

Fast Similarity Graph Construction via Data Sketching Techniques

By: Hoorieh Marefat Supervisors: Aijun An, Manos Papagelis

Introduction

Motivation

We explore how to **build similarity graphs** in an **efficient** way

Applications

Similarity-based Graphs

• Similarity Graph

- *E*-Graph
- Nearest Neighbour (NN) Graph

Similarity graph

The Dataset

Dataset's Similarity Graph

€-graph

Nearest Neighbour (NN) Graph

If we have *k* nearest neighbours for each node, graph would be a *k*NN graph

Similarity-based graphs

- Each of these graphs lead to **different problems**
- Each of them have **different solutions**

 In our work, we focus on the *E*-similarity graph, a similarity graph whose edges are above the *E* threshold

Similarity Graph Construction Challenges

Nitiles

When we have to build similarity graphs many times like in data streams for different snapshots or windows

11001101110

 $O(n^2d)$

Scalability

	UserID	Item1	Item2	Item3	Item4	Item5
(1	3	0	2	0	10
	2	4	5	1	0	0
र	3	1	3	0	1	5
	4	0	2	2	0	3
L	5	0	0	0	4	0

Similarities should be computed for all pairs of entities based on all attributes

Main Objective

Proposing an **efficient** and **effective** method for **similarity graph construction** from **high-dimensional** data

Approaches

- Distributed solutions on MapReduce
- GPU-based solutions
- Efficient algorithmic optimizations
 - Using inverted index
 - Sampling/sketching based methods

Our work

Inverted index

The Forward Index

Doc1: New Home Sales

Doc2: Home Sales In July

The Inverted Index

Data Sketching

Summarizing data that might be thought of as a high dimensional vector, or matrix

Data sketches have mathematically proven error bounds

Problem Statement

Sparse Vector Representation of Matrix

The Matrix

	A1	A2	A3	A4	A5
R1	5	1	0	0	4
R2	0	0	3	0	0
R3	0	0	2	0	1
R4	3	2	0	0	4
R5	0	3	0	0	2

Its Sparse Vector Representation

R1 = {(A1, 5), (A2, 1), (A5, 4)}
R2 = {(A3, 3)}
R3 = {(A3, 2), (A5, 1)}
R4 = {(A1, 3), (A2, 2), (A5, 4)}
R5 = {(A2, 3), (A5, 2)}

Approximate Similarity Graph Construction

- Given:
 - a similarity threshold ϵ
 - a data matrix or its sparse vector representation
- the problem is:
 - to build a **similarity graph** G(V, E) where
 - V is the set of entities in the data matrix and
 - *E* is the set of edges representing the similarity between two nodes and
 - the similarity is above the ϵ threshold

Proposed Methodology

Overview of the Algorithm

Step 1: Data Sketching Step 2: Pairwise Similarity Computations

 $Sk[1] = \{(2, 4), (3, 1)\}$ $Sk[2] = \{(1, 3)\}$ $Sk[3] = \{(1, 2), (2, 1)\}$ $Sk[4] = \{(2, 4), (3, 2)\}$ $Sk[5] = \{(2, 2), (3, 3)\}$

Step 1: Data Sketching

Main goal: Start from a large dataset Make it smaller

Sketch size: k << d

Step 1: Data Sketching

- Input
 - Two different kinds of dataset
 - A data matrix
 - Sparse vector representation of a data matrix
 - The sketch size (k)
- Output
 - Sketches of data

Data Sketching From a Data Matrix

Dataset: D

	1	2	3	4	5
1	5	1	0	0	4
2	0	0	3	0	0
3	0	0	2	0	1
4	3	2	0	0	4
5	0	3	0	0	2

Random
Column Permutation
[1, 2, 3, 4, 5]
То
[4, 3, 1, 5, 2]

Permuted Dataset					
	1	2	3	4	5
1	0	4	1	5	0
2	3	0	0	0	0
3	2	1	0	0	0
4	0	4	2	3	0
5	0	2	3	0	0

