
Fast Similarity Graph Construction via Data Sketching
Techniques

by

Hoorieh Marefat

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment
of the requirements for the degree of Master of Science

Graduate Department of Electrical Engineering and Computer Science
York University

August 2021

© Copyright 2021 by Hoorieh Marefat

Abstract

Fast Similarity Graph Construction via Data Sketching Techniques

Hoorieh Marefat

Master of Science

Graduate Department of Electrical Engineering and Computer Science

York University

2021

Graphs are mathematical structures used to model objects and their pairwise relationships.

Due to their simple but expressive abstract representation, they are commonly used to

model various types of relations and processes in technological, social or biological systems

and have found numerous applications. A special type of graph is the similarity graph in

which nodes represent entities and there is an edge connecting two nodes if the two entities

are similar based on some similarity measure. In a typical scenario, raw data of entities are

provided in the form of a relational dataset, matrix or a tensor and a similarity graph is built

to facilitate graph-based analysis like node importance, node classification, link prediction,

community detection, outlier detection, and more.

The ability to construct similarity graphs fast is important and with a potential for

high impact, thus several approximation techniques have been proposed. In this work, we

propose data sketching based methods for fast approximate similarity graph construction.

Data sketching techniques are applied on the raw data and are designed to achieve desired

error guarantees. They can drastically reduce the size of raw data on which we operate,

allowing for faster construction and analysis of similarity graphs, but with approximate

results. This is a desirable tradeoff for many applications in diverse domains.

Through a thorough experimental evaluation, we demonstrate that our sketching meth-

ods outperform sensible baselines and competitor methods proposed for the problem. First,

they are much faster than exact methods while maintaining high accuracy in constructing

the similarity graph. Furthermore, our methods demonstrate significantly higher accuracy

than competitive methods on generic graph analysis tasks. We demonstrate the effectiveness

ii

of our methods on different real-world graph applications.

iii

Acknowledgements

I wish to express my deepest gratitude to my supervisors Professor Aijun An and Professor

Manos Papagelis without whose persistent help and guidance, I could not pass this road. I

would like to recognize the invaluable assistance that you provided during my study. Thank

you for providing me the opportunity to grow my knowledge and learn from you. Your

constructive advice as well as criticism always made me to sharpen my mind and elevated

the level of my work.

I would like to extend my sincere thanks to my dear husband, Sina, who had been beside

me all way along and in all ups and downs. I want to show my appreciation to you for all

the support you gave me. Thank you for being such a great motivator and exemplar for me.

Furthermore, I want to thank my parents who nurtured me in my personal, educational and

professional life. I cannot show enough how grateful I am for everything you have done for

me during my life. Thanks for your endless support and belief in me.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline of The Thesis . 4

2 Background & Related Work 5

2.1 Different Similarity Related Graphs . 5

2.1.1 Similarity Graph . 5

2.1.2 ε-Graph . 6

2.1.3 Nearest Neighbour Graph . 7

2.2 Similarity Graph Construction & Applications 7

2.2.1 Pairwise Similarity Search Using Inverted Indices and Distribution . . 8

2.2.2 Pairwise Similarity Search on GPUs 14

2.2.3 Similarity Graph Applications . 16

2.3 Nearest Neighbour Graph Construction and Search 18

2.3.1 Neighbourhood or Graph Based Methods 19

2.3.2 Tree Based Methods . 21

2.3.3 LSH Based Methods . 24

2.4 Data Sketching and Sampling Techniques . 25

2.4.1 Conditional Random Sampling (CRS) 25

2.4.2 Normal Random Projection (NRP) . 27

v

2.5 Other Related Works . 27

2.5.1 Graph Sampling . 28

2.5.2 Graph Sketching . 29

2.5.3 Graph Sparsification . 30

2.5.4 Spanners . 31

3 Proposed Methodology 32

3.1 Preliminaries & Definitions . 32

3.2 Problem Definition . 33

3.3 Proposed Work . 34

3.4 Overview of the Algorithm . 34

3.5 Data Sketching . 35

3.5.1 Data Sketching from Data Matrix . 36

3.5.2 Data Sketching from Sparse Vector Representation of Data 37

3.5.3 Choosing The Sketch Size: k . 38

3.6 Pairwise similarity computations . 38

3.6.1 Online Pairwise Similarities . 43

3.6.2 Offline Pairwise Similarities via Sorting 44

3.6.3 Offline Pairwise Similarities via Matrix Precomputation 46

3.6.4 Comparison of Pairwise Similarity Algorithms 46

3.7 Similarity Graph Construction . 49

4 Evaluation 50

4.1 Experimental Settings . 50

4.1.1 Machines . 50

4.1.2 Datasets . 51

4.1.3 Methods . 51

4.2 Q1. Speed . 52

4.2.1 Effect of density on runtimes . 56

4.3 Q2. Accuracy . 57

vi

4.3.1 Effect of density on accuracy . 57

4.4 Q3. Effectiveness . 59

4.4.1 k-nearest neighbours . 59

4.4.2 Node centralities . 60

4.4.3 Node ranking correlations . 63

5 Conclusion & Future Work 66

5.1 Conclusion . 66

5.2 Future Work . 67

Bibliography 69

vii

List of Figures

2.1 Similarity graph . 6

2.2 ε-Graph . 7

2.3 Nearest Neighbour Graph . 8

2.4 Forward vs. Inverted Index . 9

2.5 General MapReduce Structure . 11

2.6 MapReduce Structure Used For Similarity Search Suggested By [22] 11

2.7 The Overview Structure of Similarity Search Related Tasks Proposed in [57] . 13

2.8 Overview of Similarity Search on GPUs Suggested By [71] 15

2.9 A Small World Graph Structure . 20

2.10 Hierarchical Navigable Small World Graph Structure 22

2.11 Spatial Partitioning of IR2 By A K -d Tree Vs. RP tree 23

2.12 The Sampling/Sketching Procedure Suggested in [41] 27

3.1 Different Representations of A Data Matrix 33

3.2 Overview of Our Method . 35

3.3 Data Sketching Overview On A Data Matrix 36

3.4 Data Sketching Overview On The Sparse Vector Representation of A Matrix 39

3.5 The Inverted Index Overview . 40

3.6 Pairwise Similarity Computation Overview 42

4.1 Runtimes w.r.t different sample sizes . 55

4.2 Runtimes w.r.t density of datasets for a fixed sample size 56

viii

4.3 Relative errors w.r.t sample sizes . 58

4.4 Relative errors w.r.t density of datasets for a fixed sample size 58

4.5 Knn recall w.r.t sample size . 60

4.6 Knn recall w.r.t k for a fixed sample size . 61

4.7 Average centrality errors w.r.t. sample sizes 62

4.8 Average centrality errors for different top percentages 63

4.9 Centrality ranking correlation w.r.t. sample sizes 64

4.10 Centrality ranking correlations for different top percentages 65

ix

Chapter 1

Introduction

1.1 Motivation

The graph data structure is one of the most prevalent data structures used in Computer

Science because of its ability to show relationships between entities in an effective way. The

goal of this thesis is to explore how we can build similarity graphs, i.e. graphs in which

nodes represent entities in a dataset and edges representing similarities between two entities,

in an efficient way.

There are many applications in which the use of a similarity graph can be beneficial,

such as nearest neighbor search [32][45][54], collaborative filtering based recommendation

[16][13][58], link prediction [28][30][70], clustering [49][65][72], and maximum inner product

search (MIPS) [50]. For example, in the recent work of Morozov et. al. [50], it is shown

that using similarity graphs, the MIPS problem (which is an essential operation in many

machine learning tasks) can be solved efficiently.

Constructing similarity graphs can be very time-consuming as it normally involves the

computation of similarities between all pairs of entities in a dataset. Furthermore, this prob-

lem suffers from curse of dimensionality. If data is high-dimensional, the speed of processing

decreases significantly. There are many applications in which similarity graphs need to be

built many times, such as in data streams where insertion, deletion and modification of data

1

Chapter 1. Introduction 2

entities occur frequently over time. Improving similarity graph construction can result in

significant improvements in the efficiency of the whole application as it is one of the most

time-consuming parts of the application.

An example of applications that deal with streaming data is news recommendations. The

news articles are time-sensitive and recommendation of news to users is normally based on

recent news. In collaborative filtering based news recommendations, computing similarities

between users or articles is an essential operation. Using a similarity graph can facilitate

such a computation. Due to the dynamic nature of the data, similarity graphs may need to

be re-constructed over time as new articles or users are being added and old ones may retire.

Thus, in such an application the need for having a fast approach for graph construction rises.

Our methods are suitable for constructing similarity graphs of high-dimensional and

sparse datasets. Example such datasets include document-word representations in infor-

mation retrieval or user-item matrices typically found in recommendation systems (e.g.,

matrices representing ratings of users to movies or to restaurants, binary matrices repre-

senting transactions of customers buying products, and so on). In these applications, the

matrix represents documents or users as rows and the columns represent words in the litera-

ture or items (movies, restaurants, products) the users provided a rating for (or purchased),

respectively. The end result is a matrix with a large number of rows and columns. Such

data matrices are typically very sparse, meaning that most values are equal to zero. The

semantics of a zero value are that information is not available or is missing. For example, in

a popular movie database, users have on average watched 30 movies (out of million movies

available). So for each matrix row there are 30 non-zero entries on average and all other

values are zero. In these setting, zero entries can be discarded as they don’t carry significant

information, occupy large amounts of memory, and render complex computations to be slow.

Data sketching makes construction of graphs from the mentioned matrices much more

efficient. Using data sketching techniques, instead of working with high-dimensional data

matrices, we can work with much lower dimensions and compute pairwise similarities in a

much more efficient way. The objective of this research is to develop efficient and effective

method for similarity graph construction using data sketches. The method needs to be fast

Chapter 1. Introduction 3

in terms of running time, as well as accurate compared to constructing a similarity graph

based on the original input dataset.

1.2 Contributions

The main objective of this research is to address the problem of similarity graph construc-

tion from high-dimensional data. Given raw data represented by a matrix (or sparse vector

representation of a matrix) where rows represent entities or instances and columns repre-

sent attributes, we aim to propose an efficient and effective method for similarity graph

construction using data sketches. The method should be fast in terms of running time, as

well as accurate compared to constructing the same similarity graph based on the original

input dataset. Below are the contributions of this thesis:

• We introduce novel algorithms for the construction of similarity graphs. In our algo-

rithms, data sketching techniques are used to make the process more efficient. Data

sketches are much smaller than the original data and by using them, high-dimensional

data is converted to much lower dimensions. In addition, we propose to use an inverted

index for pairwise similarity computations, which helps to eliminate many redundant

computations and comparisons, saving a huge amount of time.

• We propose three algorithms each of which has a trade-off for speed and space. When

there is no restriction on the space or linear space is provided, two of our algorithms

having data preprocessing (which we call offline methods) can be used. Another

method we propose has an online approach of data processing and uses much less space

than the other two. However, it is shown that this method works slightly slower. So

based on the needs one might have, any of our algorithms can be selected and worked

with.

• We demonstrate the effectiveness and efficiency of our methods via experiments on

different datasets and different setting of parameters. We compare our proposed algo-

rithms with established baselines and a commonly used competitor and show that our

Chapter 1. Introduction 4

methods are significantly faster than the baselines (up to 62× faster) with a negligible

sacrifice on the accuracy. While the competitor method has a similar speed to ours

but its accuracy is much lower.

• We analyze the effectiveness of our methods on different graph downstream tasks like

node centralities, node rankings and k-nearest neighbours to see how errors of sketching

propagate to the graph applications. We show that compared to our competitor, our

accuracy is much higher on such tasks suggesting that our methods can be good options

for similarity graph construction and further graph analysis.

• We show that our methods show consistent behaviour even when the parameters of

the experiments are changed. For the sketching as well as the graph applications,

we change parameters specific to the task and show that our methods are much less

sensitive to those changes than the competitor which makes them more robust and

reliable to use in different settings.

1.3 Outline of The Thesis

The structure of the thesis is as follows: In section 2, we provide the background of our

work and talk about different lines of research that are related to our topic. We provide

different categories and introduce some works for each of them. In section 3, we introduce

all definitions and our problem statement and elaborate on them. Also, we propose our

solutions for the mentioned problem and the methodology we have towards it. Next, it

would be the evaluation which we bring in section 4. We show thorough evaluations on how

our algorithms and other competitors work based on different criteria. Section 5 is the last

one in which we offer a summary and conclusion of our work.

Chapter 2

Background & Related Work

In this section, we go through the background of our work and the basic structures that

are used throughout the thesis. Beside that, we review different lines of research that are

related to our work and elaborate them.

2.1 Different Similarity Related Graphs

2.1.1 Similarity Graph

A similarity graph G(V,E) is a graph where V is the set of vertices or nodes representing

entities and E is the set of edges representing similarities between those entities. Figure

2.1 shows an example of such a graph. According to the figure, consider we have a dataset

representing users as rows and items they bought as columns. Each cell shows how many

numbers of an item a user has bought. If we use dot product as the measure of similarity,

users 1 and 2 will have the similarity value 3×4+0×5+2×1+0×0+10×0 = 14, so there

is an edge with value 14 between the node 1 and 2. For users 1 and 3 we have similarity

value of 53 and the edge between them has value 53. The same applies to all other pairs

of users. As it can be seen, the similarity value between user 1 and 5 is 0 so there is no

edge between these two nodes in the similarity graph. To conclude, a similarity graph is a

graph in which nodes are entities and edges are the similarity between them. Such graphs

5

Chapter 2. Background & Related Work 6

UserID Item1 Item2 Item3 Item4 Item5

1 3 0 2 0 10

2 4 5 1 0 0

3 1 3 0 1 5

4 0 2 2 0 3

5 0 0 0 4 0

(a) Dataset

(b) Similarity graph

Figure 2.1: In subfigure 2.1a, a dataset is shown which represents users as rows and items
as columns. Each cell shows how many numbers of an item a user has bought. In subfigure
2.1b, the similarity graph of the presented dataset is built. Nodes of this graph show users
and edges are similarity of them based on the dot product measure.

have many different applications in recommendation systems, nearest neighbour search,

information retrieval and so on.

2.1.2 ε-Graph

An ε-graph is a usual graph with the difference that all the edges have value above the ε

threshold. Consider the graph presented in Figure 2.1, if we set ε = 15, the edges that are

below this value i.e. (1, 2), (2, 4), (3, 5) will be omitted. In Figure 2.2, the idea is presented.

Left graph shows the original one and right graph shows its ε-graph.

