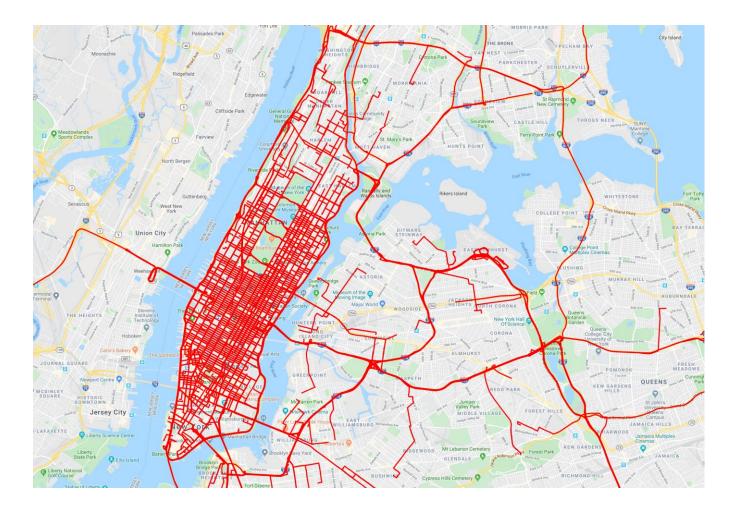


Learning Semantic Relationships of Geographical Areas Based on Trajectories

Presenter: Saim Mehmood



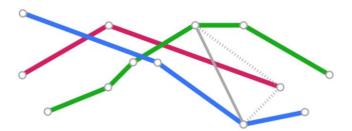
trajectories (x, y, t)

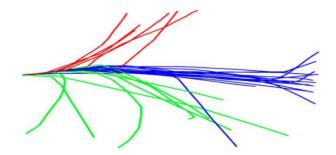
(spatiotemporal information of moving objects)

Trajectory Data Mining

discovering patterns in trajectories to inform critical real-world applications

Trajectory Data Mining Tasks





trajectory similarity

trajectory clustering

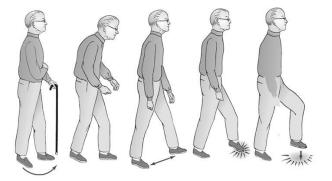
trajectory anomaly detection trajectory classification

trajectory prediction

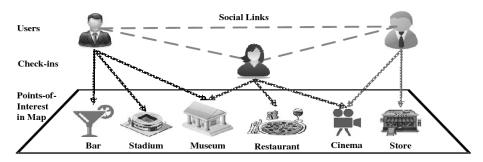
etc...

Trajectory Applications

human mobility understanding



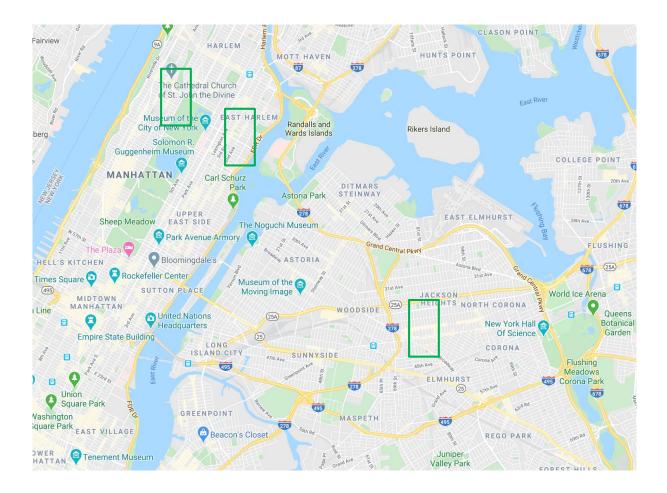
healthcare (detecting change in gait pattern of seniors)



location-based services (e.g., recommendation of points-of-interest)

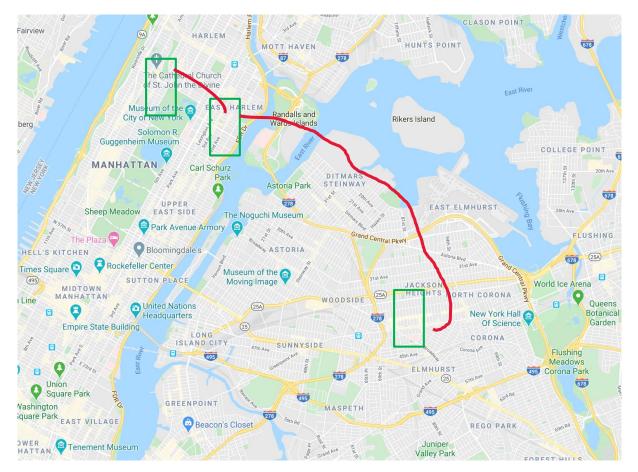
Research Questions

Research Question I



How people perceive different areas of their city?

Research Question II



To what extent people rely on geographical proximity of areas?

Research Question III

New York

City of Porto

How the behavior of people compare in different geographical space?

