T = {t0, t1, t2..., ti..., tn−1}, where ti

denotes the trajectory i defined over an observation area A, can learn semantic relationships of geographical

areas of A. In brief, the method involves the following steps: (a) construction of a uniform grid that divides

A to a set of evenly-spaced set of rows and columns (grid cells), (b) construction of a lattice graph based on

the grid cells, (c) translation of trajectories as random walks on the lattice graph, and (d) use of (a variation

of) a continuous skip-gram architecture model to learn distributed representations of nodes of the lattice

graph, which effectively provide semantic relationships between geographical areas of A. Fig 3.1 shows the

steps of the proposed method and Table I summarizes important notation.
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Figure 3.1: Illustration of the proposed method for learning semantic relationships of geographical areas:

(a) sample trajectories of the New York City taxi dataset, (b) trajectories traversing grid cells of a uniform

grid, (c) trajectories as random walks on a lattice graph, (d) node embeddings of the lattice graph.

3.1 Construction of a Uniform Grid

Let a trajectory t = {(x0, y0), (x1, y1), ..., (xn, yn)} amount to a route traveled from a starting point to an

ending point, where the ordered sequence of pairs (x, y) represent latitude and longitude coordinates in the

9



2D Cartesian system. We can also represent trajectories as an ordered sequence of points:

t = {p0, p1, p2..., pn} (3.1)

where pi−1 is the ith point of the trajectory t. While individual trajectories of moving objects are defined at

a lower level of granularity (e.g., sequences of pairs of longitude and latitude coordinates), analysis of geo-

graphical areas typically needs to be done at a higher level of granularity, such as the level of neighborhoods

or postal codes of a city. Without loss of generality, we adopt the abstraction of a uniform grid that divides

the observation space A to a set of evenly-spaced set of r rows and c columns, forming grid cells; row height

does not need to be equal to column width. Formally, we define a gridrc as follows:

gridrc = {c00, c01, c10, ..., cr−1c−1} (3.2)
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Figure 3.2: Sample grid and sample trajectory over grid cells.

The gridrc consists of r × c grid cells and cij is representing the grid cell at row i and column j. By

dividing A into grid cells we are able to translate a trajectory t ∈ T from a sequence of geolocations to

11



Table 3.1: Summary of Notations

Symbol Description

T set of trajectories T = {t0, t1, t2..., ti..., tn}

P set of points-of-interest P = {poi1, poi2, ..., poii, ..., poin}

A observation space

gridrc a uniform grid of r rows and c columns

gridrc = {c00, c01, c10, ..., cij , ..., crc}

ncij representing all grid cells cij

cij the grid cell at the ith row and jth column

G lattice or grid graph

Rn low dimensional latent space

vi vertex representing grid cells cij

e(u,v) edge between adjacent nodes

w windows-size w = 10

λa threshold for cosine similarity

λb threshold for cosine similarity difference

Wvi Random walk on grid cells

a sequence of grid cells on gridrc. For example, Fig. 3.2 shows a 7x10 grid and a sample trajectory that

traverses 12 grid cells, starting at c02 moving to c03, c04, c14, c15, ..., all the way to c67. Note that the size

of the grid provides an interesting trade-off between a more refined analysis and a faster analysis. This is

because the larger the number of rows and columns of the grid, the smaller the geographical areas represented

by each grid cell, but at the cost of having to associate each trajectory to a larger number of grid cells, which

is computationally more expensive.
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3.2 Construction of a Lattice Graph

Given a gridrc we can construct a lattice graph G(V,E) of V nodes and E edges, where any node ncij ∈ V

of the lattice represents a grid cell cij ∈ gridrc and an edge e(u,v) ∈ E represents that grid cells u and v

are adjacent in the gridrc. A lattice or grid graph, is a graph whose drawing, embedded in some Euclidean

space forms a regular tiling. As a trajectory traverses tiles of a grid, this traversal can also be modeled as a

walk on the lattice graph G.

3.2.1 From Trajectories to Random Walks on a Lattice Graph

We briefly entertained the idea of treating real-world trajectories as walks on a lattice graph. The motivation

is that random walks on a graph have been successfully used as a way to obtain semantic relationships between

nodes of a graph [9,27]. Therefore, we use this analogy to learn relationships between different geographical

regions that could be far apart in Euclidean space. Intuitively, the main hypothesis is that nodes that

are found multiple times in a large number of different random walks, they probably share some semantic

similarity and should be embedded closer together, even though they might not be close to each other. We

intent to exploit this key idea to learn semantic relationships between geographical areas that can be far

apart in Euclidean space.

Formally, random walks are denoted as Wvi , where vi denotes a vertex. They represent a stochastic

process with random variables W 1
vi , W

2
vi , ... , W k

vi such that W k+1
vi is a vertex chosen at random from the

neighbors of vertex vk. Random walks have been used for variety of problems such as content recommendation

and community detection [2] [7], in different kinds of networks. Nodes in a network can be classified on the

basis of homophily and structural equivalence [14] roles. According to homophily hypothesis, nodes that are

close by and belong to similar network communities should be embedded closer to each other. For example,

in Fig. 3.2, the grid cells c00, c01 and c10 represent same local network community, as they are connected to

each other. On the other hand, structural equivalence describe nodes that have similar structural roles in

networks and should be embedded close to each other. For example, in Fig 3.2, the grid cells c02, c03, ..., c61
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that a trajectory traverses have the same structural role, as they are all part of the same trajectory.