Chapter 2. Background & Related Work 7

Figure 2.2: Applying ε = 15 threshold to the graph presented in Figure 2.1. Edges having
weight below the threshold are omitted which results in removal of (1, 2), (2, 4), (3, 5)

2.1.3 Nearest Neighbour Graph

A nearest neighbour (NN) graph is a directed graph in which each node has a directed edge

to its nearest neighbour node. The notion of nearest can be regarded as the most similar or

the least distant. The edges are directed because if node B is nearest for node A, this does

not imply its reverse and node B can have another node like C as its nearest neighbour. In

Figure 2.3, we show the NN graph built from the similarity graph represented in Figure 2.1.

Beside NN-graphs we have kNN-graphs which are more general. In kNN-graphs, node

A has a directed edge to node B if node B is among the kth most similar or least distant

nodes of the graph for node A. So for each node, instead of 1 nearest neighbour node, we

have k nearest neighbours.

Nearest Neighbour Search (NNS)

In this problem, we are given a dataset and a query point, we try to find the nearest point

or the most similar one to the query in the dataset.

2.2 Similarity Graph Construction & Applications

Similarity graph construction can be a daunting task in terms of runtime and memory

usage if not operated efficiently. This task includes computing similarities for all pairs of

instances in the dataset. Consider the example of users and the items that they have bought

as brought in Figure 2.1a, if we have n number of users and d number of items, the time

Chapter 2. Background & Related Work 8

Figure 2.3: Nearest Neighbour Graph constructed from the similarity graph represented in
Figure 2.1. As we used dot product for the similarity measure, for each node we choose the
node that has the highest value of similarity. As it can be seen for node 4 nearest neighbour
is node 1; however, nearest neighbour of node 1 is not node 4 and instead it is node 3. So
the edge between nodes 1 and 4 is not bi-directed. However, because nearest neighbour of
node 3 is node 1 and for node 1 also it is node 3, there is a two-way directed edge between
them.

complexity would be O(n2d). This process would be very time-taking not only in terms of n,

but also when dimension d is very large. There are a number of works proposed to speedup

the pairwise comparisons by the usage of GPUs or distributing the data to address the issue

of having large number of instances in the dataset. Furthermore, working with less number

of dimensions when d is too large can boost the process significantly too. However, there

are a few works presented to tackle the problem of dimensionality and our work is one of

them. In this section, we provide different approaches for pairwise similarity computations.

2.2.1 Pairwise Similarity Search Using Inverted Indices and Dis-

tribution

In this category, inverted indices are used for speeding up the process of similarity search.

An inverted index is the opposite of a forward index. An illustration is provided in Figure

2.4. If we have documents that in each of them a geo-scopeID is present, a forward index

maps each docID to a geo-scopeID; while an inverted index does the reverse and for each

geo-scopeID it shows which documents have them. Using inverted indices makes the process

of finding similarities much faster.

Chapter 2. Background & Related Work 9

Figure 2.4: From Andrade et.al. in Indexing Structures for Geographic Web Retrieval. If we
have documents that in each of them a geo-scopeID is present, a forward index maps each
docID to a geo-scopeID; while an inverted index does the reverse and for each geo-scopeID
it shows which documents have them.

All-Pairs Similarity Search

Bayardo et. al. [11] give a solution on how one can make use of these indices for finding

similarities between all pairs of instances in the dataset that are above a specific threshold.

They propose exact solutions rather than approximations. In this work a basic algorithm

for finding pairwise similarities using inverted indices is brought. Then, they provode two

levels of refinement on the basic algorithm to make it even faster. The basic algorithm

builds inverted indices gradually. While each instance of the dataset is being put in indices,

its similarity to the instances that are already indexed is computed. So the details of the

algorithm are as follow: It starts with empty initialization of inverted indices. Then there

is a pass over all instances of the dataset. For each instance, similarity score of all indexed

instances to the current one is calculated. Scores are maintained in a dictionary and updated

during time. When score computation is done, the current instance would be indexed as well

and the process goes on till the last instance. Finding similarity score is done very easily.

Suppose we have some indexed documents and we want to find similarity of a document to

the ones that are indexed. For each word the query document has, we go to its index and

for each document having that word, we update the pairwise similarity score. This is the

basic algorithm suggested by Bayardo et. al. [11].

Chapter 2. Background & Related Work 10

They propose two refinements to this method exploiting the similarity threshold. The

threshold is used to reduce the amount of information indexed. This has a great impact

because scanning indices takes less time and candidates are reduced. However, these two

approaches are impractical as for the input they need a special sort and order on dataset,

both on columns and rows. This special sort and order is not present in real-world datasets

and preparing a dataset for these algorithms is a huge bottleneck. Authors assume that

the mentioned dataset already exists and do not consider the preprocessing of data for

that. There are other works using inverted indices for similarity search; some of them using

distributed frameworks and some using GPUs. We elaborate them in the next sections.

Distributed Solutions

In order to make pairwise similarity search scalable in terms of number of instances in the

dataset, one can use distributed solutions. Consider we have large amount of data residing

in different locations. A distributed solution works with very large data not residing on just

one machine and on multiples of them in a cluster.

MapReduce is a distributed programming model. The general structure of a MapReduce

framework is shown in Figure 2.5. Each node in the cluster maps its data to some inter-

mediate outputs. The output consists key/value pairs. In the shuffle stage, output of map

stage is grouped based on the keys they have. The pairs having the same key are grouped

together and are put on the same machine. As the last step, in the reduce stage all the

groups from previous stage are processed in parallel using reduce functions to give the final

output.

Elsayed et. al. [22] give a distributed solution for similarity search using MapReduce.

In this method, there are two steps of MapReduce jobs as shown in Figure 2.6. In the first

one, documents are indexed and inverted indices are built which is shown in the figure as

Indexing part. The second step is finding pairwise similarities based on the inverted indices

shown as Pairwise Similarity. In the indexing step, documents are given to mappers. The

mapper produces key/value pair tuples having terms as keys and value as tuple of document

ID and the frequency of the term in the document. In the shuffle stage, all the tuples having

Chapter 2. Background & Related Work 11

Figure 2.5: This is a representation of MapReduce structure provided in [22].

Figure 2.6: MapReduce structure used for similarity search suggested by [22]. There are
two steps of MapReduce jobs. In the first one, documents are indexed and inverted indices
are built which is shown in the figure as Indexing part. The second step is finding pairwise
similarities based on the inverted indices shown as Pairwise Similarity.

the same key (the same term) are gathered and put together on the same machine. The

output of the shuffle stage is the inverted indices we desired so reducers just simply forward

the input they are given. In pairwise similarity step, each mapper produces all the pairwise

combinations of the document IDs for each term. This would be the key and the product

of their weights serves as the value. Then, in the shuffle stage same pairs of documents are

gathered and put together. Then, the reducer sums all the similarity values of the pairs to

give the final simialrity value.

The work presented by Elsayed et.al. [22] is an algorithm giving the exact answer for

all similarities. However, huge amount of data should be shuffled in the network between

different machines and that is a problem. Lin [44] provides other solutions for this problem.

Chapter 2. Background & Related Work 12

He proposes a brute force algorithm as well as two other ones using indexing techniques.

They are called Parallel Queries and Postings Cartesian Product. The latter one is a refine-

ment of Elsayed’s work described earlier. He suggests that we move some of the works that

reducers do to the map stage in order to reduce amount of data being transferred.

Furthermore, Phan et.al. [57] provide a MapReduce framework that any kind of sim-

ilarity search related tasks for pairwise documents, a pivot document, range queries and

k-nearest neighbour queries can be answered. The overview of their framework is provided

in Figure 2.7. As the first step, worksets which are sets of documents are given as input

to the framework. Then, a MapReduce job is done on these documents. This MapReduce

job does a prior filter on the input which includes elimination of duplicate, common and

the lonely words. The output of this step is a customized inverted index which is used for

the second MapReduce job. In this step inverted indices are used and pairwise similarities

are computed based on them. Query parameter filterings can be applied here in order to

change the similarity search scenario to the desired task including pre-pruning, kNN query

and range query filterings. In addition, Phan et. al. provide an extension to this solution

[56] adding normalization steps while building inverted indices. The main structure is very

similar except that 2 more MapReduce jobs are added to do the desired normalizations.

Dimension Independent Similarity Computation (DISCO)

This method is proposed by Bosagh Zadeh et.al. [69] and is used to compute all pairwise

similarities between high-dimensional vectors. It is implemented on MapReduce framework.

In this work, authors optimized the amount of data shuffled in the network as well as the

reduce-key complexity which is defined as the maximum number of items that are reduced

to a single key. These optimizations have a great impact on efficiency of the algorithm.

The method works independent of number of dimensions. Authors propose a special

sampling technique in which points that have many nonzero dimensions are sampled with

lower probability than points having few dimensions as nonzero. This is the key to the

whole dimension independent computations. Then, the output of the reducers are random

variables whose expectations are the similarities and they prove accuracy theoretically.

Chapter 2. Background & Related Work 13

Figure 2.7: The overview structure of similarity search related tasks proposed in [57]

Chapter 2. Background & Related Work 14

2.2.2 Pairwise Similarity Search on GPUs

In this category, the focus is on maximizing parallelization of processing by using GPUs. In

the work presented by Zhou et. al. [71]. an inverted index based framework is proposed to

find similarities on GPUs. The overview is shown in Figure 2.8. On the top left, a relational

table is provided. Each row of this dataset can be represented as a set of tuples showing

attributes and their values. O1 = {(A, 1), (B, 2), (C, 1)} is an example. Q1 and Q2 show

two example range queries. For Q1, we are querying tuples having 1 ≤ A ≤ 2, 1 ≤ B ≤

1, 2 ≤ C ≤ 3. On the right side of the Figure, the inverted index structure is presented.

Keys of the inverted index are tuples of attribute headers and values, posting lists show

which objects have those tuples. The count table shows how many number of tuples in the

query each of the objects of the dataset contain. This count shows similarity of objects to

the query so similarities can be obtained easily with this structure on GPUs.

As explained, this work focuses on finding similar objects to the query and is not an

all pairs similarity search. For that purpose, a data structure is designed for the count

table. This data structure is called Count Priority Queue (c-PQ) which makes the process

of finding top k similar objects much more efficient. It is a hash table that keeps a few

candidates and for getting the query result, it should be scanned just once. Another novelty

of this work is the ability to work with many different kinds of data. The popular data types

are supported by Locality Sensitive Hashing (LSH) [24] and the complex ones are supported

by Shutgun and Assembly (SA) [8]. By using these two techniques, many data types are

supported to build an inverted index based on them and searching queries.

Furthermore, a fast GPU k-selection algorithm is proposed in [34]. In this work the

problem of finding k nearest neighbours to a query is investigated and it is not an all pairs

similarity search. When working with GPUs, compressed representations of vectors are

very convenient to use because memory is limited. Instead of working with a very high-

dimensional vector, one can use a small and compact representation of it using different

encodings. Compression can be done using binary codes or quantization. In this work,

Product Quantization (PQ) is used. Furthermore, implementations on GPU have their own

limitations and a CPU design cannot be translated to a GPU one in a straightforward way.

Chapter 2. Background & Related Work 15

Figure 2.8: This is the overview of the method suggested by Zhou et. al. [71] for finding
similarities using GPUs.

This work provides different GPU layout decisions to make use of the power of parallelism

they have as much as possible and make the process much faster.

As another example, Jian et. al. [31] propose a method for top-k cosine similarity search

via a special binary quantization technique. This method does not use any special indexing

construction. The algorithm compresses floating point numbers to very small binary codes

and does an XOR on them.

Gowanlock et.al. [27] propose a solution for the problem of similarity self-join on GPUs.

In this problem, all entities in the dataset that are within ε distance of each other are found.

They provide a grid-based specific index structure suitable for GPU in order to do range

queries. By using properties of this index, some candidate sets are filtered. This helps to

reduce overhead of the search. Also, based on the variance of dimensions, data is reordered.

Furthermore, some expensive calculations are pruned to improve performance of the overall

search. By using these optimizations, the whole process is performed with much higher

efficiency.

Chapter 2. Background & Related Work 16

2.2.3 Similarity Graph Applications

Similarity graphs are widely used in the literature and there are numerous applications for

them. Here we bring some of them and elaborate.

Recommendation Systems & Collaborative Filtering

Recommendation systems aim to predict preference of a user about an item in order to give

a recommendation; for example, in music or video applications when the system wants to

recommend a music or a video to a user or in online shopping when an item is suggested,

etc. One of the main approaches to address this problem is Collaborative Filtering. This

approach is based on the fact that if two people have had the same taste in the past, in the

future they will like similar items too. One way of solving this problem is using similarity

of users for which a similarity graph can be used. Therefore, an item that is enjoyed by

similar people to the user can be recommended to him/her [16][13][58].

Link Prediction

The link prediction problem is the problem of predicting future links between different nodes

in the graph; for example predicting friendship of users in a social network, finding hidden

links for security purposes like detecting gang interactions, etc. There are a number of

approaches to solve this problem. One of the most successful ones is the similarity based

methods which are widely used. These methods consider the structure of the network

and having similarity graphs helps the process greatly. Some of them work based on node

neighbourhood features like common neighbours, Jaccard coefficient, etc., Others work based

on path features like shortest path distances, Katz metric, ... or even based on vertex and

edge attributes [28][30][70][68].

Data Clustering

Another application of similarity graphs is data clustering [49][65][72]. In clustering, we

want data points residing in the same cluster to be more similar to each other than data

points in other clusters. So we want to maximize similarity of items within a cluster and

Chapter 2. Background & Related Work 17

minimize it inter-cluster. For this purpose, a similarity graph can be used. We can find

minimum cuts recursively in order to partition or cluster dataset.

Maximum Inner Product Search (MIPS)

The MIPS problem has many applications in Machine Learning. The problem is formulated

as following. Given a large dataset of vectors X = {xi ∈ IRd | i = 1, ..., n} and a query

q ∈ IRd, we need to find the vector xj such that 〈xj , q〉 ≥ 〈xi, q〉 = xTi q , i 6= j. As suggested

in [50], previously, people were using two approaches to solve this problem. First, reducing

MIPS to an NNS problem using traditional methods like tree partitioning, LSH, etc. The

second approach was to filter vectors that are not promising based on inner product upper

bounds like Cauchy-Schwarz inequality. In the work presented by Morozov et.al. [50] a

new approach is presented. They propose that by using similarity graphs, this problem can

be solved in a more efficient way. The authors provide theoretical analysis to show why

similarity graphs are very effective in solving this problem.

Nearest Neighbour Search (NNS)

One of the applications that similarity graphs can be used in is NNS. Because a large body

of works is offered in this area, we devote a section to this topic and elaborate the main

approaches to solve this problem. Although this topic is very related, it is not exactly

the same as similarity graph construction. As shown in Figure 2.3, a similarity graph

is a weighted undirected graph in which each edge shows similarity between two nodes.