Taking the first k column ID/value pairs with nonzero values

Recording the highest

column ID in each

sketch

Sketches of D Sketch size (K) = 2 $Sk[1] = \{(2, 4), (3, 1)\}$ $Sk[2] = \{(1, 3)\}$ $Sk[3] = \{(1, 2), (2, 1)\}$ $Sk[4] = \{(2, 4), (3, 2)\}$ $Sk[5] = \{(2, 2), (3, 3)\}$

Sk_max_id[1] = 3 Sk_max_id[2] = 1 Sk_max_id[3] = 2 Sk_max_id[4] = 3 Sk_max_id[5] = 3

> Sketch Max Column IDs

Data Sketching From Sparse Vector Representation

Original Dataset

R1	=	{(1,	5),	(2,	1),	(5,	4)}
R2	=	{(3,	3)}				
R3	=	{(3,	2),	(5,	1)}		
R4	=	{(1,	3),	(2,	2),	(5,	4)}
R5	=	{(2,	3),	(5,	2)}	•	

Permuted Dataset

$R1 = \{(4, 5), (3, 1), (2, 4)\}$
$R2 = \{(1, 3)\}$
$R3 = \{(1, 2), (2, 1)\}$
$R4 = \{(4, 3), (3, 2), (2, 4)\}$
$R5 = \{(3, 3), (2, 2)\}$

Sorting

Sketch Max IDs Sk_max_id[1] = 3 Sk_max_id[2] = 1 Sk_max_id[3] = 2 Sk_max_id[4] = 3 Sk_max_id[5] = 3	Sketches $Sk[1] = \{(2, 4), (3, 1)\}$ $Sk[2] = \{(1, 3)\}$ $Sk[3] = \{(1, 2), (2, 1)\}$ $Sk[4] = \{(2, 4), (3, 2)\}$ $Sk[5] = \{(2, 2), (3, 3)\}$	Sketch size (K) = 2	$R1 = \{(2, 4), (3, 1), (4, 5)\}$ $R2 = \{(1, 3)\}$ $R3 = \{(1, 2), (2, 1)\}$ $R4 = \{(2, 4), (3, 2), (4, 3)\}$ $R5 = \{(2, 2), (3, 3)\}$

Data Sketching - Time Complexity

• From Sparse Vector Rep.: $O(d) + O(n \times (f + f.log(f) + k))$ average number of

sketch size

• $O(n \times (f + f \cdot log(f) + k)) < O(nm)^{\text{nonzero entries}}$

Step 2: Pairwise similarity computations

Input: Data sketches

Output: Similarities of all pairs of sketches

Our similarity measure is the inner-product

Structure of An Inverted Index

Pairwise similarity computations

Sketches

Current Sketch Iterating Over

Inverted Index

(Sk[1], 16), (Sk[3], 4) (Sk[1], 16+2)

Similar Sketches of Sk[4]

percent of the second sec	a second	A.P. Day State State Street Stre
(Sk[1],	18),	(Sk[3], 4)

Effective sample size (d_s) Computation

Our similarity measure is the inner-product

Three approaches for d_S computation

Online

Sk[4] = {(2,4) (3 2)}

Offline via Sorting

Sorting sketches based

on their max ID

 $Sk[2] = \{(1, 3)\}$ $Sk[3] = \{(1, 2), (2, 1)\}$ $Sk[1] = \{(2, 4), (3, 1)\}$ $Sk[4] = \{(2, 4), (3, 2)\}$ $Sk[5] = \{(2, 2), (3, 3)\}$ Offline via Matrix Precomputation

 d_s pairwise matrix

Preprocessing

Extra Space Needed for d_s computations

- Online: O(1)
- Offline via sorting: O(n)
- Offline via matrix precomputations: $O(n^2)$