3.2.2 Learning Embeddings of Geographical Areas

We describe how given a graph and a set of random walks defined over its nodes, we can obtain node

embeddings that will bring similar nodes closer to each other in the embedded space. Given an undirected

and unweighted graph G = (V,E), we aim to learn the mapping function f : V → Rd, where d is the network

representation dimension and each row is the vector representation of a node. The training objective function

is to maximize the log-probability of the nodes appearing in the context of the node vi. Context of each

node vi is provided by setting a window-size w that defines a set of nodes of the random walk Wvi around vi,

similar to the process described in previous work [27]. Using that approximation objective and the skip-gram

model of node2vec [9], we obtain embeddings that are optimized by stochastic gradient decent so that:

Pr(vj |vi) ∝ exp (vT
j vi) (3.3)

where vi is the vector representation of a node vi (f(vi) = vi). Pr(vj |vi) is the probability of the observation

of neighbor node vj , within the window-size given that the window contains vi. In our experiments, we use

the gensim implementation of the skip-gram model1. We set the window size to w = 10 and the number of

dimensions to d = 128. A similar approach has been employed in [12, 13] to learn low-rank embeddings of

evolving networks.

Trajectory Permutations: The skip-gram model described in the previous paragraph is based on the

distributional hypothesis [24] that suggests that the more semantically similar two nodes are, the more they

will tend to occur in similar contexts. As the use of the skip-gram originates in word embeddings, typically

the context is defined by a small window size (e.g., w = 5 is common) that defines the surrounding words

of a target word in a sentence. By design, the skip-gram architecture weighs nearby context words more

heavily than more distant context words. However, in the case of trajectories, it is important that every

node vj in a walk Wvi (i.e,. in a trajectory) appears in the context of every other node irrelevant of how

1https://github.com/RaRe-Technologies/gensim
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far they are from each other. To achieve that, we rely on generating m random permutations of a single

trajectory and providing these m trajectories to the skip-gram model (as shown in Fig 3.3). Recall that

every trajectory t ∈ T represents an ordered list of the grid cells traversed, and can be represented as a

single walk on the lattice graph. Formally, let a single walk Wvi = {vi, ..., vk} starting from vertex vi and

ending at vertex vk. The number of permutations on a set of k elements is given by k!, which can be a very

large number. Instead, we create only a fixed number of m � k! random permutations and use these as

input walks to the model. To obtain m rearrangements of the elements of an ordered list, we generate m

permutations for each walk, so that each vertex vi in a walk has a chance to appear in different positions.

As a result, we end up with m times more walks. This process will effectively neutralize the effect of each

context node and distant nodes will not be less weighted than more nearby context nodes. Alternatively,

one could employ the continuous bag-of-words (cbow) architecture that follows the bag-of-words assumption

and treats surrounding context nodes equally (i.e., the order of context nodes does not influence prediction).

However, in that case, the window-size defining the context would need to be adjusted every time to the

length of a single trajectory, but the embedding model we rely on assumes a fixed window-size.

Figure 3.3: Generating m walks from a single walk by using the process of trajectory permutations and

feeding them to skip-gram.
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3.3 Extensions

This section discusses the consequences of our work and how it can be extended to cover analysis on a

different level of granularity i.e., to include semantic analysis of points-of-interests.

3.3.1 Points-of-Interest (POIs) & Cell Association

We can associate POIs with grid cell cij based on the metric that all POIs which are inside the cell boundary

coordinates belong to the cell. This gives a bird’s-eye view of the geographical region and can help us in

identifying places of interest with less computational cost.

Association between a cell and its POIs can be mathematically written as:

cij = {poi1, poi2, ..., poii, ..., poin} (3.4)

where cij refers to a cell in ith row and jth column inside a dynamic grid gridrc.

3.3.2 Translation of Trajectories into POIs

Trajectories inside a grid cell cij can be associated with POIs poi1, ...poin if they are inside the same cij .

Relating Trajectory ti with POIs can be mathematically written as:

P ti ⊆ P = {poi1, poi2, ..., poii, ..., poin} (3.5)

where P ti represents POIs that belongs to trajectory ti.

Considering grid cells, trajectories and POIs concurrently in Fig 3.4, we can represent trajectories as

points-of-interests i.e., such that we take the cells (e.g., in Fig 3.2, starting at c00 moving to c10, c11, c21, c22,

..., all the way to c61) through which trajectory is passing and create walks Wvi based on all the POIs inside

those cells. The advantage comes in the form of ease of introducing geographical proximity and preference

dynamics into user trajectory paths. By looking at a single grid cell, POIs inside its boundary and trajectory

portion (as in eq. 3.1 {pi...pk}) passing through, it enables us to associate only those POIs which are inside
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the cij i.e., thus considering geographical proximity of user trajectory path. User preference dynamics is

added by minimizing cij size which reduces the number of POIs inside cell. This generates an understanding

regarding which POIs were visited by users in the order of sequence.