However, an NN graph is a directed one in which each node has a directed edge pointing to

its nearest neighbour. There are many works proposed to solve the problem of NNS; some

of them make use of similarity graphs and some build special data structures optimized for

the query search and answer the query with those data structures. In the next section, we

provide different categories of work in this area and elaborate them.

Chapter 2. Background & Related Work 18

2.3 Nearest Neighbour Graph Construction and Search

The problem of nearest neighbour graph construction and search has many applications in

Computer Science. In information retrieval systems where we want to find the most similar

documents to a query, content based image retrieval, optical character recognition and many

other applications. Because datasets can be very large in terms of number of instances as

well as dimensionality of dataset, giving an exact solution might be very time-inefficient.

Therefore, there are many approximated solutions proposed that are accurate enough but

much more efficient than the exact solution.

Similarity graph construction is related to NN-graph construction but it has its own

differences. In a similarity graph we have all the pairs of similarities that are nonzero as

edges. However, in a k-NN graph we have just the most k similar nodes for each node and

we can optimize k-NN graph construction process accordingly. However, similarity graphs

can be used for k-NN search too. The problem of k-nearest neighbour search is defined

as having a query and a dataset including different data points, we want to return k most

similar data points of the dataset to the query. For this purpose, many methods first build

an index or a graph and then run a search algorithm on this intermediate data structure.

This data structure can be a similarity graph, a tree, etc. Here we provide some of the most

prevalent methods for NNS problem.

There are different categories of work in the area of NN-graph construction and search. A

couple of surveys exist representing the most important methods in each category [9][43][55].

One category of the methods build a graph and based on that graph nearest neighbours of

nodes or queries are obtained. This graph is built such that information of data points based

on their neighbours are used. The main idea is that neighbours of neighbours might be a

neighbour. For example, if node A has neighbour node B and node B has neighbour node

C, we can check if A is a neighbour of C too or not. The other category builds special trees

to answer the search query via partitioning the space recursively. The space is partitioned

hierarchically via pivoting or compact partitioning techniques like clustering, Voronoi par-

titions or random division of space. The last important category includes methods that use

Chapter 2. Background & Related Work 19

Locality Sensitive Hashing (LSH) as their foundation. In these methods, the goal is address-

ing the problem of dimensionality. Multiple hash functions are applied on data and high

dimensional data points are mapped to lower dimensions or short codes consisting sequence

of bits. There are two points of view. One is that we hash data points such that similar

instances be hashed to the same code. The other one is that we hash high-dimensional

points to lower dimension codes and find similarities in this low dimensional space. LSH

based NNS methods are the most related to our work and we provide comparisons with

them in the experiments section.

2.3.1 Neighbourhood or Graph Based Methods

These methods build a graph that for each data point its neighbourhood information with

other points of dataset or a set of pivot points are kept [43]. So a k-NN graph or other graph

types are built and using them, NNS is answered. In these methods, when searching for

the nearest neighbour of the query, the graph is traversed in a greedy way and search stops

when a stopping condition is met. In the following, we bring some of the main approaches

belonging to this category.

Small World

In the real-world, the small world phenomenon explains that each two strangers in the world

can be linked by a small number of other people as hops. A graph having small world feature

has following properties: each of its nodes are connected to a small proportion of the whole

nodes of the graph, if a node has two neighbours it is very probable that these two can be

neighbours of each other and as the last one, each two nodes of the graph can be linked

to each other via a small number of hops in the middle. A very important feature of such

graphs is that the diameter of the graph with N number of nodes is bounded by log(N)

[38].

In the paper presented by Malkov et.al. [46], a small world graph is used for approximate

nearest neighbour (ANN) search. This graph is constructed gradually by adding data points

to the graph one by one. When a node is inserted, set of its closest neighbours are detected

Chapter 2. Background & Related Work 20

Figure 2.9: The Small World graph structue suggested by Malkov et.al. [46]. Blue nodes
represent nodes of the graph. The black edges show the approximation of Delaunay graph.
The red edges are long range links. In this figure it is shown that by starting from the entry
point, which links are traversed to get to the closest node to the query.

and an edge is added between them which is an approximation of the Delaunay graph.

These edges are regarded as short range links. By ongoing insertion of nodes, short range

links become a long range link. This makes this graph a Navigable Small World (NSW).

For searching the graph to find nearest neighbours of a query, a number of subsearches are

done. In each of them, we start with a random node and visit its closest neighbours which

are not visited before until the stopping condition is met. Figure 2.9 shows the structue

of the mentioned Small World graph. Blue nodes represent nodes of the graph. The black

edges show the approximation of Delaunay graph and the red edges are long range links.

In this figure it is shown that by starting from the entry point, which links are traversed to

get to the closest node to the query.

Hierarchical Navigable Small World

Malkov et.al. present another method based on NSW graphs. In Hierarchical Navigable

Small World (HNSW) method [47], a multi-layer hierarchical graph is built. Figure 2.10

shows the mentioned HNSW graph in which links of the graph are separated based on

their distance scale or length. The most upper layer has the longest links and the closer to

the zero level, length of links become smaller. Also, number of points in the upper most

layer is the least and the zero layer contains all data points. Each layer of this graph is a

Chapter 2. Background & Related Work 21

proximity graph and edges of each layer are short links approximating the Delaunay graph.

If we combine all connections of all layers, we end up with an NSW graph (like the one we

elaborated in Small World section).

Construction of this graph is done by inserting data points one by one. Each node has

a maximum layer like l which is selected randomly and the node is inserted to all layers

between 0− l. To insert each node, first we start from the top most layer. We explore this

layer and find the neareset neighbour (a local minimum) for the point. Then we proceed to

one layer down. In this layer, we start our search from the local minimum point we obtained

from the previous layer and recursively we find local minimum in this layer too. We do this

process for all the layers of top most to l. Then, for layer l, we insert the node in the graph

connecting it to its nearest nodes and go down till the 0 level. The search process is similar

to the insertion process except that we assume l = 0 for the query and give the neighbours

in the ground level as the result.

2.3.2 Tree Based Methods

This category includes tree based space partitioning methods. The space is partitioned

hierarchically via pivoting or compact partitioning techniques. In the pivoting methods, we

have some points as pivots and partitioning is done based on the distance of data points to

those pivots. Compact partitioning methods have another point of view. One approach is

to use clustering on data points, another one can be based on Voronoi partitions or random

division of space [43]. We provide two of the main methods in this category in the following.

FLANN

FLANN is an open source library which stands for Fast Library for Approximate Nearest

Neighbours. The work which presents FLANN [52] provides two different approaches for

ANN search: multiple randomized kd-trees[59] and priority search k-means tree.

A kd-tree is a space-partitioning data structure in a k-dimensional space. In the con-

struction of a randomized kd-tree, data points are recursively divided to two halves. For

division, a dimension is selected and split is done using a perpendicular hyperplane. This

Chapter 2. Background & Related Work 22

Figure 2.10: This figure shows the structure of HNSW graph suggested in [47]. Level 0
has the shortest links and as we increase levels, links become longer and number of nodes
decrease. Each layer is a proximity graph by itself. Figure shows a search process. Search
starts from the top most layer (layer 2) and from the red node. A local nearest neighbour
node is found in layer 2 and that node is the entry point to the layer 1. In layer 1 also the
local minimum is found and served as the entry point for layer 0. The nearest neighbour in
the ground level (0) would be the result of this search.

Chapter 2. Background & Related Work 23

Figure 2.11: Spatial partitioning of IR2 by a k -d tree shown in left vs. an RP tree shown in
right [19].

hyperplane passes mean value of data points in the selected dimension. But how is the

dimension selected? It is chosen from top 5 ones that have the largest variance for the

values of data points in that dimension. In this method, multiple randomized kd-trees are

built and for the query they are searched in parallel. The priority search k-means tree works

based on clustering. It clusters data points based on all their dimensions contrary to the

previous method which uses just one dimension to partition. In this method, data points are

clustered to k regions using k-means and then on each region recursively the same method

is applied. The stopping condition for each region is met when the region has less number

of points than k.

Annoy

This method is one of the most successful ANN algorithms and is being used in Spotify.com.

In this method, multiple random projection trees are built [19]. In Figure 2.11, space

partitioning done by a k -d tree vs. an RP tree is shown. At each step, space is partitioned

to two subspaces by taking two random nodes in the subset and dividing the space by the

hyperplane that is equidistant to them. This is done k times and a forest of trees is built.

This method is empirically designed and implemented.

Chapter 2. Background & Related Work 24

2.3.3 LSH Based Methods

Locality Sensitive Hashing (LSH) was first introduced in [24]. Since then, this method has

been vastly used in ANN search algorithms. This method provides theoretical guarantees

on the quality of the result for the query. The main idea is to address the problem of

dimensionality. Multiple hash functions are applied on data and high dimensional data

points are mapped to lower dimensions or short codes consisting sequence of bits.

There are two main approaches of using hashing. One is to use locality sensitive property

which says that similar items have larger probability to be mapped to the same hash bucket

(or code) than the ones that are not similar to each other. Therefore, NN candidates of the

query are explored in the bucket that the query is hashed to. The other usage of hashing

is to reduce dimensions by using short codes and then finding approximate distances on

these short codes instead of the high-dimensional original space. This needs that distance

computation using short codes is efficient and also these codes preserve original similarities

of data points [67]. Now, we bring some methods in this category.

SRS

This method [66] is used for doing an ANN search in high-dimensional Euclidean space.

LSH is used to tackle the problem of curse of dimensionality. In this method theoretical

guarantees are provided for the quality of the results. Also, it is said that the index size

used by LSH algorithms is too large but authors propose that a tiny index is required in

this work. The main idea here is to project high-dimensional data points to low-dimensions

(as low as 10 dimensions) via 2-stable random projections. The goal is that the distance

between points in the projected space over their distance in the original space follows a

known distribution. If we show distance of query q to the point o in the original space as

dist(o) and in the projected space as ∆m(o),
∆2

m(o)
dist2(o) follows χ2(m) distribution with mean

m. This means that in this method the algorithm reduces d-dimensional c.ANN query to

an m-dimensional exact k-NN query.

Chapter 2. Background & Related Work 25

Scalable Graph Hashing (SGH)

In the work presented by Jiang et.al. [32] a new graph hashing technique is proposed. Graph

hashing methods need to compute pairwise similarities between all pairs of points in the

dataset. However, due to the time and space limitations, approximations or subsampling is

needed. In this work, authors provide an approach to approximate and use the similarity

matrix without explicitely computing it. The approximation used in this work is as follows:

Consider we have a dataset having n data points with dimensionality as d. By hashing, each

data point is mapped to a binary code with the length c meaning that there are c binary

hash functions {hk(.) | k = 1, 2, ..., c} based on which the binary code of any point like x

is computed, i.e. b = [h1(x), h2(x), ..., hc(x)]T . Hashing should preserve distance of the

points in the original space. So if two points in the original space are similar to each other,

their Hamming distance in the new space should be small too.

Two important elements of this work are the objective function and the feature trans-

formation method. The objective function is as follow:

min
{bl}nl=1

 n∑
i,j=1

(S̃ij −
1

c
bT
i bj)

2

 (2.1)

where bi is the binary code of data point xi, n is number of points and S̃ij = 2Sij − 1.

Sij is the similarity value between points xi and xj . By using feature transformations, the

similarity graph matrix S̃ is approximated without being explicitely computed.

2.4 Data Sketching and Sampling Techniques

In this section, we provide some of the sampling and sketching techniques which help to

reduce size of the dataset. This size reduction is in terms of dimensionality of the dataset.

2.4.1 Conditional Random Sampling (CRS)

CRS [41] is a combination of sampling and sketching which reduces dimensionality of data.

It is used for approximating inner product, l2-distance and l1-distance. It has two stages, one

Chapter 2. Background & Related Work 26

is creating sketches of data in order to make them smaller and the other is using sketches for

the estimation of pairwise similarities. Steps of sketching are shown in Figure 2.12. Columns

of the dataset are first permuted in order to make order of columns random. Then zero

entries of rows are discarded and the nonzero entries remained are called postings. Postings

contain key/value pairs showing column headers and their values. Sketches are front of the

postings which means a few of the nonzero entries of the rows. Sketches for different rows

can have different lengths. In the estimation stage, for each pairwise comparison of two rows

of sketches, the length of the sketch involved in the computation is conditioned on the length

of two sketches we are opertaing on and is called Ds. Consider we have two sketches K1 and

K2 having key/values as ID/value. Ds = min(max(ID(K1)), max(ID(K2))) and it shows

what is the min of the maximum IDs in both sketches. This Ds value is computed pairwise

and is used in estimating pairwise similarities. In the following we bring different similarity

measures provided in this work and show how they are approximated using sketches. This

method also provides theoretical variance for estimations.

We bring inner-product, l1-distance and l2-distance for original data as a, d(1), d(2) and

then also provide approximations of them for the conditional random samples as â, d̂(1) and

d̂(2).

a =

D∑
i=1

u1,iu2,i â =
D

Ds

Ds∑
i=1

ũ1,iũ2,i

d(1) =

D∑
i=1

|u1,i − u2,i| d̂(1) =
D

Ds

Ds∑
i=1

|ũ1,i − ũ2,i|

d(2) =

D∑
i=1

|u1,i − u2,i|2 d̂(2) =
D

Ds

Ds∑
i=1

(ũ1,i − ũ2,i)
2

In these equations, D is the dimensionality of the original data and u1 and u2 are two

rows in the original dataset that we want to measure their similarity. ũ1 and ũ2 are the

conditional random samples with length Ds obtained by CRS from the mentioned rows.

As it can be seen, in formulas used for sketches we have D
Ds

which tries to extrapolate the

similarity value to all the dimensions in the dataset.

Chapter 2. Background & Related Work 27

Figure 2.12: The sampling/sketching procedure suggested in [41]. Columns of the dataset
are first permuted in order to make order of columns random. Then zero entries of rows are
discarded and the nonzero entries remained are called postings. Postings contain key/value
pairs showing column headers and their values. Sketches are front of the postings which
means a few of the nonzero entries of the rows. Sketches for different rows can have different
lengths.

CRS is a powerful tool for sampling/sketching because not only it’s a simple method, but

also makes the process much more efficient. Furthermore, having theoretical bounds makes

it more reliable [41][40]. Because of these virtues, we chose this method as the baseline

sampling method used in our work.

2.4.2 Normal Random Projection (NRP)

This method is one of the most widely used methods for dimensionality reduction [14][42][1].