Overview

Method 1

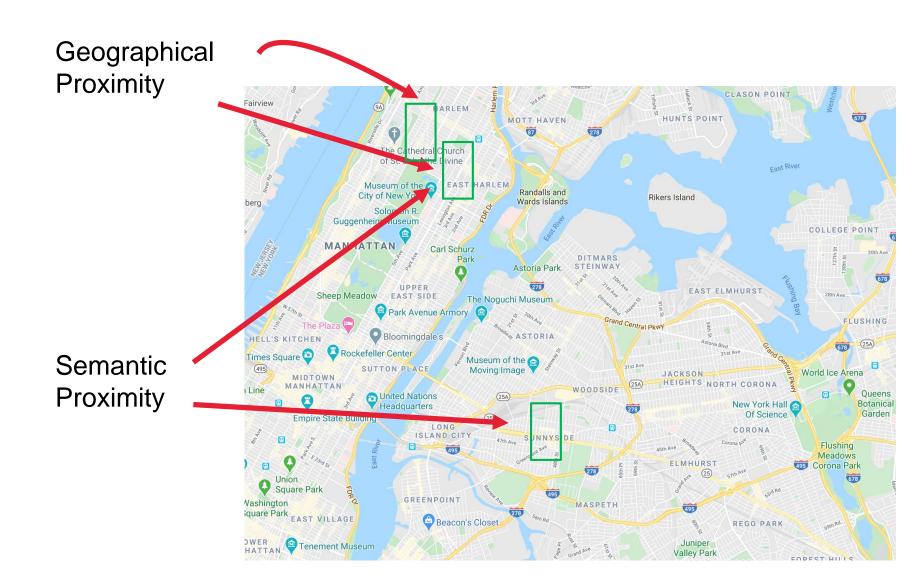
Learning Semantic Relationships of Geographical Areas

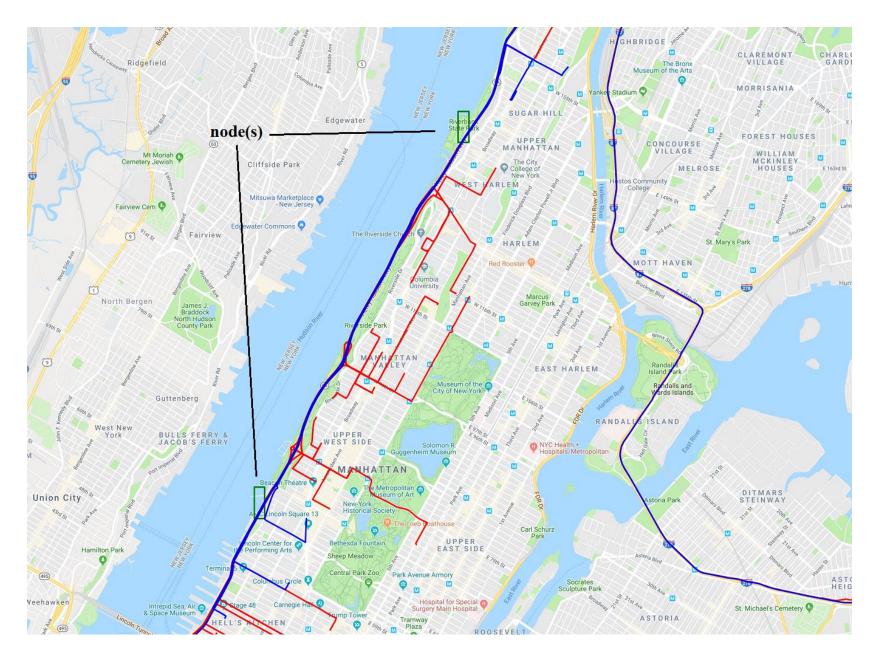
Method 2

Statistical Method for Distinguishing Geographical Proximity to Semantic Proximity

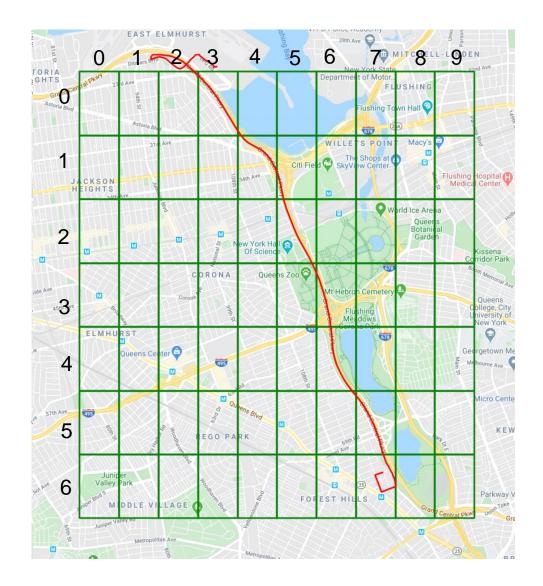
Learning Semantic Relationships of Geographical Areas

How can we learn latent semantic relationships between geographical areas using trajectories?

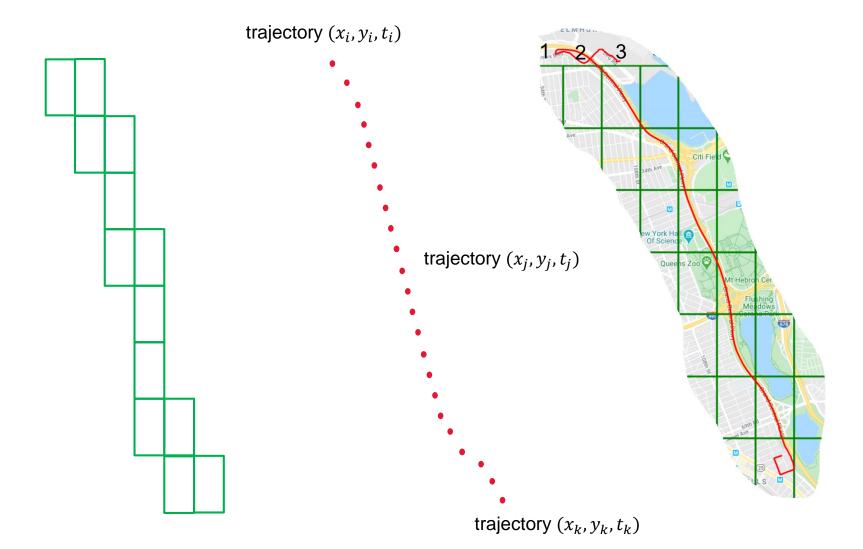




Construction of a Uniform Grid



How I Convert Trajectory Into Grid Cells?