Figure 3.4: Trajectories (red) representing object movements traversing through various grid cells (green) &

relevant pois (blue) found inside grid cell nodes ncij .
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Use Case: Business Recommendation Trajectory association with POIs {poi1, poi2, ..., poii, ..., poin}

based on cij has an interesting business use case that enables us to recommend businesses to relevant people.

From Fig. 3.5 it can be observed that recommending POIs to the trajectory passing through relevant grid

cells makes it more intuitive. As the relevant user would have more probability of interacting with these

businesses.
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Figure 3.5: Trajectory (red) passing through grid cells cij (green) showing interaction with points-of-interest

(blue).

3.3.3 Learning Embeddings of POIs

As discussed previously, by considering gridrc, T & P concurrently we create walks of P ti i.e., each walk

represents sequence of P which are in the close vicinity of T . Similar to the process described for Learning
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Embeddings of Geographical Areas we learn embeddings of POIs.

Node embeddings based on trajectory movements shows structural equivalence as they are embedded

closely based on their role for being connected to the same trajectory. Node embeddings based on random

walks specifies homophily, as nodes are embedded closed to each other based on adjacency. Node embeddings

based on trajectory representation as POIs represent P ti that are in the close proximity of the trajectory.

This help us in identifying user interests and built expert profiles - which can be implemented as a future

work. Embedding visualization of walks based on POIs is shown in Fig. 3.6.

Figure 3.6: Representing POIs embeddings based on trajectories movement across observational area A.

Where clusters of POIs represents P ti belonging to similar trajectories T i.e., trajectories taking similar

routes in the observational area A.
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4 Statistical Method for Distinguishing Geographical Proximity

to Semantic Proximity

Up till now, we have presented a method that given a large set of trajectories T defined over an observation

area A (i.e., a city) can learn semantic relationships of geographical areas of A, in an unsupervised fashion.

In this section, we present a statistical method for determining whether the observed data (i.e., the learned

representations) display non-trivial properties that would not be expected on basis of chance alone. To that

end, we design a null model that behaves in accordance with a reasonable null hypothesis for the behavior

in question (i.e., how objects or people move in an area?). The null hypothesis is based on the assumption

that people perceive a city based on geographical proximity, so that the chance to move from one place to

another is dictated by physical separation. We provide details of the real model and the null model below.

We also investigate an alternate null model that matches an additional feature of the observed model in

question (the origin of the trajectory). We call that model, intermediate model. Then, we provide methods

for quantitative and visual comparison of different models that can help compare the null model(s) to the

real one and allow to inform conclusions. The idea of using a randomization technique to distinguish real

observations from a theoretical null model has been successfully employed in various settings, such as in

distinguishing influence from correlation in a social network [1, 25].

4.1 Models

Given a large set of trajectories T defined over an observation area A. we define three models for analysis:

the real model, the null model and the intermediate model, which serves as an alternate null model. For

21



all models, the same fixed size uniform grid gridrc of r rows and c columns is applied that leads to the

construction of the same lattice graph G(V,E).

4.1.1 Real Model

This model is generated by utilizing a subset S ⊆ T of the set of real trajectories, such that |S| � |T |.

Every sample trajectory s ∈ S is selected uniformly at random from T . Given A, gridrc and S, we obtain

vector representations for each geographical area of A, defined by gridrc. The learned vectors will be used

to analyze the semantic relationship between the geographical areas.

4.1.2 Null Model

This model is generated by defining random walks over the lattice graph. A walk starts at a node in the

lattice graph and at every step moves to one of its adjacent nodes. The random walks are obtained by

node2vec with default values, which suggests generating ten (10) random walks for each node. However, we

constrain the random walk length of each walk to be equal to the average length of the walks defined by

the trajectories in the sample S of the real model. This is important, as an appropriate null model needs to

satisfy some constraints coming from the real model, but which is otherwise taken to be an unbiased random

structure. So, we set the random walk length parameter of node2vec to be walk − length =
∑|S|

i=1 `si/|S|,

where `si represents the length of the si random walk in the lattice graph G (i.e, the number of grid cells of

gridrc that the si trajectory has traversed). This parameter specifies how many other nodes will be visited by

a walk. Given A, gridrc and S, we obtain vector representations for each geographical area of A, defined by

gridrc. The learned vectors of the null model effectively cover every node in the entire observation region A

and choices of the random walks are dictated by geographic proximity. We will be comparing this theoretical

null model to the real model.
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4.1.3 Intermediate Model (An Alternate Null Model)

This model serves as an alternate null model. While in the null model we only constrained the random walk

length of each walk to be equal to the average length of the walks defined by the trajectories in the sample

S of the real model, in the intermediate model we consider two additional constraints: (i) the number of

walks are equal to the number of trajectories in S, and (ii) the origin node from which a random walk starts

is defined by the first node of each si ∈ S. The main motivation for this model is to learn vectors that can

capture more of the constraints of the real trajectories, but still maintain the unbiased random walks on the

lattice graph that are still dictated by geographic proximity. We will be comparing the intermediate model

to the null and the real model.