Consider we have data matrix A ∈ Rn×D with n number of rows and D dimensions. If we

multiply this matrix by another matrix R ∈ RD×k whose entries are i.i.d. using Normal

distribution of N(0, 1), we end up with a compact representation of B = AR ∈ Rn×k in

which k � D. Because the random matrix R consists of i.i.d. entries in N(0, 1), this

method is called normal random projection [14]. Therefore, dataset is first projected to

lower dimensions and pairwise similarities are computed between projected rows.

2.5 Other Related Works

In this section, a few lines of research that are related to our work to an extent are provided.

Chapter 2. Background & Related Work 28

2.5.1 Graph Sampling

There are numerous works done in this area. Based on a survey proposed by Hu et.al. [29],

when the whole graph is known, graph sampling is choosing a subset of vertices and/or

edges from a graph such that its size would be smaller but it maintains properties we are

interested in. Different techniques are used for this purpose such as vertex sampling, edge

sampling, vertex sampling with neighbourhood and traversal based sampling. Choosing

each of them, some graph properties are preserved. As a result, we can construct efficient

estimators for the original graphs.

Leskovec et. el. [39] explain different approaches for graph sampling as well as differ-

ent criteria for evaluation. For each graph property, they use its distribution and using

D-statistic, agreement of distributions from sampled and original graphs are evaluated.

Different sampling algorithms explored in this work are random node selection algorithms,

random edge selection and sampling by exploration of the graph. This work does not provide

theoretical analysis.

In the work done by Ahmed et.al. [2], a topology based sampling method is proposed.

In this method, nodes and edges are not simply sampled, but they use edge-based node

selection which makes the probability of selecting high degree nodes higher. The last step

of the method is adding some more edges to the sample so that the sampled graph has a

similar structure to the original one. Furthermore, different graph crawling approaches are

analyzed in [20] like Breadth First Search (BFS), Depth First Search (DFS) and Random

First Search (RFS) which all can be categorized as traversal based approaches. Snowball

sampling presented by Goodman [26] is another approach that k random nodes are sampled,

then like a snowball effect each selected node offers k other nodes with which it interacts the

most. Then each of the offered nodes should do the same recursively for s number of stages

and the procedure goes on. Random walk can be considered as a special case of snowball

sampling with some differences. In random walks each node offers just one another node.

There are numerous variants of random walk approaches [48][33][25] but the main idea for

all of them is that we start from a node, from that node we visit one of its neighbours and

repeat these steps for a specified number of steps and then give all the visited nodes as

Chapter 2. Background & Related Work 29

sample nodes of the graph.

Although graph sampling is a related area to our work, it has differences to what we

propose. For graph sampling, the procedure starts with a graph and then it is sampled;

however, our work is dedicated to building the graph. So our work is one step before any

sampling can happen, to construct the graph in an efficient way.

2.5.2 Graph Sketching

Beside of graph sampling, we have graph sketching. Although graph sketching focuses on

linear measurements of the graph and is different to sampling, in some works these two topic

titles are used interchangeably. Hence, we devote a section to explore this topic. Sketching

is very useful when we have large streams of data. When we encounter large size of graph

data coming and we have to process information continuously, working with sketches makes

the process much faster. Also, they help parallel processing of information. Sketches are

much smaller in size and yet good representatives of original data.

Cormode provides a survey on this topic [17]. He defines sketch as a linear transformation

of a matrix or a vector to lower size and considers it as summary of the data which contains

all the information. There are many approaches for graph sketching. Ahn et. al. [3] were

pioneers in this area of research. In their method size of graph is reduced from O(n2)

(where n is number of nodes) to d dimensions. They show that different properties of the

original graph can be approximated by the sketch graph with high probability. Some of the

properties used in this work are connectivity, k-connectivity, bipartiteness and the weight

of the minimum spanning tree.

Definitions of dynamic graph sketches are provided in [4]. It is shown that sketches are

constructed from linear projections of data. In this paper, authors propose that sketches

can be used efficiently in dynamic graph streams where there is a sequence of additions or

deletions on edges of the graph. In certain situations where we do not have enough space to

store the graph itself, we can store its sketch and whenever needed, construct the original

graph based on sketch. Furthermore, they propose that sketches can be used for distributed

applications. Sending sketches over the network is much more communication efficient than

Chapter 2. Background & Related Work 30

sending the whole graph.

There are many other works in this area. One is frequency based for which an example

can be count-min sketch [18]. This method uses sublinear space and gives approximations

with high accuracy. Compressed sensing is a very related topic in which a transformed signal

is reconstructed via linear measurements similar to sketching [21] [53]. Furthermore, there

are other works like building sketches for graphs and finding clusters based on them [51],

using all distance sketch as a paradigm of graph neighbourhood sketching [7], topological

graph sketching based on min-wise hashing for local neighbourhood [10], etc. Again, all

these works start with a given graph and build sketches based on them while our work is

dedicated to the graph construction part.

2.5.3 Graph Sparsification

Graph sparsification is used when we have very large (or dense) graphs that consume a lot of

storage and computations on them are not efficient. By sparsification, graph becomes much

sparser in terms of edges without producing too much error on the computation results.

One of the common properties used in different applications is the graph cut. A cut for the

graph is defined as a partition of nodes to two disjoint sets. The cut-set consists all the edges

that have one endpoint in one partition and the other endpoint in the other. Also, cut value

is the number of edges in the cut-set or the total weight of the cut-set edges. The minimum

cut problem is the problem to find a cut of minimum value. In graph sparsification, we

want to build a sparse graph from the original one and give the min cut values with high

accuracy. It is shown in the literature that random sampling is an effective approach for

this purpose and the minimum cut in the sparse graph is (1 + ε)-times minimum cut in the

original graph. Karger et.al. [37][35][36] and Benczur et.al. [12] have provided many works

in this area. They show that by having graph G(V,E), on the same set of vertices V , if we

sample each edge e with probability pe, we will get a graph in which minimum cut value is

(1 + ε)-times its value in the original graph.

The works that we mentioned are cut sparsifiers; however, we have spectral sparsifiers

which are stronger version of cut sparsifiers. Spielman et.al. [60] propose a local clustering

Chapter 2. Background & Related Work 31

approach for partitioning of graphs. In this approach, clustering is used for partitioning of

the graph in a way that we find approximate sparsest cut. Therefore, this method can be

used as an spectral sparsifier. Using this partitioning approach, Spielman et.al. [64] propose

a method that uses the Laplacian matrix of the graphs. In [61] authors show that for each

Laplacian matrix A there is a weighted graph. If we have a subgraph that is roughly the

same as the spanning tree of the original graph with a Laplacian matrix B, we call this

subgraph an ultra-sparsifier and we say that B is a good precondition for A. To sum up, for

spectral sparsification, spectral similarity of graph Laplacians are used [64].

There are many other works for both cut and spectral sparsifiers [63][62][23]. The edges

can be sampled randomly, based on their connectivity, sampling random spanning trees of

the graph, etc. Ahn et.al. [6] propose an approach for streaming setting and where we have

linear space for storage. They provide a solution that passes over the data once. In [4]

Ahn et.al. construct a sketch-based sparsifier, i.e. via linear projections of graph and they

provide (1 + ε)-approximation for all cut values of the graph. In [5], construction of spectral

classifiers in a dynamic setting where edges can be added or removed are analyzed.

In summary, although graph sparsification is a related area to our research, it has its

own differences. In sparsification we try to make a large graph smaller in terms of edges

while approximating specific properties of the graph with high accuracy. While our work

tries to build a graph from data sources like matrices, relational tables, etc. in an efficient

way. The graph that we output then can be fed to a sparsifier if further size reduction is

needed.

2.5.4 Spanners

An α− spanner of a graph G is a spanning tree in which the distance between every pair of

vertices is at most α times their distance in G [15]. The goal is to find spanners with small

size and low (α) parameter [4] in order to make distance approximations as accurate as it

can be. Therefore, spanners have a focus on node distances and are used when distances

are the concern.

Chapter 3

Proposed Methodology

In this section, we provide the symbols used throughout the thesis and their definitions as

well as the problem statement. Then, we present our proposed methods and elaborate them

in details.

3.1 Preliminaries & Definitions

In table 3.1, a list of symbols used frequently in the thesis is provided. The dataset we use

is a matrix with rows representing entities and columns attributes. We denote the set of

entities in the dataset as R, the set of attributes as A, and the set of attribute values as

V . The dimensionality of the dataset is the size of the attribute set A, which is denoted as

d. If a data matrix is sparse, it has many zero entries. We can represent such a matrix by

its sparse vector representation, in which a row r is represented by a set of attribute-value

pairs whose value is not zero, that is, r = {(a, v) | a ∈ A & v ∈ V & v 6= 0)}. Figure 3.1

illustrates an example data matrix and its sparse vector representation.

32

Chapter 3. Proposed Methodology 33

(a) A data matrix

(b) Sparse vector representations of the
rows of the matrix

Figure 3.1: Different representations of a data matrix

Table 3.1: Table of Symbols

Symbol Definition
D Data matrix with rows representing entities and columns attributes. Its set of

entities is denoted as R, the set of attributes as A, and the set of attribute
values as V

n number of rows of the matrix
d number of columns of the matrix
r {(a, v) | a ∈ A & v ∈ V & v 6= 0}
ε similarity threshold
k sketch size

3.2 Problem Definition

Suppose we are given a data matrix with rows representing entity set R and columns the

attribute set A, or the sparse vector representation of the data matrix. Our goal is to build

a graph whose nodes represent the entities in R and edges represent the similarities between

two nodes based on the attributes and their values in the matrix, in a fast and efficient way.

To achieve this goal, we aim to develop efficient algorithms for building an approximate

similarity graph that contains only the edges whose similarity value is above a similarity

threshold.

Definition 1 (Approximate Similarity Graph Construction) Given a similarity thresh-

old ε and a data matrix whose rows represent entities and columns represent attributes or

the sparse vector representation of the data matrix, the problem is to build a similarity graph

G(V,E) where V is the set of entities in the data matrix and E is the set of edges where each

edge represents the similarity between two nodes and the similarity is above the ε threshold.

Chapter 3. Proposed Methodology 34

3.3 Proposed Work

Building similarity graphs is an expensive operation due to the number of pairwise similarity

computations. Furthermore, the dimensionality of data (i.e., the number of attributes)

affects the speed of similarity computations significantly. The higher dimensionality is, the

slower the process would be. The complexity of such a task is O(n2d) where n is the number

of instances in the dataset and d is the dimensionality. In this work, we propose an efficient

algorithm for the construction of a similarity graph given a data matrix or its sparse vector

representation.

We use the Conditional Random Sampling (CRS)[41] technique combined with the use

of an inverted index for pairwise computations. The first technique is used for tackling the

problem of dimensionality while the latter is used for pruning all unnecessary pairwise com-

putations. The combination of these two techniques results in a considerably fast method.

3.4 Overview of the Algorithm

Our method starts with a data matrix (or its equivalent sparse vector representation) and

returns a similarity graph. It has three major steps as shown in Figure 3.2. The first step

of the algorithm is data sketching in which high-dimensional data matrix is converted to

small-sized sketches. The second step is computing pairwise similarities. This step is done

by using an inverted index. The last step is the graph construction. The resulted similarity

graph can be used in many different graph downstream tasks such as nearest neighbour

search (NNS), link prediction, collaborative filtering and maximum inner product Search

(MIPS) to name a few.

Algorithm 1 shows the overview of the proposed method. The inputs to the algorithm

include the dataset D. This dataset can be a data matrix with rows being instances and

columns being their attributes or the sparse vector representation of the matrix. Other

inputs are the dataset dimensionality which is the number of attributes, a similarity thresh-

old and the size of the sketch. The output is the similarity graph built based on sketches.

In the first step, the dataset is sketched using the CRS technique [41]. For sketching, we

Chapter 3. Proposed Methodology 35

Figure 3.2: Overview of our method. The first step of the algorithm is data sketching in
which high-dimensional data matrix is converted to small-sized sketches. The second one is
computing pairwise similarities which is done by using an inverted index and the last step
is the graph construction.

need the original dataset D as well as size of sketch k. The output of this step includes the

sketches of the dataset (represented by Sk in Algorithm 1) and the maximum column IDs

of the sketches (denoted as Sk Max Id). We will describe the sketches and their maximum

column IDs in the next section. The second step is the pairwise similarity computation.

This step takes the outputs of sketching, d and the ε threshold as inputs. The output is the

similarity values between all pairs of sketches which are above the ε threshold. In the last

stage, based on the computed similarity values, the similarity graph is built and returned

as the final output of the algorithm.

Algorithm 1: Approximate Similarity Graph Construction

Input: Dataset: D, dataset dimensionality: d, similarity threshold: ε, size of

sketch: k

Output: similarity-graph: Sk G

1 Sk, Sk Max Id← Sketch(D, k)

2 Sk sim← PairwiseSimilarities(Sk, Sk Max Id, ε, d)

3 Sk G← Graph(Sk sim)

4 return Sk G

3.5 Data Sketching

We use conditional random sampling (CRS) [41] to reduce dimensionality of the data. CRS

is a data sketching technique (described in Chapter 2.4.1) suitable for high-dimensional

Chapter 3. Proposed Methodology 36

Figure 3.3: Data sketching overview on a data matrix. Given a data matrix, the columns
of the matrix are first randomly permuted. A randomly permuted dataset is shown in the
middle of the figure, where the random permutation of the list of columns [1, 2, 3, 4, 5] is
[4, 3, 1, 5, 2]. After the permutation, the sketch of each row is generated by taking the first
k column ID-value pairs with non-zero values in the permuted column order. During the
computation of the sketches, for each row or sketch we also obtain the highest column ID of
the column ID-value pairs in the sketch and store it in a one dimensional array Sk max id
which will be used for efficient computing of the pairwise similarities between rows/entities.
In the figure, the highest column ID in each sketch is highlighted with yellow color.

sparse datasets where zero entries are insignificant. It has two stages: one creating sketches

of data in order to make them smaller and the other using sketches for the estimation of

pairwise similarities. We adopt its first stage to create data sketches.

3.5.1 Data Sketching from Data Matrix

Figure 3.3 illustrates the steps of the data sketching procedure if the input data is a data

matrix. Given a data matrix, the columns of the matrix are first randomly permuted. The

purpose of the permutation is to eliminate the dependencies or special orderings on the

columns the dataset might have. A randomly permuted dataset is shown in the middle of

the figure. The permutation of the columns [1, 2, 3, 4, 5] is [4, 3, 1, 5, 2] meaning that the

contents of the first column are put in the 4th column, the contents of the 2nd column are

put in the 3rd column, the contents of the 3rd column are put in the first one, etc. Note

that we do not need to actually change the data matrix. The permutation can be done on

the set of column IDs.