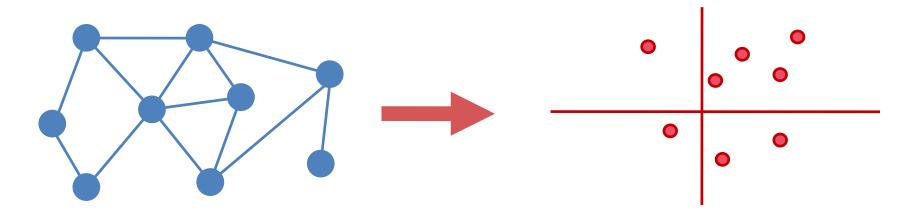


Our Approach

learn relationships using network representation learning (NRL)

Network Representation Learning (NRL)

Network Representation Learning (NRL)

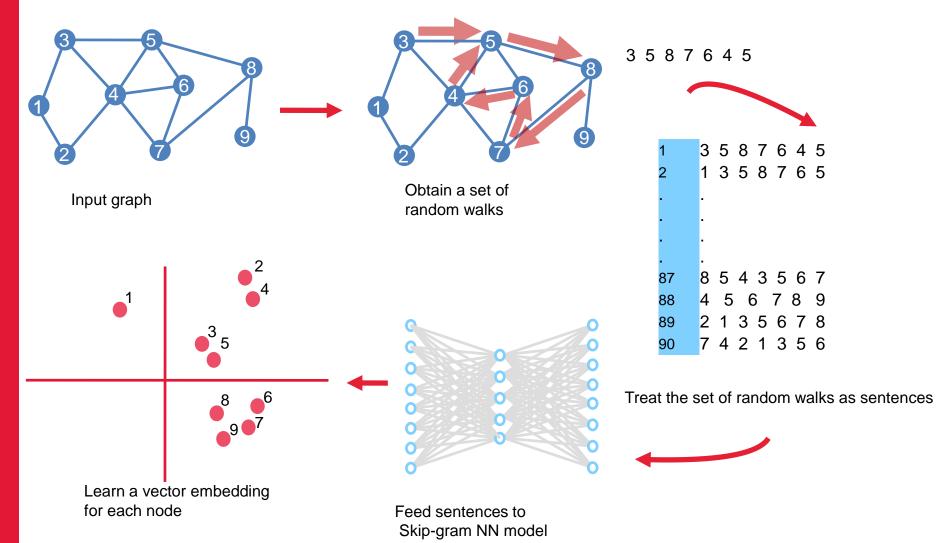


Network/Graph

Low-dimension space

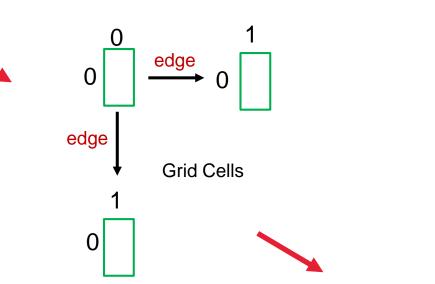
several network structural properties can be learned/embedded (nodes, edges, subgraphs, graphs, ...)