4.2 Model Analysis

Each of the aforementioned models learns a low-dimensional vector representation for each graph node

(i.e., for each geographical area of A). Here, we present metrics that allow to compare the models both

quantitatively and visually. The former allows to test the the null hypothesis (accepting or rejecting it) and

also to numerically compare the descriptive analytics of each model. The latter allow for exploratory data

analysis, which helps to visually summarize the main characteristics of the models.

4.2.1 Quantitative Analysis of Models

The most significant metric of our analysis is the pair-wise similarity of nodes of the graph. This metric

allows to find pairs of nodes that are related based on trajectory data patterns. This metric also allows

to discover interesting pairs of nodes. These are pairs of nodes that expose a large difference (of their

similarity score) in two different models, therefore shedding light in “unexpected” semantic relationships

that cannot be explained by geographical proximity. To compare two models we also provide a metric of

distance between two distributions of pair-wise similarity values using normalized histograms; a statistical

test/metric is presented that can be used to determine whether there is a statistically significant difference
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(i.e., a magnitude of difference that is unlikely to be due to chance alone) between the real model and any

of the null models.

Cosine Similarity Between Nodes A common method to calculate a similarity score between two vector

embeddings is to use cosine similarity, which is a measure of similarity between two non-zero vectors that

measures the cosine of the angle between them. Formally, given the vectors ~vi and ~vj of nodes i and j, their

cosine similarity is given by:

cosθ(~vi, ~vj) =
~vi. ~vj

‖~vi‖.‖~vj‖
=

∑n
1 vivj√∑n

1 vi
2
√∑n

1 vj
2

(4.1)

where ~vi. ~vj =
∑n

1 vivj = vi1vj1 + vi2vj2 + ... + vinvjn is the dot product of the two vectors. Cosine

similarity is particularly used in positive space, where the outcome is bounded in [0, 1]. We are adopting

this interpretation and we ignore the pairs of nodes whose cosine similarity is negative. Note as well that

the purpose of calculating pair-wise cosine similarities is to discover any semantic relationships between

nodes, and a negative cosine similarity indicates that two nodes are not related to each other. Depending

on domain expertise, one can define a threshold value λa, such that if the cosine similarity between a pair

of nodes is equal to or greater than λa (i.e., cosθ ≥ λa), then the pair of nodes is considered “similar”.

Even if such a domain knowledge is not always available, we can still identify pairs of nodes that exhibit

different similarity in different models. This brings us closer to our initial motivation, which is the ability

to identify geographical areas in an observation area A that are semantically similar and this similarity

cannot be attributed to chance. Take for example, Fig. 4.1 that shows an example of two grid cells (i.e.,

nodes) that while they are geographically far apart (cosθ = 0.41 in the null model; cosθ = 0.45 in the

intermediate model), they are semantically similar in the real model (cosθ = 0.73 in the real model). This

can be attributed to the fact that there are many trajectories that traverse from both these grid cells (shown

as blue lines), compared to trajectories that are traversing through either of the grid cells (shown as red

lines).
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Figure 4.1: Two grid cells (green rectangles) with several trajectories traversing both of them (shown as blue

line), compared to trajectories that traverse either of them (shown as red line).

Discovery of Interesting Pairs of Nodes By comparing the similarity of pairs of nodes in different

models, it is possible to discover “interesting” ones. These are pairs of nodes that expose a large difference

of their similarity score in two underlying models (e.g., real vs null model). Formally, given two models X

and Y , it is:

dX,Y (~vi, ~vj) = |cosθX(~vi, ~vj)− cosθY (~vi, ~vj)| (4.2)

Depending on domain expertise, one can define a threshold value λb, such that if the cosine similarity

difference of a pair of nodes in different models is equal to or greater than λb (i.e., dX,Y (~vi, ~vj) ≥ λb), then

the pair of nodes is considered “interesting”. Apparently, a pair of nodes is interesting when their associated

vectors are found to be very similar in one model and dissimilar in the other, or the other way around.

Intuitively, these pairs of nodes are characterized as interesting because they reflect geographical areas in

the observation space A that are perceived by people living and travelling in A as being semantically similar
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(based on large trajectory data patterns). These similarities cannot be explained by geographical proximity,

and therefore they cannot be attributed to chance (as depicted by the null model).

Distribution of Pair-wise Similarities We are interested in comparing the distribution of pair-wise

similarity of nodes in different models. Towards that end, we construct a histogram for each model, where

each bin represents a range of cosine similarity values and then count the number of pairs that belong to

each bin. Effectively, a histogram allows to show the underlying frequency distribution of a set of continuous

values (in our case the cosine similarity values between pairs of nodes). This allows to inspect the data

for its underlying distribution and to use them to compare different models. Formally, for every model we

construct a histogram as a function mi that counts the number of observations (i.e., pair-wise similarity)

that fall into each of the disjoint similarity categories (bins) – we define 100 equal bins in the range [0, 1].