Chapter 3. Proposed Methodology 37

After the permutation, the sketch of each row is generated by taking the first k column

ID-value pairs with non-zero values in the permuted column order. If a row has less than

k non-zero values, the length of its sketch (that is, the number of column ID-value pairs) is

less than k. Thus, the sketches of different rows may have different lengths. The value for

the sketch size k is typically set as the average number of attribute-value pairs with non-zero

values among the rows as suggested in [41].

During the computation of the sketches, for each row or sketch we also obtain the

highest column ID of column ID-value pairs in the sketch and store it in a one dimensional

array Sk max id. For example, in Figure 3.3, for row 1 we have Sk[1] = {(2, 4), (3, 1)}

which contains the first two column ID-value pairs with nonzero values after permutation of

columns for the first row. Thus, the highest column ID of the column ID-value pairs in the

sketch of first row is 3. That is, Sk max id[1] = 3. This Sk max id array will be used for

efficient computing of the pairwise similarities between rows/entities. Note that the CRS

data sketching algorithm does not produce this array. We extend CRS in this regard for the

purpose of speeding up similarity computation, to be described in the next section.

3.5.2 Data Sketching from Sparse Vector Representation of Data

There are settings in which we are not given a matrix, instead a sparse vector representation

of a large and sparse matrix is given. For example, if the data set is a set of text documents,

each document can be represented as a set of words where a word is considered as an attibute

and the value for the attribute can be the number of times the word occurs in the document.

Using this representation, the many entries of the matrix carrying zero values are omitted

and there would be a significant decrease in the amount of data stored. In this case, our

input would be sparse vector representation of the matrix as described in Figure 3.1.

Data sketching can be done on such a matrix representation as pictured in Figure 3.4.

First, the columns of the matrix are permuted. In Figure 3.4, the random permutation of

the list of columns [1, 2, 3, 4, 5] is [4, 3, 1, 5, 2] meaning that the contents of the first column

are put in the 4th column, the contents of the 2nd column are put in the 3rd column, etc.

In the figure, for the first row in the original dataset we have R1 = {(1, 5), (2, 1), (5, 4)}.

Chapter 3. Proposed Methodology 38

Because the contents of the 1st column are permuted and put in the 4th one, (1, 5) changes

to (4, 5). For (2, 1), based on the permutation of 2nd column to 3rd one, we have (3, 1) and

the same happens for (5, 4) and it is mapped to (2, 4). So the first row in the permuted

dataset is R1 = {(4, 5), (3, 1), (2, 4)}. After permutation, we have to take the first k ID-value

pairs of each row. The order of the pairs are based on their new column IDs in an ascending

order. So we sort pairs of each row based on their new column IDs in an ascending order

and take the first k entries of them. These selected pairs form the sketches of the rows. In

addition to the sketches, we have to get the maximum column ID in each sketch which is

simply the column ID of the last entry of the sketch shown in the figure with the yellow

color. This approach is another implementation of the CRS and can be applied in situations

where we are given a sparse vector representation of a matrix.

3.5.3 Choosing The Sketch Size: k

As mentioned in the previous subsections, the value of the sketch size k is typically set

to be the average number of attribute-value pairs with non-zero values among the rows (as

suggested in [41]). However, getting the average number of nonzero entries among the rows of

the dataset requires a full scan of the dataset, which is computationally inefficient. Instead,

one approach is to resort to sampling. We sample rows of the dataset and compute the

number of non-zero values on the sampled rows. Based on the central limit theorem1, it is

known that the sampling distribution of the sample means approaches a normal distribution

as the sample size gets larger — no matter what the shape of the population distribution.

Therefore, for a reasonable number of samples (typically this fact holds for sample sizes over

30), we can set k to be equal to the mean of the sample distribution.

3.6 Pairwise similarity computations

We use an inverted index to help with the similarity computation between each pair of

sketches obtained from the previous step of the algorithm. The inverted index is built upon

1https://en.wikipedia.org/wiki/Central_limit_theorem

Chapter 3. Proposed Methodology 39

Figure 3.4: Data sketching overview on the sparse vector representation of a matrix. Given
a sparse vector representation of a matrix (shown as Original Dataset), the steps to form the
sketches are shown. First, columns of the matrix are permuted. In this figure the random
permutation of the list of columns [1, 2, 3, 4, 5] is [4, 3, 1, 5, 2]. Then, each row is sorted based
on the column IDs of pairs in ascending order. Sketches are the first k pairs of each row. In
this example, k = 2. In addition to sketches, we have to take sketch max ids which are the
largest column ID in each row of the sketches.

Chapter 3. Proposed Methodology 40

Figure 3.5: In this figure, the inverted index of the sketches of dataset D is presented. For
each column ID in the sketches, we have an entry in the index which shows the ID itself
and a list of all sketches that have this ID as well as their values.

the sketches of the input data. It uses attributes as keys and maps an attribute to the list

of sketches that contain the attribute. Figure 3.5 shows the inverted index built upon the

sketches of D in Figure 3.3. For each column ID in the sketches, we have an entry in the

index which shows the ID itself and a list of all sketches that have this ID as well as their

values. This index is built gradually in our method and sketches are added to it one-by-one

as we iterate over them.

For the similarity computations, the similarity measure we work with is the inner-

product. However, this work is not limited to just this measure and any other measures

using the inner-product (or dot-product) can be used in the following algorithms with a

little modification. For example, the cosine similarity measure, Jaccard, overlap and dice

are a few examples of such measures that can make use of the dot product value of the two

vectors they operate on. With some little modifications, these measures can also be used in

our algorithms. For this kind of measures, using the inverted index makes the process much

more efficient as it eliminates all redundant and unnecessary comparisons between instances

of the dataset. Based on the inner-product, if two vectors do not share any dimensions,

their inner product value would be zero. Besides, different instances usually share a small

proportion of dimensions so there is no need to have comparisons between them for all

dimensions. The inverted index helps to reach this goal.

The main structure of pairwise similarity computations by using an inverted index is

shown in Figure 3.6. This structure is the simplified version of our algorithms and some

minor parts are not shown here. Now, we elaborate how the method works. From the

Chapter 3. Proposed Methodology 41

previous step of data sketching, we are provided with sketches of data. We iterate over them

just once to index each sketch one-by-one and at the same time compute the similarities

between the current sketch in the iteration with the previous ones. That is, the inverted

index is not pre-built, but it is built at the same time the similarities between sketches are

computed.

At first, the inverted index is empty. In Figure 3.6, we assume that we have iterated

over the first three sketches and now we are processing the 4th one. The inverted index

in this stage contains all the information for the first three of them. It stores attributes

and a list of the sketches that have them with their values. So when we want to compute

similarity of sketch 4 to the previous ones which are indexed, we just get its attributes, go to

their corresponding list in the index and compute its partial similarity to the ones existing

in the list. As an example, for sketch 4, we have Sk[4] = {(2, 4), (3, 2)}. We get the list

corresponding to the column ID 2 in the index which would be [(Sk[1], 4), (Sk[3], 1)] as well

as the list for column ID 3 which is [(Sk[1], 1)]. We compute partial similarity of the sketch

4 to Sk[1] and Sk[3] by multiplying attribute values. We store the similar sketches and their

scores in a map having keys as the ID of similar sketches and values as the similarity score.

So at the end as we have iterated over all sketches, all similarities are computed. Just

we have to mention that after all the similarity scores are computed and stored, when we

want to query pairwise similarity of two sketches, we have to check similarity map of both of

the sketches. That’s because sketches are indexed one-by-one and the ones that are indexed

first usually have smaller similarity maps because a few sketches were indexed at the time

they had been processing.

As stated earlier, our method has differences to what is pictured in Figure 3.6. As we

are working with sketches instead of original data, the score computations are not the same.

In the Related Work section, we explained the estimation stage of CRS. Here we bring the

information again to show how the process should be done. We work with inner-product as

Chapter 3. Proposed Methodology 42

Figure 3.6: Pairwise similarity computations using an inverted index. Sketches are indexed
one-by-one. In this figure, we have iterated over the first three sketches and indexed them.
Now, we are iterating over the 4th one. In the bottom left corner of the figure the inverted
index at this stage is shown. It contains information of the first three sketches. For each
sketch we iterate over, first its similarity to the ones that are already indexed is computed
and then we index it. For the 4th sketch we have, Sk[4] = {(2, 4), (3, 2)} so for each column
ID-value pair it has, we get the corresponding list in the index and compute its partial
similarity scores. The final similarity scores of each sketch we iterate over would be a map
of the sketch IDs which are similar to the current one and their similarity values.

Chapter 3. Proposed Methodology 43

the similarity measure and show it as a. We show its approximation for the sketches as â.

a =

d∑
i=1

u1,iu2,i â =
d

ds

ds∑
i=1

ũ1,iũ2,i (3.1)

As it can be seen, for sketches we do not do the computations for all the dimensions.

In these equations, d is the dimensionality of the original data (or number of attributes the

original dataset has) and u1 and u2 are two rows in the original dataset that we want to

measure their similarity. ũ1 and ũ2 are the sketches obtained by CRS from the mentioned

rows. As we know, a sketch is a set of pairs of column (attribute) IDs and their values.

So ds = min(max(ID(ũ1)), max(ID(ũ2))) and it shows what is the min of the maximum

column IDs in both sketches. The reason that in the sketching step, we compute Sk max id

array is for efficient computation of ds values. This ds value is computed for each two pairs

of sketches. The main philosophy is that we do the computations for attributes having ID

less than ds. This would be the same as if we sampled the first ds columns of the matrix

for these two rows. Then, we extrapolate the result for all the dimensions by multiplying

d
ds

to similarity values.

Incorporating this computation with an inverted index is not straightforward. Suppose

we have a sketch and we want to compute its similarity to the sketches in the inverted

index. For every indexed sketch that has a common attribute ID with the one that we are

analyzing, we have to compute a ds value. This computation should be done in an efficient

way. We propose Algorithms 2, 3, 4 each show a different approach of addressing this issue.

All our Pairwise Similarities algorithms, start with a given list of sketches, a list of

maximum ids for sketches to find ds, a similarity threshold and also dimensionality of original

data d. The goal is to find all pairwise similarities of sketches for which we use a map and

show it as S in the following algorithms.

3.6.1 Online Pairwise Similarities

The idea of this algorithm is that we compute ds values for each pair on the fly when

we encounter the pair. Algorithm 2 shows the steps. We start with an empty pairwise

Chapter 3. Proposed Methodology 44

similarities map shown as S. This map is gradually filled. Each key in the map would be a

sketch and the value also a map of its similar sketches and their score of similarity. Also, an

empty inverted index for all the attributes is initiated at first. As explained before, d is the

number of attributes so we have d number of lists in the index. In line 3 we have a for loop

for iterating over all the sketches. For each sketch, we start with an empty map M which is

used for keeping similar sketches and their score of similarity to the current one. Note that

for each sketch, we have a map of similar sketches and for all of them we have a map of their

maps. In line 5, we iterate over all elements of the sketch and for each attribute it has, we

grab its associated list in the index. For example, for (a, v) we have to grab the ath list in

the index which we show it as Ia. This list contains all the sketches having that attribute

and their values. (y, yv) shows such a pair. So for each y, we have to find the pairwise ds

value which we do it by getting the max id of x and y from Sk Max Id and then get the

minimum. Then we have to check if a ≤ ds. If so, we are allowed to add y and its score

to M . As we are working with sketches instead of original data, the score is computed by

equations in 3.1. Next, after we compute similarities for this attribute of the sketch, we add

it to the inverted index which is shown in line 10. The next step is to filter scores based on

ε. Algorithm 5 shows filtering similarities which is done via simply getting the scores map

and filtering the ones that are above ε. Sx shows similar sketches to x which are above ε.

In line 12, we add (x, Sx) to the main similarity map S. The output of the algorithm is the

S similarity map.

3.6.2 Offline Pairwise Similarities via Sorting

In this algorithm, we want to avoid all unnecessary checks for ds. In the previous method, we

were letting all the sketches to be indexed without any restriction on the order of insertion

and max id of the sketch. This led the previous algorithm to have many redundant and

repetitive computations which could be easily avoided. If we apply a sorting on the sketches

such that the sort gives us some information on what ds value would be, we can optimize

the process significantly.

We know ds is the minimum of the maximum IDs of the sketches. The main idea of

Chapter 3. Proposed Methodology 45

Algorithm 2: Online Pairwise Similarities

Input: sketches of D: Sk, sketch max ids: Sk Max Id, similarity threshold: ε,
dimensionality of original data: d

Output: pairwise similarities: S
1 S ← ∅
2 I1, I2, ..., Id ← ∅ (Ii is the entry for the ith attribute in the inverted index. It will

contain a list of (x, v)’s, where x is a row/sketch id and v is the value of x for the
ith attribute.)

3 for x ∈ Sk do
4 M ← ∅ (M holds the similarity values between x and each of the skethes before

x in Sk)
5 for (a, v) ∈ x do
6 for (y, yv) ∈ Ia do
7 ds = min(Sk Max Id[x], Sk Max Id[y])
8 if a ≤ ds then
9 M [y]←M [y] + (d/ds) · v · yv

10 Ia ← Ia ∪ {(x, v)}
11 Sx ← Filter Similarities(M, ε) (Remove similarities in M whose value is less

than ε)
12 S ← S ∪ (x, Sx)

13 return S

this algorithm is that we sort sketches based on their max ids in such a way that we know

whatever sketch which has been indexed, has a smaller max id than any upcoming sketch

that is not yet indexed. For this purpose, we should sort sketches based on their max ids

in an ASCENDING order. This means that sketches indexed define min so that we know

ds would be max id of the indexed sketches. This way we prune many unnecessary further

checks on ds which greatly affects the preformance. This is the beauty of applying this sort

on the sketches. However, note that we do not sort sketches themselves and we just sort

their indices. In line 3, we are producing indices of the sketches that we should iterate over

in order via arg sort. Lines 5 and 6 show how we get the id of sketch we should analyze

and the sketch itself. In line 10, for ds computation we just get the max id of the indexed

sketch without any further checks as we know indexed sketches always have a smaller max

id than the ones that are not indexed. The rest of the steps of the method are the same as

the previous algorithm.