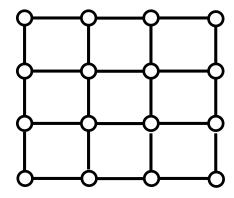
Random Walk-based NRL



NRL in our Approach

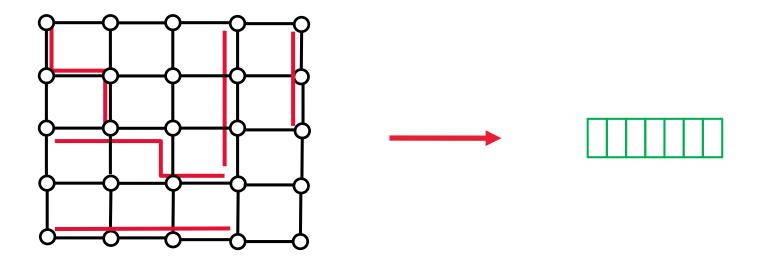
Construction of a lattice graph





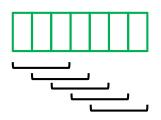
lattice graph

Trajectory as walks



lattice graph

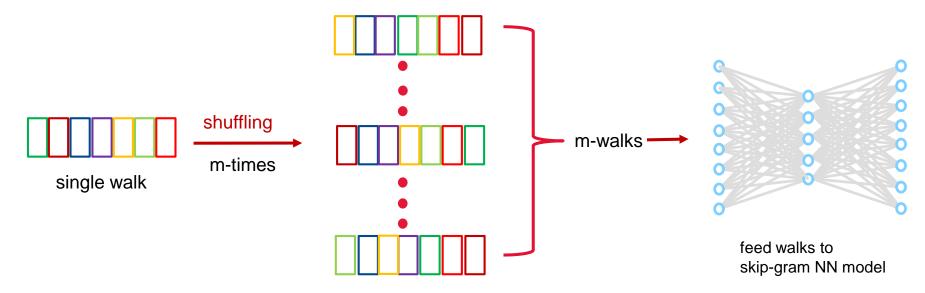
Trajectory Permutations



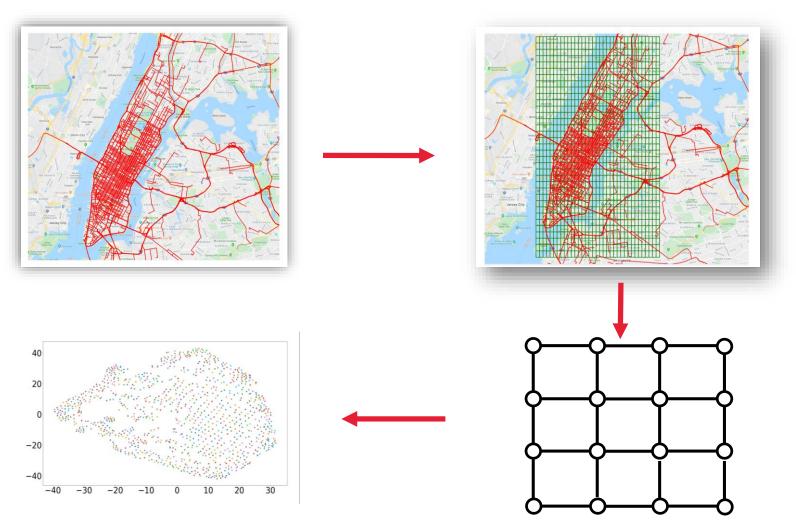
Skip-gram (context window)

nodes appearing in same context window are more similar

for trajectories, every node should be in the context of every other node

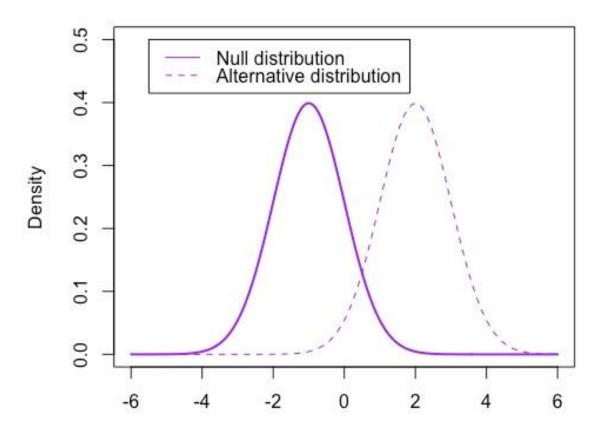


Method 1 Overview



Statistical Method for Distinguishing Geographical Proximity to Semantic Proximity