Let n be the total number of observations and b be the total number of bins, then the histogram mi is given

by:

n =

b∑
i=1

mi (4.3)

A cumulative histogram is also possible that counts the cumulative number of observations in all bins up to

a specified bin. The cumulative histogram Mi of a histogram mj is given by:

Mi =

i∑
j=1

mj (4.4)

To compare two models, we rely on comparing the distance between two histograms HA, HB . There are many

metrics for comparing the distance between two histograms, including a chi-square or KolmogorovSmirnov

test statistic. For simplicity, we employ a chi-square distance:

χ2 = d(HA, HB) =

b∑
i=1

(HA
i −HB

i )2

HA
i

(4.5)

where b is the number of bins and HA
i and HB

i are the values of the ith bin in the histograms HA and HB ,

respectively.
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4.2.2 Exploratory Analysis of Models

Exploratory data analysis helps to visually summarize the main characteristics of data. To that end, we

develop metrics that allow to visually compare the models. In particular, we present a many-to-many

visualization that can provide a summary of how embedded vectors are organized in low-dimensional space.

We also provide a one-to-many visualization based on heat maps that can illustrate the similarity of a single

predefined node u to all other nodes in the analysis.

Model Embeddings (Many-to-many Visualisation) T-distributed Stochastic Neighbor Embedding

(t-SNE) [22] is a machine learning algorithm for embedding high-dimensional data for visualization in a

low-dimensional space of two (or three) dimensions. We rely on 2D t-SNE to visualize the learned vector

embeddings of the different models of the analysis. Specifically, the t-SNE visualization plots each 128-

dimensional node as a two-dimensional point in such a way that similar nodes are shown nearby and dissimilar

nodes are shown as distant points with high probability. As a result, we can obtain a visual summary of the

main behavior of the models and quickly determine whether they are similar or not.

Heat map (One-to-many Visualisation) A heat map is a graphical representation of data that uses a

system of color-coding to represent different values. Typically, larger values are represented by darker colors

and smaller values are represented by lighter colors. We use heat map to show the vector similarity between

a predefined node u and all other nodes in the analysis. When multiple heat maps of the same node u are

shown for different models, then this visualization helps to identify nodes that might be semantically similar

to u in one model, but not in the other model. Recall that in the real model, similarities are due to patterns

of real trajectories, while in the null model they are due to geographical proximity.
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5 Case Studies

To demonstrate the effectiveness and usefulness of the proposed embedding and statistical method, we design

two large-scale case studies utilizing real-world data coming from the New York City and the city of Porto,

Portugal, respectively.

5.1 Case Study I: New York City (NYC)

5.1.1 Data

This dataset is released by NYC Taxi and Limousine Commission (TLC), which includes pickup & dropoff

time, geo-coordinates, number of passengers, and several other features. The data-set file contains 1, 458, 644

trip records and features containing pickup and dropoff points as pairs of (longitude, latitudes) coordinates.

For the needs of our study we rely on a random sample S that includes 10, 000 trajectories. For each pair of

pickup and dropoff locations, we utilize the Google Directions API to create trajectories in NYC. Description

of features is mentioned in table 5.1:
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Figure 5.1: Sample trajectories of the New York City taxi dataset.
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Table 5.1: Dataset Features NYC

Columns Description

id a unique identifier for each trip

vendor id a code indicating the provider associated with trip record

pickup datetime date and time when the meter was engaged

dropoff datetime date and time when the meter was disengaged

passenger count the number of passengers in the vehicle

pickup longitude the longitude where the meter was engaged

pickup latitude the latitude where the meter was engaged

dropoff longitude the longitude where the meter was disengaged

dropoff latitude the latitude where the meter was disengaged

trip duration duration of the trip in seconds

5.1.2 Models

Given an observation area A defined by trajectories in the NYC city, a set of trajectories S and a uniform

grid gridrc with r = 35 rows and c = 35 columns, we use the methods described in Chapter 3 and 4 to

obtain three models: the real model, the null model and the intermediate model.

5.1.3 Exploratory Analysis of Models

We begin the analysis of the models with an exploratory analysis.

First, we employ the t-SNE method to visually summarize the learned representations of the three models.

Each point in the 2D visualization represents one of the 35× 35 = 1225 uniform grid cells (i.e., geographical

areas of A) for which a 128-dimensional representation has been learned based on the set of S sample

trajectories. Fig. 5.2a, 5.2b, and 5.2c show the results for the three models, respectively. The visualization

succeeds in revealing some significant differences in the models. First, it is becoming clear that the learned
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vectors of each model are different. It is also easy to see that the null and intermediate models share some

structural similarities that can be attributed to the random nature of the walks on the lattice graph. On the

contrary, nodes in the real model are demonstrating a more clustered nature, effectively revealing that people

do not move in the city randomly, but rather following specific patterns of semantic similarity. Apparently,

the various clusters of nodes in the visualization indicate that the areas represented by these nodes share

some latent semantic similarity with each other.

While the t-SNE visualization is adequate for providing a summary of the embedded vectors, it doesn’t

provide information about pair-wise similarity of nodes. To address that the exploratory analysis relies on

heat map visualization. Fig. 5.3a, 5.3b and 5.3c present examples of heat maps that showcase the pair-wise

similarities of a specific node u = 23 to all other nodes in the analysis, for the three models, respectively.