Chapter 3. Proposed Methodology 46

Algorithm 3: Offline Pairwise Similarities via Sorting

Input: sketches of D: Sk, sketch max ids: Sk Max Id, similarity threshold: ε,
dimensionality of original data: d

Output: pairwise similarities: S
1 S ← ∅
2 I1, I2, ..., Id ← ∅
3 Sorted Sk Indices← arg sort(Sk Max Id, ascending)
4 for i ∈ range(|Sk|) do
5 xid = Sorted Sk Indices[i]
6 x← Sk[xid]
7 M ← ∅
8 for (a, v) ∈ x do
9 for (y, yv) ∈ Ia do

10 ds = Sk Max Id[y]
11 M [y]←M [y] + (d/ds) · v · yv
12 Ia ← Ia ∪ {(x, v)}
13 Sx ← Filter Similarities(M, ε)
14 S ← S ∪ (x, Sx)

15 return S

3.6.3 Offline Pairwise Similarities via Matrix Precomputation

The main idea of this algorithm is that we first compute all the pairwise ds values and

whenever we want one of them, we simply get it from ds pairwise matrix. The main structure

of this algorithm is the same as the previous ones. In lines 3-6, we are building the pairwise

ds matrix. In line 11, we just get ds value from the ds matrix and do the rest of the steps

as prior methods.

3.6.4 Comparison of Pairwise Similarity Algorithms

Time Complexity

Now, we investigate the time complexity of the algorithms. For the sketching stage, we

provided two methods. One starts from a data matrix and the other starts from sparse

vector representation of the matrix. For the first one which starts from the matrix the

time complexity is as follow: a random permutation mapping of columns of the matrix is

generated. It has length d which is dimensionality of data and hence, the complexity would

be O(d). Then, on the permuted matrix, for each row we have to iterate columns till we

Chapter 3. Proposed Methodology 47

Algorithm 4: Offline Pairwise Similarities via Matrix Precomputations

Input: sketches of D: Sk, sketch max ids: Sk Max Id, similarity threshold: ε,
dimensionality of original data: d

Output: pairwise similarities: S
1 S ← ∅
2 I1, I2, ..., Id ← ∅
3 n← |Sk|
4 for i ∈ range(n) do
5 for j ∈ range(n) do
6 ds pairwise[i][j]← min(Sk Max Id[i], Sk Max Id[j])

7 for x ∈ Sk do
8 M ← ∅
9 for (a, v) ∈ x do

10 for (y, yv) ∈ Ia do
11 ds = ds pairwise[x][y]
12 if a < ds then
13 M [y]←M [y] + (d/ds) · v · yv
14 Ia ← Ia ∪ {(x, v)}
15 Sx ← Filter Similarities(M, ε)
16 S ← S ∪ (x, Sx)

17 return S

Algorithm 5: Filter Similarities Based on The Threshold

Input: similarity score map: M, similarity threshold: ε
Output: filtered similarities map: R

1 R← ∅
2 for (y, sim) ∈M do
3 if sim ≥ ε then
4 R← R ∪ {(y, sim)}
5 return R

Chapter 3. Proposed Methodology 48

reach the kth nonzero entry in the row and k is the sketch size. If we assume the average

position of the kth nonzero entry for all rows is m, the complexity of such a task would

be O(nm) with m < d. The second sketching method we elaborated starts from a sparse

vector representation of a large and sparse matrix. For this dataset representation also

we do a permutation of columns which results in O(d) complexity. Then, on each row of

the permuted dataset we do the following steps: first we change column IDs based on the

permutation, then we sort the pairs based on the column IDs and at last, we take the first k

entries. So the complexity would be O(n×(f+f.log(f)+k)) where f is the average number

of nonzero entries for all the rows of the dataset. Usually f and k are much smaller than

m resulting in O(n× (f + f.log(f) + k)) < O(nm). This means that working with a sparse

vector representation is more efficient than working with a huge and sparse data matrix.

Computing similarities using an inverted index has the complexity of O(n×k×l). That’s

because for each sketch, we have to compute its similarity to other ones. Each sketch has

the maximum length of k and for each of its entries, we have to grab the associated list in

the inverted index. If we assume the average size of lists in the inverted index is l, time

complexity would follow as mentioned. This is much less than O(n2d) which is the time

complexity of naively computing pairwise similarities.

For ds computations, we have an online method which computes ds values on the fly.

This method has some redundant computations in the inner-most loop of the algorithm

making O(n × k × l) being multiplied by a constant factor like c. Because n × k × l is

very large, as much as we decrease the number of computations in the inner-most loop

to decrease the value of c, the runtimes improve significantly. The other two methods we

proposed have a preprocessing step to decrease c. One uses sorting which has the time

complexity of O(n log(n)) and the other one, computes all the pairwise ds values which

results in complexity of O(n2). However, with the decrease these two methods provide on

c as well as proper implementation on their preprocessing steps, we will show in the next

chapter that the ones having the preprocessing step are faster than the first one which

computes ds values online.

Furthermore, the additional space needed for ds values is different in the proposed algo-

Chapter 3. Proposed Methodology 49

rithms. The online method has the O(1) space complexity to process ds values. The sorting

method uses linear space i.e. O(n) and the pairwise matrix precomputation method has the

O(n2) space complexity for analyzing ds values. So in conclusion, based on the restrictions

on the space and the speed needed, one can choose to work with any of these algorithms.

3.7 Similarity Graph Construction

This is the last step of the process. So far, we have computed all pairwise similarities and

based on them, we build the similarity graph. The graph is built such that entities of the

dataset are nodes and each edge shows the similarity value of two entities of the dataset.

Since we only keep the edges whose similarity values are greater than ε, the graph is an ε

similarity graph, This similarity graph can be used in many different applications and graph

analysis tasks that use similarities between entities. In the Evaluation section, we show

some of these applications.

Chapter 4

Evaluation

In this chapter, we provide evaluations on the proposed methods and their competitors.

These evaluations are designed to answer the following questions:

• Q1. Speed: How do the proposed approximation methods help the speedup of

pairwise similarity computations and thus graph construction?

• Q2. Accuracy: What is the effect on the accuracy of similarities? How much error

is produced? Is it negligible so that we can safely use approximations?

• Q3. Effectiveness: How do the approximations on similarities propagate on different

downstream graph analysis tasks? How accurate are the results of graph applications?

4.1 Experimental Settings

4.1.1 Machines

Machine used in these experiments is an Intel Xeon E5-2620v3 2.4 GHz having 6 Cores and

64 GB memory.

50

Chapter 4. Evaluation 51

Table 4.1: Dataset Descriptions

Name Distribution Density Size
Normal2 Normal(µ=200, σ=50) 2%

10k × 10k
Normal4 Normal(µ=400, σ=100) 4%
Normal6 Normal(µ=600, σ=100) 6%
Normal8 Normal(µ=800, σ=100) 8%
Binomial2 Binomial(n=10k, p=0.02) 2%

10k × 10k
Binomial4 Binomial(n=10k, p=0.04) 4%
Binomial6 Binomial(n=10k, p=0.06) 6%
Binomial8 Binomial(n=10k, p=0.08) 8%

4.1.2 Datasets

We provide results for a number of different datasets. The parameters that change in

datasets are the distribution and density. We use two different distributions to analyze

behaviour of sketching and graph analysis tasks: Normal and Binomial. These two distri-

butions are among the most common patterns of behaviour in different interaction settings,

from network connections to rating datasets, etc. Another parameter is the density which

shows the average number of nonzero entries in rows of the dataset. We change density to

measure accuracy and runtimes and see if the results are dependent on it.

A summary of dataset descriptions is shown in Table 4.1. In the table, size is defined as

number of rows × number of columns. As an example, for synthesizing Normal2 dataset,

for each row we sample from the Normal distribution having mean at 200 and standard

deviation at 50 and it gives us the number of nonzero entries (density) of each row. This

dataset has 10k number of rows and 10k number of columns. Also, each row in Binomial2

dataset is generated by a Binomial distribution having n = 10k (number of columns) and

p = 0.02 based on the density which is 2%.

4.1.3 Methods

We give summary names to each of our methods and use them in the figures to compare

results. Online Pairwise Similarities is named sk online. Offline Pairwise Similarities via

Sorting has the name sk offline sorted and the last one which is Offline Pairwise Similarities

via Matrix Precomputations is called sk offline matrix. The methods with which we compare

Chapter 4. Evaluation 52

our methods are original, nrp and sk naive. Original is the conventional vectorized method

of computing similarities; for each two rows of the dataset, a vectorized similarity operation

is performed. Nrp is Normal Random Projection in which we multiply the data matrix

A ∈ Rn×D with a random matrix R ∈ RD×k to generate a compact representation B =

AR ∈ Rn×k. The random matrix R consists of i.i.d. entries in N(0, 1), hence, it is called

normal random projection [14]. Therefore, dataset is first projected to lower dimensions

and pairwise similarities are computed between projected rows. The sk naive algorithm

uses sketches of data for similarity computations. This method is called naive becuase

opposed to the methods we proposed, this method does not use any indexing techniques

and it naively computes similarities for each pair of sketches by comparing all their key,

value pairs.

4.2 Q1. Speed

Figure 4.1 shows runtimes for the mentioned methods. The datasets with the same distri-

bution have shown to have the same trends for the runtime and accuracy so here we just

represent results for normal4 and binomial4 as representatives for each distribution. Figure

4.1a represents results for normal4 dataset while 4.1b is used for binomial4 dataset. In these

figures the x-axis shows the sample sizes reported in percentage and y-axis the runtimes in

seconds.

The experiment shown in Figure 4.1 tries to measure how runtime is affected by the size

of sketch/sample. Sample size provided in the x-axis shows the sketch size for methods using

sketching as well as the sample size for NRP. We want to measure for a fixed distribution

and density, how the runtimes change when we increase the size of the sample.

As it can be seen, original has the same runtime for all the sample sizes because it does

not use any sampling on the data and simply works with all the attributes. So we just

run it once and for all the sample sizes its runtime is the same. For all other methods, the

runtime increases when we increase the sample size because there is more information to

process. The original method is the slowest one with a huge difference. The reason why the

Chapter 4. Evaluation 53

original method does not perform very well is that it uses all the attributes of the dataset

to compute similarities. In sketching techniques, we don’t use all the attributes. Instead,

we use a proportion of them that contains information (we just work with a part of nonzero

entries in each row).

Sk naive has larger runtime values than other sketching methods due to not using in-

dexing techniques and naively computing pairwise similarities. As it can be observed, on

both datasets when we reach 5% sample size, the original method and sk naive have roughly

the same runtime values. We should mention that the original and nrp methods use vec-

torized operations which are optimized in hardware levels. On the other hand, sketches are

sets of key-value pairs and operations on them are not optimized in the hardware level and

this makes it an unfair comparison. So they have an unfair advantage over the sketching

methods. If we want to be fair and compare methods with the same way of implementation

i.e. not using harware optimized or library codes, etc. the runtime of the original method

would be 168000 seconds which is roughly 27× slower than sk naive1. However, we show

the results for library optimized codes for the original method as these codes are publicly

available and people usually use these optimized codes. Despite all of these, you can see

in the figures that our proposed methods are performing much better than those hardware

optimized methods and this is the beauty of this work! Our proposed methods are up to

62× faster than the original method.

In sketching methods, when we reach a sample size that includes almost all the nonzero

entries, we don’t see a significant runtime change by increasing the sample size. For example,

in the Normal datasets when the sample size passes µ+ 2σ, we are carrying almost all the

nonzero entries so after that point as we increase the sample size the runtime does not

change considerably.

Now, let’s analyze our 3 proposed methods. All our methods are among the fastest

algorithms as it is shown in the figure. Both of our sketching methods with offline strategies

(preprocessing) are faster than the online method with a small gap. In sk offline matrix

1This runtime is extrapolated. We ran the original method on 1500 number of rows and extrapolated its

runtime for 10k rows.

Chapter 4. Evaluation 54

we preprocess data and compute all pairwise ds values before the similarity computations

begin. Then, during the algorithm whenever a ds value is needed, we get the value from

the pre-computed matrix. Sk offline sorted has a different preprocessing strategy in a way

that we sort sketches based on their max ids so that whenever we need a ds value for a

pair, we already know what it is and there won’t be any computations. On the other hand,

the sk online method does not have any preprocessing and computes ds values whenever we

encounter a pair. This leads to redundant computations because we may encounter a pair

several times and for each time we have to compute ds.

In time complexity section, we explained how reducing number of operations in the

inner-most loop of our algorithms affects performance and runtimes. We elaborated that

the sk offline matrix and sk offline sorted reduce number of these operations which has a

great impact on their performance. Another important factor affecting performance of these

methods is their proper implementation in Python programming language. In this language,

using list comprehensions is much more efficient than using the conventional nested for loops.

List comprehensions are represented as: [expression for element in iterable if condition] and

they are another syntax for the for loops. However, their execution is much more efficient

than a normal loop. As it is shown, the expression is inside the list. This means that for

each element in the list, we do not need to load the append attribute of the list and call

it as a function at each iteration. This makes this implementation very fast. By using

these optimized implementations as well as the reduce in the number of operations in the

inner-most loop of the algorithms, as it can be seen in the Figure 4.1, these two offline

methods are faster than sk online. However, sk online has the advantage of not using any

extra memory and in cases where there is a limitation on memory, we can use this method.

Among all the methods compared, NRP is the fastest, followed by our proposed methods

with a very small difference. However, in the next sections, we show that there is a huge

difference between NRP and our proposed methods in accuracy.

Chapter 4. Evaluation 55

Ru
nt

im
e

(s
ec

)

0

1750

3500

5250

7000

Sample size (%)

1 2 3 4 5 6 7 8 9 10

original sk_naive sk_online sk_offline_sorted sk_offline_matrix nrp

(a) normal4 dataset

Ru
nt

im
e

(s
ec

)

0

1750

3500

5250

7000

Sample size (%)

1 2 3 4 5 6 7 8 9 10

original sk_naive sk_online sk_offline_sorted sk_offline_matrix nrp

(b) binomial4 dataset

Figure 4.1: Runtime results for Normal4 and Binomial4 datasets. X-axis shows the size of
samples in percentage and y-axis shows the runtimes. As it can be seen, runtime trends for
both datasets are the same.

Chapter 4. Evaluation 56

Ru
nt

im
es

 (s
ec

)

0

2250

4500

6750

9000

Density (%)
2 4 6 8

original sk_naive
sk_online sk_offline_sorted
sk_offline_matrix nrp

(a) normal distribution - sample size 5%

Ru
nt

im
es

 (s
ec

)

0

2500

5000

7500

10000

Density (%)
2 4 6 8

original sk_naive
sk_online sk_offline_sorted
sk_offline_matrix nrp

(b) binomial distribution - sample size 5%

Figure 4.2: Runtime results for Normal and Binomial distributions with different density
percentages. Sample size is fixed for 5%.

4.2.1 Effect of density on runtimes

Now, we analyze what effect density has on runtimes. We want to investigate for fixed

distributions and a sample/sketch size, how the runtimes change for different densities.

This experiment is done to see how sketching methods are affected if the average number of

nonzero entries in the rows changes.