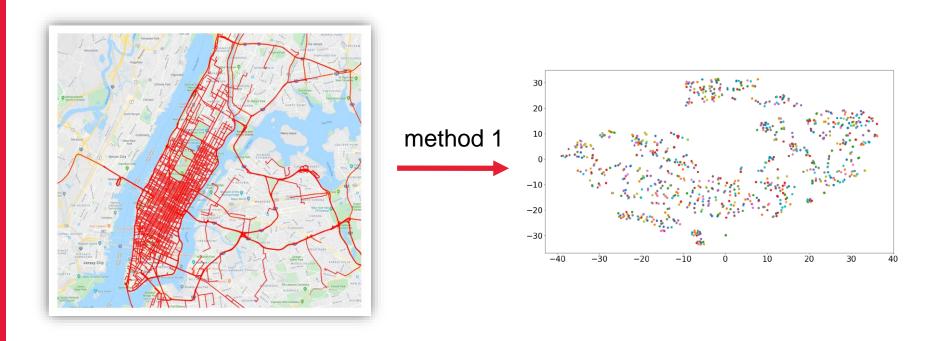
Real vs Null Hypothesis



Х

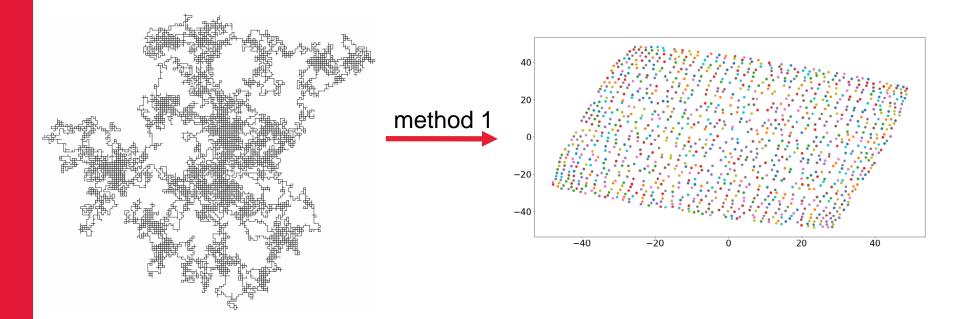
Real Model

Real model is based on real trajectory movements over lattice graph



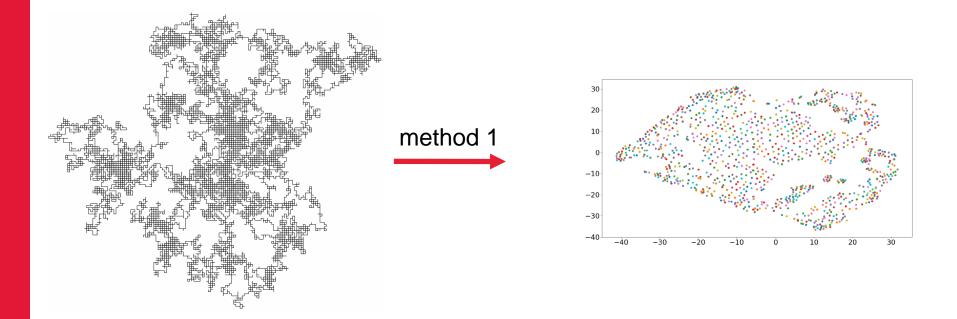
Null Model

Null Model is based on random walks but satisfies the size constraint



Alternate Null (Intermediate) Model

Intermediate model is like Null model but satisfies the constraint for each walk starting from the same node u as Real model walks



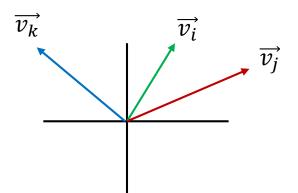
Model Comparative Analysis

how can we compare the real vs the null model?

metrics for both quantitative and visual comparison

Quantitative: Cosine Similarity

 $\overrightarrow{v_i}$ (128D) $\overrightarrow{v_j}$ (128D) $\overrightarrow{v_k}$ (128D)



$$\cos\theta(\overrightarrow{v_i}, \overrightarrow{v_j}) \geq \lambda_a$$
 "similar"

$$\cos\theta(\overrightarrow{v_i}, \overrightarrow{v_k}) < \lambda_a$$
 "not similar"

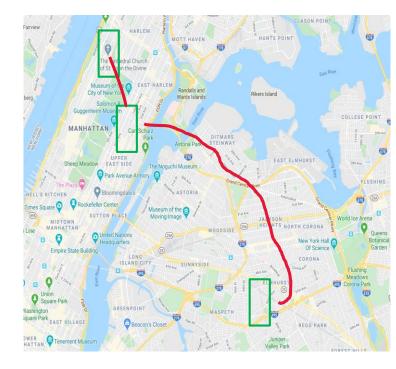
Quantitative: Interesting Pairs of Nodes

Let's say we have two models (*X* and *Y*)

$$\cos_{\theta_X}(\overrightarrow{v_i}, \overrightarrow{v_j})$$
 $\cos_{\theta_Y}(\overrightarrow{v_i}, \overrightarrow{v_j})$

$$d_{X,Y}(\vec{\mathbf{v}_{i}},\vec{\mathbf{v}_{j}}) = |cos\theta_{X}(\vec{\mathbf{v}_{i}},\vec{\mathbf{v}_{j}}) - cos\theta_{Y}(\vec{\mathbf{v}_{i}},\vec{\mathbf{v}_{j}})|$$

 $d_{X,Y}(ec{\mathbf{v_i}}, ec{\mathbf{v_j}}) \geq \lambda_b$ "similar"