The example is chosen so as to demonstrate the differences of the models. It is clear from these heat maps

that while node u = 23 reveals large semantic similarities with other nodes in the real model (depicted by

darker colors), in the null model these similarities are much less stressed (represented by lighter colors). It

is also interesting to see that our intermediate model is representing a middle situation between the real and

null model, as expected. This is because in the intermediate model the origin node of every walk is the same

as in the original walk in the real data.

5.1.4 Quantitative Analysis of Models

We are now ready to provide a more deep quantitative analysis of the models.

We start by the analysis of the pair-wise similarities of every pair of vectors that is learned for all three

models (note that number of pairs of nodes are in the order of O(n2), where n is the number of nodes). For

each model, we rank the pairs based on their similarity score, in a descending order. Fig. 5.4 shows the

results for all three models. It can be observed that (i) the real model is different than the null model and

the intermediate model, respectively; (ii) the real model depicts a consistently lower similarity at the same

level of rank compared to the null and the intermediate models, indicating that the similarity scores in these

models are more well-distributed due to randomness. By focusing on the x-axis (rank of a pair of nodes) one
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can identify the pairs of nodes that depict the largest cosine similarity (leftmost), which represent geographic

areas that are semantically similar.

Further, as a way to discover the most interesting pairs of nodes, we calculate the cosine similarity

differences between the pairs of models – (real model vs intermediate model) and (real model vs null model).

Fig. 5.5 shows the results. It can be seen that (i) for both cases there are a few only pairs of nodes that

depict very high difference, indicating semantic relationships of high “interestingness”; (ii) the behavior for

both comparisons is same, as indicated by the same trend; the slight variation can be explained by the way

null models have been created. Note that for this experiment, we had to eliminate the pair of nodes whose

similarity is less than zero, as we are considering cosine similarity in the positive space [0, 1]. Also, when we

are reporting pairs of nodes, we only report on the pairs that can be defined in all three models.

In order to get a better understanding of how the different models compare to each other, for each

model we construct a histogram that represents the distribution of the pair-wise similarity values in it.

Fig. 5.6 shows the results for each model. We observe that (i) the real is different than the null model

(χ2 = 4.0854e + 05 � 0) and the intermediate model (χ2 = 3.0426e + 05 � 0); (ii) the real has high

concentration of smaller cosine similarity values (shifted on the left), while the real and intermediate models

are well-distributed. Lastly, null model has a major chunk of pairs of nodes between 0.2 and 0.4 which can

be attributed to the random nature of walks in this model.

5.2 Case Study II: City of Porto

5.2.1 Data

This dataset is based on 1, 710, 671 trajectories of 442 taxis operating in the city of Porto, Portugal in a

period from 01/07/2013 to 30/06/2014. For this study we rely on a random sample S that includes 10, 000

trajectories. Table 5.2 describes the features of dataset.
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Figure 5.7: Sample trajectories of City of Porto taxi dataset.
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Table 5.2: Dataset Features City of Porto

Columns Description

trip id unique identifier for each trip

call type identifies the way used to demand this service

origin call unique identifier for each phone number

origin stand unique identifier for taxi stand

taxi id unique identifier for taxi driver

timestamp identifies trips start

missing data it is FALSE when the GPS data stream is complete

and TRUE whenever one (or more) locations are missing

polyline it contains a list of GPS coordinates mapped as a string

5.2.2 Models

Given an observation area A defined by trajectories in the city of Porto, a set of trajectories S and a uniform

grid gridrc with r = 35 rows and c = 35 columns, we use the methods described in Chapter 3 and 4 to

obtain three models: the real model, the null model and the intermediate model.

5.2.3 Exploratory Analysis of Models

We begin the analysis of the models with an exploratory analysis. Similar to the previous case study, we

first employ the t-SNE method to visually summarize the learned representations of the three models. Fig.

5.8a, 5.8b and 5.8c show the results. Again, it is becoming clear that the learned vectors of each model are

different. It is also easy to see that the null and intermediate models share some structural similarities as

in the NYC study. On the contrary, nodes in the real model are demonstrating a more clustered nature,

indicating that the areas represented by these nodes share some latent semantic similarity with each other.

In addition, Fig. 5.9a, 5.9b and 5.9c present examples of heat maps that aim to showcase the pair-wise
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similarities of a specific node u = 189 to all other nodes in the analysis, in the three models, respectively.

The example is chosen so as to demonstrate the differences in the models. It is evident from these heat maps

that while node u = 189 reveals large semantic similarities with other nodes in the real model (depicted

by darker colors), in the null model these similarities are much less stressed (represented by lighter colors).

Contrary to the case of NYC, it is interesting to see that the intermediate model is now representing a similar

case to the real model.

5.2.4 Quantitative Analysis of Models

We are now ready to provide a more deep quantitative analysis of the models.

We begin by analysis of the pair-wise similarities. For each model, we rank the pairs based on their

similarity score, in a descending order. Fig. 5.10 shows the results for all three models. Similarly to the

NYC study, we observe that the real is different than the null and intermediate models, respectively.