Figure 4.2 shows this analysis. In this figure, we provide runtime results for Normal

and Binomial distributions with different density percentages. Sample size is fixed for 5%.

As much as we increase density, runtimes for sketching methods increase. For sketching

techniques if a row has density (number of nonzero entries) less than size of sample, length

of its sketch would be number of its nonzero entries (≤ sample size). So although sample

size is equal for all these datasets, by increasing density runtimes increase. However, original

does not show a trend of change because its runtime just depends on the number of attributes

which is always 10k. NRP also does not show changes in runtimes because for all densities

it has the same length for the projected rows and it is the sample size.

Chapter 4. Evaluation 57

4.3 Q2. Accuracy

Now, we analyze the accuracy of the mentioned methods on the results of pairwise sim-

ilarities. The original method gives the exact results. So for all other methods we show

the relative errors w.r.t. the result of the original method. In Figure 4.3, result of this

experiment is illustrated. As all the sketching methods have the same approximation, we

just provide results for one of them (because sk offline matrix is the fastest, we use this

method). Furthermore, we show the accuracy of NRP as the competitor of our methods

and compare the results.

For each two instances of the dataset we have a similarity value, meaning that we have

n(n−1)
2 number of similarities, where n is the number of rows or instances of the dataset.

For measuring the accuracy for each of them, we use the formula: eij =
|ssample

ij −soriginal
ij |

soriginal
ij

where eij shows relative error for the pair of instances i and j. sij is the similarity of those

instances and it can be computed from the sampling/sketching techniques or the original

method. This formula shows the difference of the similarity values between the original and

sample/sketch divided by the original similarity value. We report mean and median of such

errors for all pairs of similairites.

We show results for representatives of each of distributions as trends are similar within

each distribution. For both Normal4 and Binomial4 datasets, trends are very similar. As we

increase the size of sample, the error decreases. For sketching, by increasing the sample size

because we can maintain more information (nonzero entries) for each instance, the errors

becomes lower and lower and they reach to zero. Zero error occurs when we roughly have all

the nonzero entries of the rows. For NRP, we always have errors in the projected dimensions

and error never reaches zero. In summary, the error of sketching is considerably lower than

the error of NRP for all sample sizes and sketching is a more reliable sampling technique.

4.3.1 Effect of density on accuracy

Another evaluation we provide is the effect of density on the accuracy. In Figure 4.4, effect

of density on the relative errors is represented. We want to see for fixed distributions and

Chapter 4. Evaluation 58

Re
la

tiv
e

er
ro

rs

0

0.75

1.5

2.25

3

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching mean
sketching median
nrp mean
nrp median

(a) normal4 dataset

Re
la

tiv
e

er
ro

rs

0

0.75

1.5

2.25

3

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching mean
sketching median
nrp mean
nrp median

(b) binomial4 dataset

Figure 4.3: Relative errors for Normal4 and Binomial4 datasets. X-axis shows the size of
samples in percentage and y-axis shows the relative errors. Trends for both datasets are the
same and sketching is significantly more accurate than NRP.

a fixed sample/sketch size, how the errors are affected if we increase density of the dataset.

Sample size is fixed on 5%. We can see that the error of sketching slightly increases when

density is increased. This is due to the fact that the sample size is fixed and when we

increase density, there will be more rows with high density for which we are discarding some

of the nonzero entries. So the error grows. Although the error increases for sketching, it is

still much more accurate than NRP. NRP shows more accuracy for larger density values.

This shows that NRP works better on dense datasets.

Re
la

tiv
e

er
ro

r

0

0.75

1.5

2.25

3

Density (%)
2 4 6 8

sketching mean
sketching median
nrp mean
nrp median

(a) normal distribution

Re
la

tiv
e

er
ro

r

0

0.75

1.5

2.25

3

Density (%)
2 4 6 8

sketching mean
sketching median
nrp mean
nrp median

(b) binomial distribution

Figure 4.4: Relative errors for Normal and Binomial distributions w.r.t different densities
for a fixed sample size (5%)

Chapter 4. Evaluation 59

4.4 Q3. Effectiveness

So far we evaluated sampling/sketching techniques and measured how fast and accurate

they compute similarities. In this section, we go one step further and evaluate how the

errors of sampling approximations propagate in different graph tasks. We build similarity

graphs based on the similarities. This step is the same for all the methods so the runtimes

would be the same and we don’t provide their comparisons. However, accuracy is not the

same and we provide its results here.

There are 3 different graph tasks that we consider; however, applications of similarity

graphs are not limited just to the following tasks:

1. K-nearest neighbours

2. Node centrality values

3. Node rankings

These applications show some of the main features of the graphs. K-nearest neighbours show

the k neighbours that have the highest similarity to each node. This is a representative of

Nearest Neighbour Search (NNS) or k-Nearest Neighbour Search (k-NNS) problems in which

using similarity graphs is one of the main approaches to solve the problem. Node centralities

show the importance of nodes in the graph. They are widely used in social network analysis

for example to find the most influential person in the network, super-spreaders of a disease,

etc. Furthermore, node ranking indicates ranking of the nodes based on their importance

in the network. We measure the impact of similarity approximations on each of these tasks.

4.4.1 k-nearest neighbours

In Figure 4.5, results for k-nearest neighbours are shown. We have ground truth values

from original data and for NRP and sketching we check how many of the k real nearest

neighbours of each node we are returning. In other words, we measure knn recall. For each

node we have this value and for all the nodes of the graph, we simply get an average. As it

can be seen in the figures, NRP has a very low recall. Sketching shows much higher recall

Chapter 4. Evaluation 60

than NRP. For sketching, as we increase sample size the recall increases. Note that density

for these two datasets are 4% and when sample size passes the density, the recall reaches its

maximum. In conclusion, for knn application using sketching is the best as its accuracy is

much higher than NRP.

Kn
n

re
ca

ll

0

0.25

0.5

0.75

1

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(a) normal4 dataset

Kn
n

re
ca

ll
0

0.25

0.5

0.75

1

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(b) binomial4 dataset

Figure 4.5: Knn recall w.r.t sample size for k = 500. The recall for sketching is much higher
than NRP for both distributions.

Effect of k in knn recall

In this experiment, we try to see how the recall changes if we change the k value. Both

graphs of Normal4 and Binomial4 datasets have 10k number of nodes (the same as number

of rows of the dataset). We change k and analyze the knn recall for each method. Sample

percentage is fixed on 5%. Results are shown in Firgure 4.6. This figure shows that as we

increase k, recall for NRP increases as it gets more chance to give some of the k nearest

neighbours of each node. Despite of the increase NRP shows, its recall value is still very low.

For sketching, recall is always around 1 which means independent of number of neighbours

(k), accuracy for this method is high.

4.4.2 Node centralities

Node centralities show importance of the nodes in the graph. There are several centrality

measures and the difference they have is how they define importance of the nodes. Degree,

closeness, betweenness and the eigenvector centralities are a few examples of different kinds

Chapter 4. Evaluation 61

Kn
n

re
ca

ll

0

0.25

0.5

0.75

1

K
100 200 500 1000

sketching
nrp

(a) normal4 dataset

Kn
n

re
ca

ll

0

0.25

0.5

0.75

1

K
100 200 500 1000

sketching
nrp

(b) binomial4 dataset

Figure 4.6: Knn recall w.r.t k for a fixed sample size (5%). The recall for sketching is much
higher than NRP for both distributions.

of centrality measures. Here we work with eigenvector centrality. This measure assigns

relative scores to the nodes of the graph with this philosophy that being connected to high-

scoring nodes affects the node’s centrality more compared to being connected to the nodes

with low scores.

If we have a graph G(V,E), for node v ∈ V the relative centrality score xv can be defined

as:

xv =
1

λ

∑
t∈M(v)

xt (4.1)

where M(v) is the set of neighbours of node v and λ is a constant. If we denote the adjacency

matrix of the graph G by A, this formula can be represented as Ax = λx with some small

rearrangements.

Here we analyze the average centrality errors. Results are shown in Figure 4.7. In the

original graph, each node has a centrality value and in the approximated graphs we have

approximations of them. For each node we measure the error as ei =
|csample

i −coriginal
i |

coriginal
i

where

ei shows error for node i, ci is centrality of the node i which can be either in the sample

or the original graph. The difference of centralities divided by the original value would be

the relative centrality error for each node. For all the nodes of the graph, we average this

Chapter 4. Evaluation 62

error. We report this error for the top 10% most central nodes because there can be many

nodes in the graph having very small centrality values (roughly zero) in which the error is

not meaningful.

As it is shown in Figure 4.7, the error for sketching is much lower than NRP. Similar to

the results of similarity values, as we increase the sample size, the error decreases because

more information for each row is carried in the sample. Besides, when sample size passes

density of the datasets (4%), the errors for sketching reach to zero. So sketching technique

can be a trusted method when we want to build similarity graphs and have centrality analysis

on them.

Av
er

ag
e

ce
nt

ra
lit

y
er

ro
rs

0

0.1

0.2

0.3

0.4

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(a) normal4 dataset

Av
er

ag
e

ce
nt

ra
lit

y
er

ro
rs

0

0.1

0.2

0.3

0.4

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(b) binomial4 dataset

Figure 4.7: Average centrality errors for normal4 and binomial4 datasets for top 10% most
central nodes.

Analysis on node centrality errors for different top percentages

In Figure 4.8 we analyze how the centrality errors change for different top percentages of

nodes. For sketching, error decreases when we increase top percentage because there will

be more nodes having centrality value the same as original. For NRP it is the opposite and

the error increases. As it can be seen, for Binomial4 dataset all the errors of sketching are

roughly zero which shows how reliable this method is for the analysis on centralities.

Chapter 4. Evaluation 63

Av
er

ag
e

ce
nt

ra
lit

y
er

ro
rs

0

0.05

0.1

0.15

0.2

Top ones (%)
5 10 20 100

sketching
nrp

(a) normal4 dataset

Av
er

ag
e

ce
nt

ra
lit

y
er

ro
rs

0

0.05

0.1

0.15

0.2

Top ones (%)
5 10 20 100

sketching
nrp

(b) binomial4 dataset

Figure 4.8: Average centrality errors for normal4 and binomial4 datasets for different top
percentages of most central nodes. Sample size is fixed on 5%

4.4.3 Node ranking correlations

Based on the centrality of the nodes in the graph, we obtain a ranking for them. We have

this node ranking for the original and approximated graphs. We want to measure how well

the rankings of the approximated graphs are compared to the original. For this purpose,

we use Spearman’s ranking correlation coefficient (ρ). This measure evaluates how well

the relationship between two variables can be described using a monotonic function. The

higher and closer to 1 the ranking correlation is, the better ranking of nodes in original and

approximated graphs align.

In Figure 4.9 ranking correlations of sketching and NRP compared to original are re-

ported. We present results for the top 10% most central nodes of the graph and in the next

figure we analyze how changing the percentage of top most central nodes has an effect on

the ranking correlations. NRP works poorly on this metric, opposed to sketching which

gives rankings very close to the original. For this metric as well, when sample size passes

density which is 4%, ranking correlations reach to (roughly) 1 for the sketching method.

Therefore, for this kind of analysis sketching works much more promising than NRP.

Chapter 4. Evaluation 64

Ra
nk

in
g

co
rre

la
tio

n
co

effi
ci

en
t

0

0.25

0.5

0.75

1

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(a) normal4 dataset

Ra
nk

in
g

co
rre

la
tio

n
co

effi
ci

en
t

0

0.25

0.5

0.75

1

Sample size (%)
1 2 3 4 5 6 7 8 9 10

sketching
nrp

(b) binomial4 dataset

Figure 4.9: Centrality ranking correlation coefficients for normal4 and binomial4 datasets
for top 10% most central nodes.

Analysis on node ranking correlations for different top percentages

Now, we analyze ranking correlations for different top percentages of most central nodes in

the graph. As shown in Figure 4.10, sketching is not affected considerably by the percnetage

of the top nodes. This means that it gives constantly promising ranking of nodes based on

their centralities. However, for NRP when percentage is increased significantly (from 20%

to 100%), ranking correlation becomes higher as there will be more nodes and the chance

that they have similar ranking in both graphs increases. In summary, sketching constantly

gives very similar ranking of nodes to the original graph while NRP does not perform very

well on this metric.

Chapter 4. Evaluation 65

Ra
nk

in
g

co
rre

la
tio

n
co

effi
ci

en
t

0

0.25

0.5

0.75

1

Top ones (%)
5 10 20 100

sketching
nrp

(a) normal4 dataset

Ra
nk

in
g

co
rre

la
tio

n
co

effi
ci

en
t

0

0.25

0.5

0.75

1

Top ones (%)
5 10 20 100

sketching
nrp

(b) binomial4 dataset

Figure 4.10: Centrality ranking correlations for normal4 and binomial4 datasets for different
top percentages of most central nodes. Sample size is fixed on 5%

Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this work, our goal was to propose an efficient and effective way of construction of

similarity graphs. Given a data matrix or its sparse vector representation, similarity graph

formulation is an expensive operation because similarities between all pairs of dataset entities

need to be computed. Furthermore, dimensionality of data has an impact on speed of the

process. Thus, the cost of the naive operation would be O(n2d) where n is the number of

instances and d is the dimensionality of data. We proposed different methods that improve

these computations vastly. By using data sketching techniques we reduce the dimensionality

of data and the use of an indexing technique helps to eliminate all unnecessary pairwise

computations for the instances that do not share a dimension together.

We proposed three different algorithms for speeding up the pairwise similarity compari-

son. All the algorithms use an inverted index structure, but have different ways to compute

the information needed for calculating a pairwise similarity, each of which is suitable in a

specific situation. One of our proposed methods uses an online approach for computing

different information needed. In practice, this method is slower than the other two methods

we propose; however, no extra memory is needed to store intermediate information pro-

duced during the algorithm. The other two methods we proposed have an offline approach

66

Chapter 5. Conclusion & Future Work 67

and precompute the information that can be precomputed. These two use O(n) or O(n2)

space for storing the intermediate data information but are faster than the previous one.

Therefore, there is a tradeoff for space and speed and one can choose any of them based on

their constraints in space or the speed needed.

We compared our methods with the conventional way of similarity calculations as well as

the commonly used sampling technique of random projection. We showed to be up to 62×

faster than the original conventional method with a little sacrifice on the accuracy. Also,

compared to random projection, we showed that although runtimes have the same range,

our results are more accurate with a huge gap.

Beside similarity computations, we formed approximated graphs and analyzed different

graph applications on them. We investigated node importance, node rankings and k-nearest

neighbours. It’s showed that our methods compared to the competitor are considerably

more accurate for all the mentioned graph analysis tasks. In all our experiments, we change

different parameters and analyze sensitivity of the methods to that parameter. Our methods

have shown much less sensitivity than the competitor which makes them more reliable.