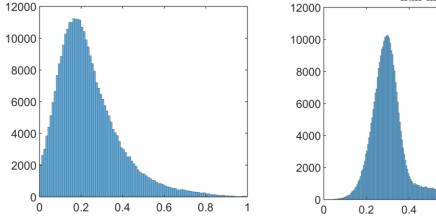


Comparing Distributions of Models

Let's say we have two Histograms $(H^A and H^B)$

$$\chi^2 = d(H^A, H^B) = \sum_{i=1}^b \frac{(H^A_i - H^B_i)^2}{H^A_i}$$

Where *b* is the number of bins



0.6

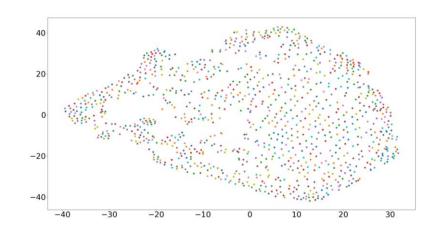
0.8

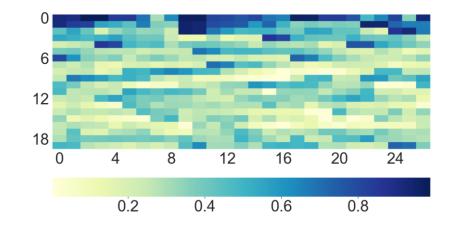
1

Exploratory Analysis of Models

A many-to-many visualization

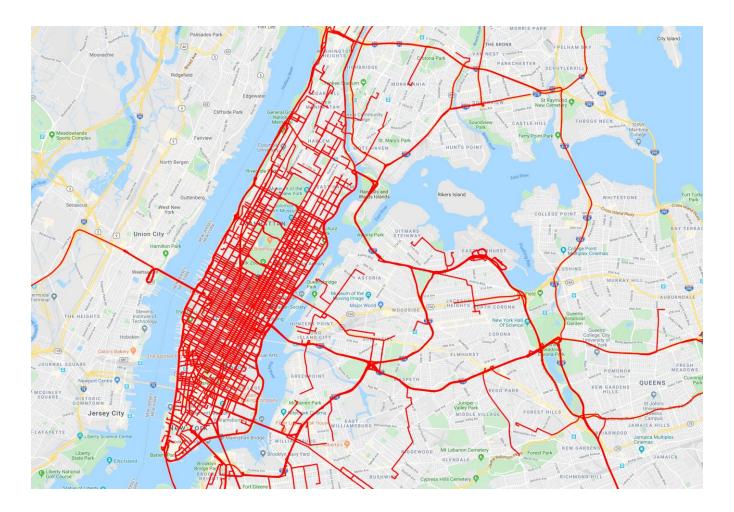
One-to-many visualization



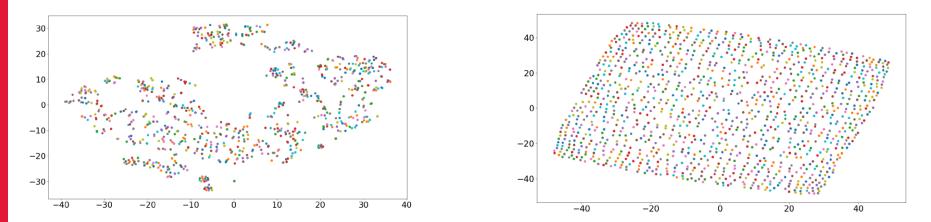


Evaluation

Case Study I: New York City (NYC)