We also calculate the cosine similarity differences between the pairs of models – (real vs intermediate)

and (real vs null). Fig. 5.11 shows the results. Similarly to the NYC study, it can be seen that (i) for both

cases there are a few only pairs of nodes that depict very high difference, indicating semantic relationships of

high “interestingness”; (ii) the behavior for both comparisons is same, as indicated by the same line trends.

In order to get a better understanding of how the different models compare to each other, for each

model we construct a histogram that represents the distribution of the pair-wise similarity values in it. Fig.

5.12 shows the results for each model. We observe that (i) the real model is different than the null model

(χ2 = 6.1697e + 05 � 0) and the intermediate model (χ2 = 7.8492e + 05 � 0); (ii) the real has high

concentration of smaller cosine similarity scores (shifted on the left), while the real and intermediate models

are more well-distributed.

Our statistical method and analysis has concluded that both in the case of NYC and the City of Porto the

real model is significantly different than both the null and intermediate model, which means that the null

hypothesis (that people in the City of New York and Porto move randomly) can be rejected.
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(a) real

(b) intermediate

(c) null

Figure 5.2: Exploratory Analysis of Models. (a), (b) and (c) provide a summary visualization of learned

vector embeddings using t-SNE (it allows for a many-to-many comparison of models).
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(a) real

(b) intermediate

(c) null

Figure 5.3: Exploratory Analysis of Models. (a), (b) and (c) provide the pair-wise similarities of a specific

node u = 23 to all other nodes in the three models using heat maps (it allows for a one-to-many comparisons

of models).
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Figure 5.4: Cosine similarity between pairs of nodes.

Figure 5.5: Cosine similarity differences between pair of nodes.
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(a) (b)

(c)

Figure 5.6: Distribution of cosine similarity values between pair of nodes.
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(a) real

(b) intermediate

(c) null

Figure 5.8: Exploratory Analysis of Models. (a), (b) and (c) provide a summary visualization of learned

vector embeddings using t-SNE (it allows for a many-to-many comparison of models).
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(a) real

(b) intermediate

(c) null

Figure 5.9: Exploratory Analysis of Models. (a), (b) and (c) provide the pair-wise similarities of a specific

node u = 189 to all other nodes in the three models using heat maps (it allows for a one-to-many comparisons

of models).
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Figure 5.10: Cosine similarity between pairs of nodes.

Figure 5.11: Cosine similarity differences between pair of nodes.
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(a) (b)

(c)

Figure 5.12: Distribution of cosine similarity values between pair of nodes.
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6 System Implementation

This chapter briefly mention some of the existing tools we use towards utilizing trajectories and points-of-

interest datasets to be able to come with the analysis presented in the previous chapter.

6.1 Spatial Database

PostgreSQL2 is an open source object-relational database management system (ORDBMS) with an emphasis

on extensibility and standards compliance. It extends the SQL language combined with many features that

safely store and scale the most complicated data workloads. PostGIS 3 is a spatial database extender for

PostgreSQL. It adds spatial functions such as distance, area, union, intersection, and geometry data types

to PostgreSQL.

Among the reasons to use PostgreSQL and PostGIS were primarily focused to run spatial queries on the

acquired real world datasets coming from NYC and the City of Porto. From trajectories T to random walks

Wvi and translating them further into POIs P creates an overhead in terms of computation. Frameworks

such as PostgreSQL and PostGIS are designed to work efficiently with spatial data sets.

6.1.1 Modeling of Datasets in Database

To store data in the database we had to change it to Well-known text (WKT) format which is a text markup

language for representing vector geometry objects on a map. A binary equivalent, known as well-known

2https://www.postgresql.org/about/

3https://postgis.net/
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binary (WKB), is used to transfer and store the same information on databases. WKT can represent the

following distinct geometric objects:

• Point, MultiPoint

• LineString, MultiLineString

• Polygon, MultiPolygon, Triangle

• PolyhedralSurface

• TIN (Triangulated irregular network)

• GeometryCollection

We are using Point, LineString and Polygon objects to store our datasets i.e., Point is being used to store

POI datasets, LineString is used to store trajectory datasets and similarly Polygon is used to store grid cells

coordinates. An example of these geometric objects is shown in the (Fig 6.1)

Figure 6.1: Geometry primitives (2D) - PostGIS

Point A spatial point represents a single location on the earth. It can be represented by a single coordinate

such as (x, y, z) where x, y, z are latitude, longitude and altitude. Points are used to represent objects when

the exact details, such as shape or size are not important. For example. cities on a map of the world can be

described as points, while a map of a single state might represent cities as polygons.
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LineString A linestring is a path from a starting point to an ending point. Generally roads and rivers are

represented as linestrings.

Polygon A polygon represents an area. Generally polygons are used to represent objects whose size

and shape are important. For example, city limits, parks, building footprints or bodies of water are all

represented as polygons. We are using them to represent boundaries of grid cells i.e., geographical areas

created by dividing observation area A.

6.1.2 Spatial Relationships

Spatial databases are powerful because they can store geometric objects and also have the ability to compare

relationships between geometries. Questions such as “What is the closest subway station from my location?”

or “Which sushi place is famous in downtown?” can only be answered by comparing geometries representing

points-of-interests and object movement trajectories.