To sum up, our methods improve construction of similarity graphs in terms of speed

significantly and with a negligible sacrifice on the accuracy. We evaluated them on different

graph applications and based on the results, we showed that they are reliable and can

be used safely for such analysis. As a result, our work helps improving many different

applications like maximum inner product search, node importance, community detection,

nearest neighbour search and more.

5.2 Future Work

There are different ideas on how we can extend this work. One idea is that we expand

usability of our algorithm by taking a more general input data structure than the matrix.

Tensors are multi-dimensional arrays. A matrix is a two-way tensor. The idea is that instead

of working with a data matrix, we work with a tensor having multiple attribute dimensions

instead of just one. So based on our examples, we had a matrix having entity set R as rows

Chapter 5. Conclusion & Future Work 68

and the attribute set A as columns. If we work with tensors, we can have multiple attribute

sets along A. This helps to generalize this method to many other data representations

and adding many other applications to the scope of usability of these algorithms. Another

idea we have is to design the distributed version of our algorithms to increase scalability.

Using Spark or Hadoop frameworks, we can make the algorithms distributed and capable

of working with very large scale datasets. Furthermore, because our baseline sketching

method provides theoretical guarantees on the quality of the results, we suggest investigating

theoretical bounds for some of the main applications of the similarity graphs.

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss

with binary coins. J. Comput. Syst. Sci., 66:671–687, 06 2003.

[2] Nesreen Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling via edge-

based node selection with graph induction. 01 2011.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via

linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA ’12, page 459–467, USA, 2012. Society for Indus-

trial and Applied Mathematics.

[4] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Sparsification,

spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, PODS ’12, page 5–14, New York, NY,

USA, 2012. Association for Computing Machinery.

[5] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dy-

namic graph streams. In Approximation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques, pages 1–10, Berlin, Heidelberg, 2013. Springer Berlin

Heidelberg.

[6] KookJin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In

International Colloquium on Automata, Languages and Programming, pages 328–338,

2009.

69

Bibliography 70

[7] Takuya Akiba and Yosuke Yano. Compact and scalable graph neighborhood sketching.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, page 685–694, New York, NY, USA, 2016.

Association for Computing Machinery.

[8] Samuel Aparicio, Jarrod Chapman, Elia Stupka, Nik Putnam, Jer-ming Chia, Paramvir

Dehal, Alan Christoffels, Sam Rash, Shawn Hoon, Arian Smit, Maarten D. Sollewijn

Gelpke, Jared Roach, Tania Oh, Isaac Y. Ho, Marie Wong, Chris Detter, Frans Verhoef,

Paul Predki, Alice Tay, Susan Lucas, Paul Richardson, Sarah F. Smith, Melody S.

Clark, Yvonne J. K. Edwards, Norman Doggett, Andrey Zharkikh, Sean V. Tavtigian,

Dmitry Pruss, Mary Barnstead, Cheryl Evans, Holly Baden, Justin Powell, Gustavo

Glusman, Lee Rowen, Leroy Hood, Y. H. Tan, Greg Elgar, Trevor Hawkins, Byrappa

Venkatesh, Daniel Rokhsar, and Sydney Brenner. Whole-genome shotgun assembly

and analysis of the genome of fugu rubripes. Science, 297(5585):1301–1310, 2002.

[9] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A

benchmarking tool for approximate nearest neighbor algorithms. In Christian Beecks,

Felix Borutta, Peer Kröger, and Thomas Seidl, editors, Similarity Search and Applica-

tions, pages 34–49, Cham, 2017. Springer International Publishing.

[10] Bortik Bandyopadhyay, David Fuhry, Aniket Chakrabarti, and Srinivasan

Parthasarathy. Topological graph sketching for incremental and scalable analytics. In

Proceedings of the 25th ACM International on Conference on Information and Knowl-

edge Management, CIKM ’16, page 1231–1240, New York, NY, USA, 2016. Association

for Computing Machinery.

[11] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs

similarity search. WWW ’07, page 131–140, New York, NY, USA, 2007. Association

for Computing Machinery.

[12] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts

and flows in capacitated graphs. CoRR, cs.DS/0207078, 2002.

Bibliography 71

[13] Upasna Bhandari, Kazunari Sugiyama, Anindya Datta, and Rajni Jindal. Serendipitous

recommendation for mobile apps using item-item similarity graph. In Rafael E. Banchs,

Fabrizio Silvestri, Tie-Yan Liu, Min Zhang, Sheng Gao, and Jun Lang, editors, Infor-

mation Retrieval Technology, pages 440–451, Berlin, Heidelberg, 2013. Springer Berlin

Heidelberg.

[14] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction:

Applications to image and text data. KDD ’01, page 245–250. Association for Com-

puting Machinery, 2001.

[15] Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM Journal on Discrete Mathe-

matics, 8(3):359–387, 1995.

[16] Xiongcai Cai, Michael Bain, Alfred Krzywicki, Wayne Wobcke, Yang Sok Kim, Paul

Compton, and Ashesh Mahidadia. Learning collaborative filtering and its application

to people to people recommendation in social networks. In 2010 IEEE International

Conference on Data Mining, pages 743–748, 2010.

[17] Graham Cormode. Sketch techniques for approximate query processing. In Synposes for

Approximate Query Processing: Samples, Histograms, Wavelets and Sketches, Founda-

tions and Trends in Databases. NOW publishers, 2011.

[18] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. 55:58–75, 2005.

[19] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional

manifolds. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-

puting, STOC ’08, page 537–546, New York, NY, USA, 2008. Association for Computing

Machinery.

[20] Christian Doerr and Norbert Blenn. Metric convergence in social network sampling.

page 45–50, New York, NY, USA, 2013. Association for Computing Machinery.

[21] D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, 2006.

Bibliography 72

[22] Tamer Elsayed, Jimmy Lin, and Douglas W. Oard. Pairwise document similarity in

large collections with mapreduce. In Proceedings of the 46th Annual Meeting of the

Association for Computational Linguistics on Human Language Technologies: Short

Papers, HLT-Short ’08, page 265–268, USA, 2008. Association for Computational Lin-

guistics.

[23] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi.

A general framework for graph sparsification. In Proceedings of the Forty-Third Annual

ACM Symposium on Theory of Computing, STOC ’11, page 71–80, New York, NY,

USA, 2011. Association for Computing Machinery.

[24] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimen-

sions via hashing. In Proceedings of the 25th International Conference on Very Large

Data Bases, VLDB ’99, page 518–529, San Francisco, CA, USA, 1999. Morgan Kauf-

mann Publishers Inc.

[25] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou. Walking

in facebook: A case study of unbiased sampling of osns. In 2010 Proceedings IEEE

INFOCOM, pages 1–9, 2010.

[26] Leo A. Goodman. Snowball sampling. The Annals of Mathematical Statistics,

32(1):148–170, 1961.

[27] Michael Gowanlock and Ben Karsin. Gpu-accelerated similarity self-join for multi-

dimensional data. In Proceedings of the 15th International Workshop on Data Man-

agement on New Hardware, DaMoN’19, New York, NY, USA, 2019. Association for

Computing Machinery.

[28] Mohammad Al Hasan and Mohammed J. Zaki. A Survey of Link Prediction in Social

Networks, pages 243–275. Springer US, Boston, MA, 2011.

[29] Pili Hu and Wing Cheong Lau. A survey and taxonomy of graph sampling, 2013.

[30] Md Kamrul Islam, Sabeur Aridhi, and Malika Smail-Tabbone. A comparative study of

similarity-based and gnn-based link prediction approaches, 2020.

Bibliography 73

[31] Xiaozheng Jian, Jianqiu Lu, Zexi Yuan, and Ao Li. Fast top-k cosine similarity search

through xor-friendly binary quantization on gpus, 2020.

[32] Qing-Yuan Jiang and Wu-Jun Li. Scalable graph hashing with feature transformation.

In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15,

page 2248–2254. AAAI Press, 2015.

[33] Long Jin, Yang Chen, Pan Hui, Cong Ding, Tianyi Wang, Athanasios V. Vasilakos,

Beixing Deng, and Xing Li. Albatross sampling: Robust and effective hybrid vertex

sampling for social graphs. In Proceedings of the 3rd ACM International Workshop on

MobiArch, page 11–16. Association for Computing Machinery, 2011.

[34] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with

gpus. IEEE Transactions on Big Data, 7(3):535–547, 2021.

[35] David R. Karger. Random sampling in cut, flow, and network design problems. In Pro-

ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC

’94, page 648–657, New York, NY, USA, 1994. Association for Computing Machinery.

[36] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.

[37] David Ron Karger. Random Sampling in Graph Optimization Problems. PhD thesis,

Stanford, CA, USA, 1995.

[38] Jon Kleinberg. Kleinberg, j. navigation in a small world. nature 406, 845. Nature,

406:845, 09 2000.

[39] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’06, page 631–636, New York, NY, USA, 2006. Association for Computing

Machinery.

[40] Ping Li, Kenneth Church, and Trevor Hastie. One sketch for all: Theory and appli-

cation of conditional random sampling. In D. Koller, D. Schuurmans, Y. Bengio, and

Bibliography 74

L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21.

Curran Associates, Inc., 2009.

[41] Ping Li, Kenneth W. Church, and Trevor J. Hastie. Conditional random sampling: A

sketch-based sampling technique for sparse data. In Proceedings of the 19th Interna-

tional Conference on Neural Information Processing Systems, NIPS’06, page 873–880,

Cambridge, MA, USA, 2006. MIT Press.

[42] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, KDD ’06, page 287–296, New York, NY, USA, 2006. Association

for Computing Machinery.

[43] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin

Lin. Approximate nearest neighbor search on high dimensional data — experiments,

analyses, and improvement. IEEE Transactions on Knowledge and Data Engineering,

32(8):1475–1488, 2020.

[44] Jimmy Lin. Brute force and indexed approaches to pairwise document similarity com-

parisons with mapreduce. In Proceedings of the 32nd International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, SIGIR ’09, page 155–162,

New York, NY, USA, 2009. Association for Computing Machinery.

[45] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In Pro-

ceedings of the 28th International Conference on International Conference on Machine

Learning, ICML’11, page 1–8, Madison, WI, USA, 2011. Omnipress.

[46] Yu Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approx-

imate nearest neighbor algorithm based on navigable small world graphs. Information

Systems, 45:61–68, 01 2013.

[47] Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor

search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.

Mach. Intell., 42(4):824–836, April 2020.

Bibliography 75

[48] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing machines.

Journal of Chemical Physics, pages 1087–1092, 1953.

[49] Selim Mimaroglu and Ertunc Erdil. Combining multiple clusterings using similarity

graph. Pattern Recognition, 44(3):694–703, 2011.

[50] Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maximum

inner product search. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 31. Curran Associates, Inc., 2018.

[51] Anne Morvan, Krzysztof Choromanski, Cédric Gouy-Pailler, and Jamal Atif. Graph

sketching-based space-efficient data clustering. Proceedings of the 2018 SIAM Interna-

tional Conference on Data Mining, page 10–18, May 2018.

[52] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high di-

mensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):2227–2240, 2014.

[53] S. Muthukrishnan. Some algorithmic problems and results in compressed sensing. Aller-

ton Conference, 2006.

[54] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. Permutation search methods

are efficient, yet faster search is possible. Proc. VLDB Endow., 8(12):1618–1629, August

2015.

[55] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. Permutation search methods

are efficient, yet faster search is possible. The Proceedings of the VLDB Endowment

(PVLDB), 8, 06 2015.

[56] Trong Nhan Phan, Josef Küng, and Tran Khanh Dang. An efficient similarity search

in large data collections with mapreduce. In Tran Khanh Dang, Roland Wagner, Erich

Bibliography 76

Neuhold, Makoto Takizawa, Josef Küng, and Nam Thoai, editors, Future Data and

Security Engineering, pages 44–57, Cham, 2014. Springer International Publishing.

[57] Trong Nhan Phan, Josef Küng, and Tran Khanh Dang. An elastic approximate sim-

ilarity search in very large datasets with mapreduce. In Abdelkader Hameurlain,

Tran Khanh Dang, and Franck Morvan, editors, Data Management in Cloud, Grid

and P2P Systems, pages 49–60, Cham, 2014. Springer International Publishing.

[58] Parivash Pirasteh, Dosam Hwang, and Jai E. Jung. Weighted similarity schemes for

high scalability in user-based collaborative filtering. Mob. Netw. Appl., 20(4):497–507,

August 2015.

[59] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor

matching. 06 2008.

[60] Daniel A. Spielman and Shang hua Teng. A local clustering algorithm for massive

graphs and its application to nearly-linear time graph partitioning, 2013.

[61] Daniel A. Spielman and Shang hua Teng. Nearly linear time algorithms for precondi-

tioning and solving symmetric, diagonally dominant linear systems, 2014.

[62] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.

SIAM J. Comput., 40(6):1913–1926, 2011.

[63] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph

partitioning, graph sparsification, and solving linear systems. In Proceedings of the

Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page 81–90,

New York, NY, USA, 2004. Association for Computing Machinery.

[64] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.

Comput., 40(4):981–1025, July 2011.

[65] Lubomir Stanchev. Semantic document clustering using a similarity graph. In 2016

IEEE Tenth International Conference on Semantic Computing (ICSC), pages 1–8,

2016.

Bibliography 77

[66] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. Srs: Solving

¡i¿c¡/i¿-approximate nearest neighbor queries in high dimensional euclidean space with

a tiny index. Proc. VLDB Endow., 8(1):1–12, September 2014.

[67] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity

search: A survey, 2014.

[68] Chuanming Yu, Xiaoli Zhao, Lu An, and Xia Lin. Similarity-based link prediction in

social networks: A path and node combined approach. Journal of Information Science,

43, 08 2016.

[69] Reza Bosagh Zadeh and Ashish Goel. Dimension independent similarity computation.

J. Mach. Learn. Res., 14(1):1605–1626, January 2013.

[70] Ahmad Zareie and Rizos Sakellariou. Similarity-based link prediction in social networks

using latent relationships between the users. Scientific Reports, 10, 11 2020.

[71] Jingbo Zhou, Qi Guo, H. V. Jagadish, Luboš Krčál, Siyuan Liu, Wenhao Luan, Anthony

K. H. Tung, Yueji Yang, and Yuxin Zheng. A generic inverted index framework for

similarity search on the gpu - technical report, 2018.

[72] Tülin İnkaya. A parameter-free similarity graph for spectral clustering. Expert Systems

with Applications, 42(24):9489–9498, 2015.