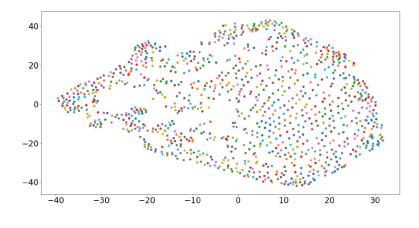


Exploratory Analysis: Many-to-Many



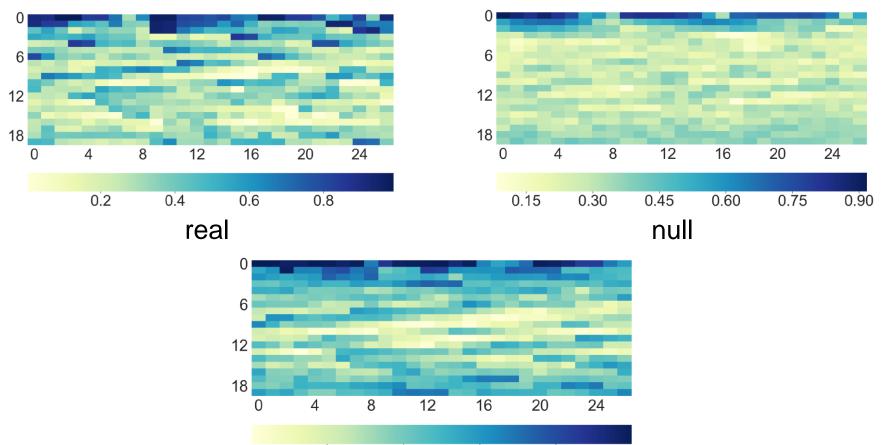
real

null



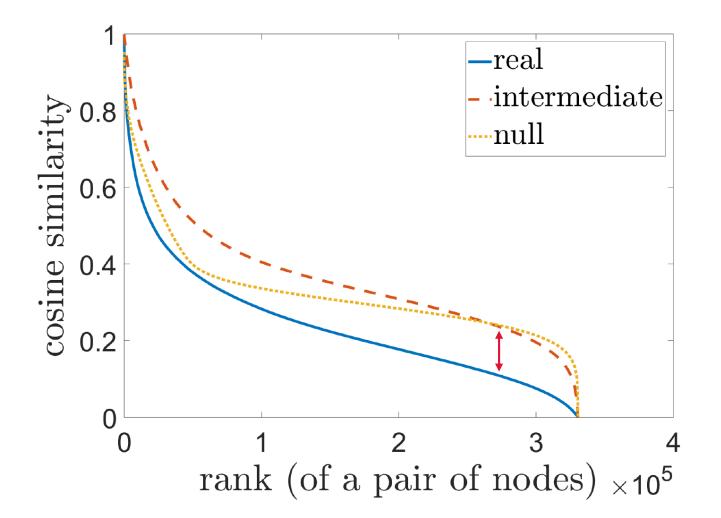
intermediate

Exploratory Analysis: One-to-Many

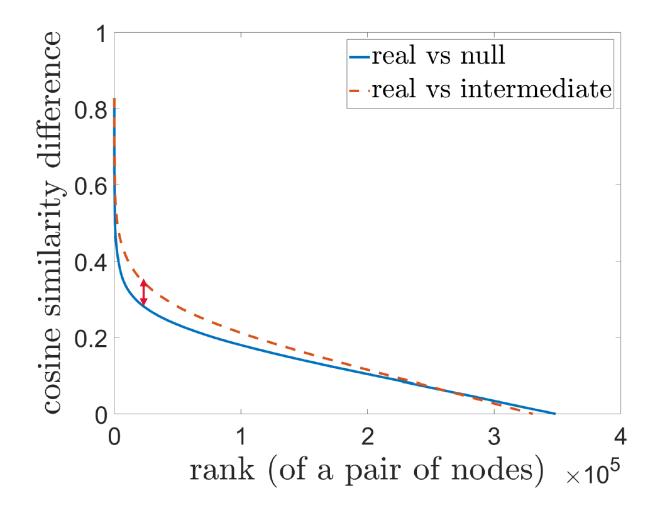


intermediate

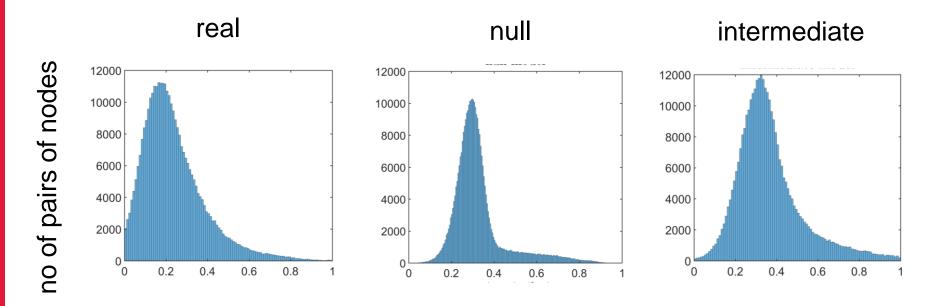
Quantitative: Cosine Similarity



Quantitative: Interesting Pairs of Nodes

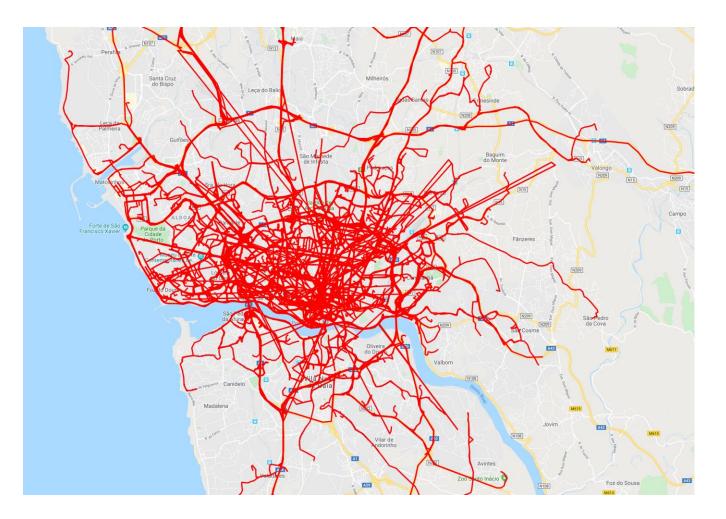


Distribution of Pair-wise Similarities

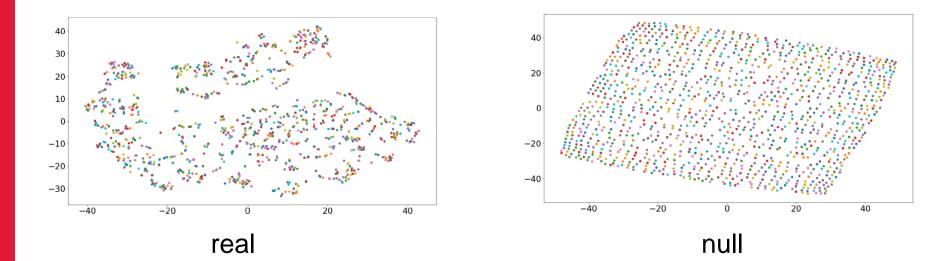


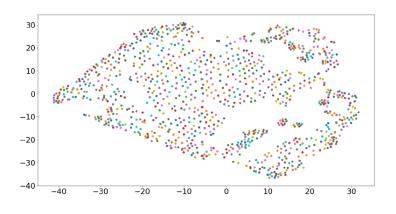
cosine similarity

Case Study II: City of Porto



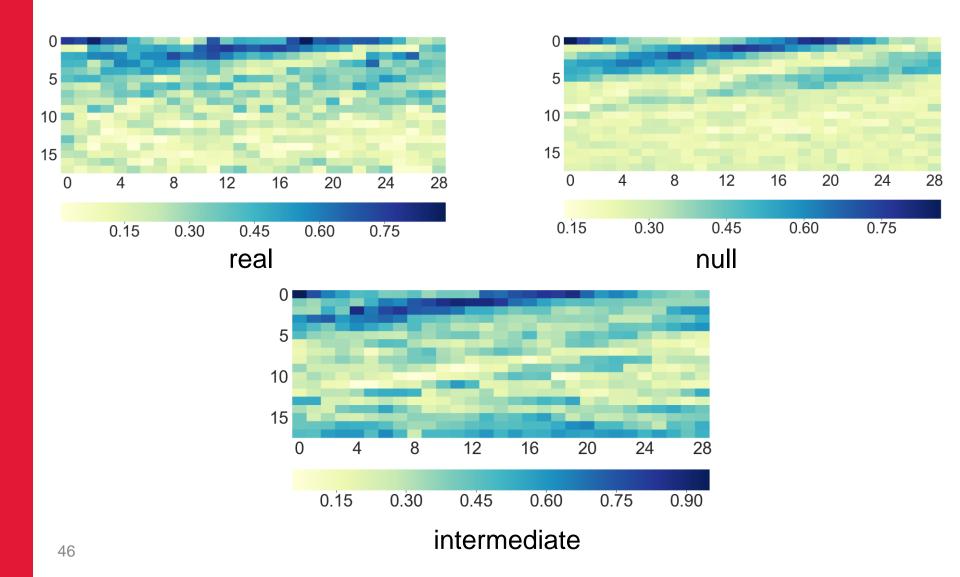
Exploratory Analysis: Many-to-Many



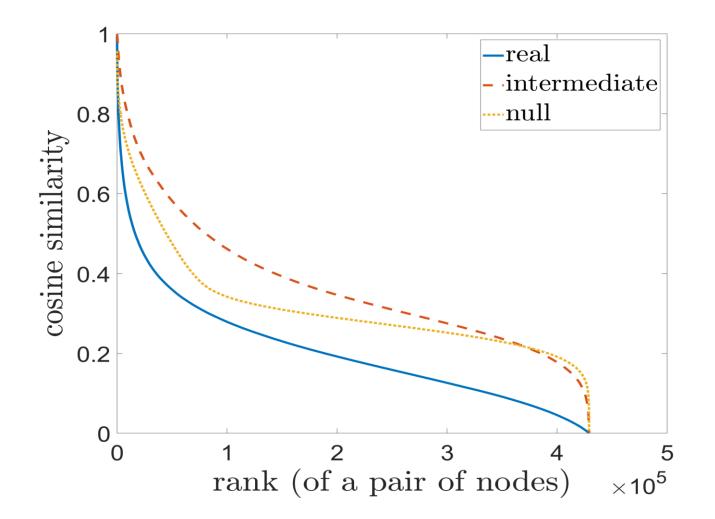


intermediate

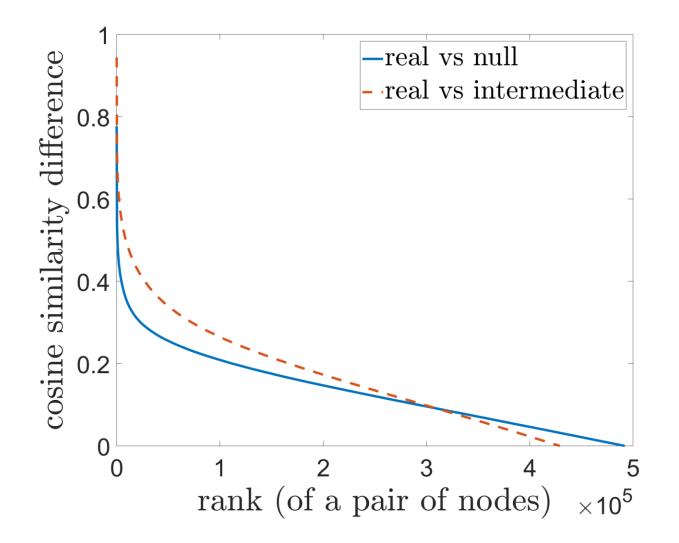
Exploratory Analysis: One-to-Many



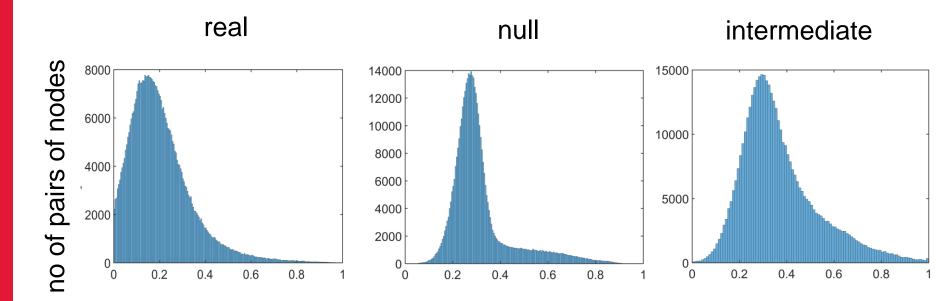
Quantitative: Cosine Similarity



Quantitative: Interesting Pairs of Nodes



Distribution of Pair-wise Similarities



cosine similarity

Research Questions

New York

City of Porto

How the behavior of people compare in different geographical space?

Chi-Square

$$\chi^2 = d(H^A, H^B) = \sum_{i=1}^b \frac{(H^A_i - H^B_i)^2}{H^A_i}$$

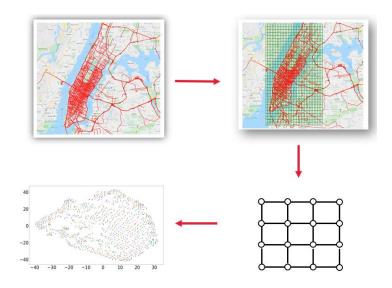
City of New York real distance from null: $\chi^2 = 4.0854e + 05 \gg 0$ real distance from intermediate: $\chi^2 = 3.0426e + 05 \gg 0$