PostGIS provides set of methods to compare geometries. We are using following methods:

• ST SRID

• ST AsText

• ST LineLocatePoint

• ST Centroid

• ST Dump

• ST Intersection

ST SRID A Spatial Reference System Identifier (SRID) is a unique value used to unambiguously identify

projected, unprojected, and local spatial coordinate system definitions. These coordinate systems form the
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heart of all GIS applications. We are using it to assign 4326 EPSG references4 to Points, LineStrings and

Polygons. For Example, following statement assigns SRID to points geometry.

update poi

set geom point = st setsrid(geom point, 4326)

where poi is the table that contains POIs and geom point is a geometry type column containing coor-

dinates for each POINT geometric object. We cannot perform spatial queries between geometric objects

without assigning SRID to their coordinates.

ST AsText

ST AsText(geometry g1);

This method returns the Well-Known Text (WKT) representation of the geometry/geography without

SRID metadata. We are using it to understand results after performing geometric operations.

ST LineLocatePoint

ST LineLocatePoint(geometry a linestring, geometry a point);

Finds the point on a given linestring that is closest to a given point.

ST Centroid

geometry ST Centroid(geometry g1);

Computes the geometric centre of a geometry, or equivalently, the centre of mass of the geometry as a

Point.

ST Dump

geometry dump[] ST Dump(geometry g1);

Returns a set of geometry dump rows, formed by a geometry (geom) and an array of integers (path).

4http://spatialreference.org/
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ST Intersection

geometry ST Intersection(geometry geomA , geometry geomB);

Returns the portion of geometry A and geometry B that is shared between the two geometries. The

above methods can be understood by looking at the following query created to fetch cells cij through which

each trajectory ti is passing in the order of traversal i.e, c02, c03, ..., c67 etc.

WITH t1 AS (

SELECT tr.traj_id, ce.cell_id,

ST_LineLocatePoint(

tr.traj_path,

ST_CENTROID(

(ST_DUMP(

ST_Intersection(ce.coordinates, tr.traj_path)

)).geom

)

) AS distance

FROM cells ce, traj tr

),

t2 AS (

SELECT t1.traj_id, t1.cell_id,

COALESCE(LEAD(t1.cell_id) OVER(ORDER BY t1.traj_id, t1.distance), -1) AS next_cell_id

FROM t1

)

SELECT t2.traj_id, t2.cell_id into table traj_as_cells_porto

FROM t2

WHERE t2.cell_id <> t2.next_cell_id;
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Where Coalesce return the first non-null value, Lead provides access to a row at a specified physical

offset which follows the current row and Over defines user-specified set of rows within a query result.

6.2 Environment

For the rest of analytical tasks i.e., trajectory visualization, grid construction, lattice graph construction,

vector embeddings we used Python 3.6.4 version with the following libraries networkx, pandas, numpy,

seaborn, matplotlib etc. Plotting comparisons between vector cosine similarity and differences and histograms

were implemented using Matlab. Case study experiments were performed on a PC with 64 GB of memory

with Intel(R) Core(TM) i7-7700 CPU @ 2x3.60GHz & 4 cores.
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7 Conclusion

The main objective of this research was to leverage the abundance of trajectory data available to accurately

learn latent relationships between different geographical areas (e.g., semantically correlated neighborhoods

of a city), in an unsupervised fashion. To address this problem we first employed state-of-the-art deep

learning methods, including methods of network representation learning. These methods allow to learn low-

dimensional representations of geographical areas by treating trajectories as random walks on a grid network.

As a result, we were able to design a method for learning low-dimensional representations of the nodes of a

lattice graph, each of which represent a geographical area of the observation space. These representations

can then be used to efficiently mine relationships between the geographical areas. This is important, as

it allows to inform applications and services in various domains, ranging from location-based services such

as points-of-interest recommendations, to finding relationships between different parts of a city as revealed

by patterns in trajectory data. In addition, we designed and evaluated a statistical method that allows to

compare the learned representations to a theoretical null model. More importantly, we demonstrated that

since the method is based on learning embeddings of the geographical areas in the same low-dimensional

space, it allows to inform a comparative analysis between different observation areas (e.g., different cities). To

our knowledge, this is the first attempt to employ a well-defined statistical method to distinguish geographical

proximity to semantic proximity by operating only on input dataset of raw trajectories. We demonstrated the

effectiveness and usefulness of the proposed embedding and statistical method in two case studies utilizing

real-world data coming from the New York City and the city of Porto, Portugal, respectively. Overall, this

analysis can improve our understanding of how space is perceived by individuals and inform better decisions
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of urban planning. The methods we described are generic and can probably be easily adopted in similar

studies.

7.1 Future Work

Understanding geographical space including object interaction with points-of-interest leads to an interesting

discovery and knowledge that could be implemented as a future continuation of this work. The knowledge

we gain can help us in developing expert profiles. These profiles can be built automatically by identifying

and linking trajectories to specific objects and further assigning them expertise based on their interaction

with points-of-interest and geographical space they are traversing. Simply put, these profiles can be used for

various question answering tasks and enhance user experience of visiting a new geographical space.
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