City of Porto

real distance from null: $\chi^2 = 6.1697e + 05 \gg 0$ real distance from intermediate: $\chi^2 = 7.8492e + 05 \gg 0$

Summary

Summary of Contributions



learned nodes embeddings for real and null models

Learning Semantic Relationships of Geographical Areas based on Trajectories

Saim Mehmood and Manos Papagelis IEEE Mobile Data Management 2020 performed statistical analysis to distinguish geographical to semantic proximity

References

[Proceedings of the 25th ACM SIGKDD, 2019] "Predicting dynamic embedding trajectory in temporal interaction networks," S. Kumar, X. Zhang, and J. Leskovec, pp. 1269–1278.

[IEEE 5th International Conference on DSAA 2018] "Recommendation of Points-of-Interest Using Graph Embeddings", G. Christoforidis, P. Kefalas, A. Papadopoulos, Y. Manolopoulos.

[Proceedings of the 23rd ACM SIGKDD 2017] "Planning bike lanes based on sharing-bikes' trajectories," J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, pp. 1377–1386.

[25th ACM International on Conference on Information and Knowledge Management 2016] "Learning graph-based poi embedding for location-based recommendation," M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, pp. 15–24.

[ACM Transactions on Intelligent Systems and Technology 2015] "Trajectory data mining: an overview," Y. Zheng, vol. 6, no. 3, p. 29, 2015.

Thank you!