Pairwise Similarity Computation - Time Complexity

- Offline via sorting: $O(c' \times n \times k \times l) + O(n.log(n))$
- Offline via matrix precomputation: $O(c'' \times n \times k \times l) + O(n^2)$

c', c'' < c

Step 3: Similarity Graph Construction

Evaluation

Evaluation Scenarios

- Runtime Cost
- Accuracy
- Effectiveness

Datasets

Name	Distribution	Density	Size
Normal2	$Normal(\mu=200, \sigma=50)$	2%	
Normal4	Normal(μ =400, σ =100)	4%	101×101
Normal6	Normal(μ =600, σ =100)	6%	$10K \times 10K$
Normal8	$Normal(\mu=800, \sigma=100)$	8%	
Binomial2	Binomial(n=10k, p=0.02)	2%	
Binomial4	Binomial(n=10k, p=0.04)	4%	$101. \times 101.$
Binomial6	Binomial(n=10k, p=0.06)	6%	$10K \times 10K$
Binomial8	Binomial(n=10k, p=0.08)	8%	

Evaluated methods

Original

UserID	Item1	Item2	Item3	Item4	Item5
1	3	0	2	0	10
2	4	5	1	0	0
3	1	3	0	1	5
4	0	2	2	0	3
5	0	0	0	4	0

sim. operations on the vectors of the original dataset

- Normal Random Projection (NRP) $\longrightarrow A \in \mathbb{R}^{n \times D}$ $R \in \mathbb{R}^{D \times k}$ $AR \in \mathbb{R}^{n \times k}$
- Data sketching Sk_naive ----without using an inverted index
- Sk_online

Sk_online
Sk_offline_sorted
Sk_offline_matrix

Runtime vs. sample size

Accuracy vs. sample size

Effectiveness

Effectiveness

- K-nearest neighbours
- Node centrality values
 - show *importance* of the nodes in the graph
 - we work with **eigenvector centrality**
- Node rankings
 - Based on the centrality of the nodes in the graph, we have a ranking for them
 - We use Spearman's ranking correlation coefficient (ρ)

Effectiveness - kNN

kNN recall:

How many of the k real nearest neighbours of each node we are returning Precision and recall are the same in this case

Effectiveness - Centrality Errors

Effectiveness - Node Ranking Correlations

We use Spearman's ranking correlation coefficient:

A measure to see how well node rankings of the approximated graphs are compared to the original.

Conclusion & Future Work

Summary of contributions

building similarity graphs from high-dimensional data

 $O(n^2d)$

Inverted Index

efficient, accurate and effective way of construction of similarity graphs

Summary of contributions

three algorithms each of which has a trade-off for speed and space

Time efficient Accurate

Effective on different graph analysis tasks

Limitations

Scalability for very large datasets

Storage overhead for the inverted index + maintenance cost

Future Work

Providing theoretical bounds for the quality of graph downstream task results

Making the methods distributed to increase scalability

Working with multi-dimensional arrays instead of matrix

Thank You!

Appendix

Online Pairwise Similarities

Algorithm 2: Online Pairwise Similarities

Input: sketches of D: Sk, sketch max ids: Sk_Max_Id, similarity threshold: ϵ , dimensionality of original data: d

Output: pairwise similarities: S

- $\mathbf{1} \ S \leftarrow \emptyset$
- 2 $I_1, I_2, ..., I_d \leftarrow \emptyset$ (I_i is the entry for the *i*th attribute in the inverted index. It will contain a list of (x, v)'s, where x is a row/sketch id and v is the value of x for the *i*th attribute.)
- 3 for $x \in Sk$ do
- 4 $M \leftarrow \emptyset$ (*M* holds the similarity values between *x* and each of the skethes before x in *Sk*)

5 for
$$(a, v) \in x$$
 do

$$\begin{array}{c|c} \mathbf{6} \\ \mathbf{7} \end{array} \quad \begin{array}{c|c} \mathbf{for} \ (y, y_v) \in I_a \ \mathbf{do} \\ d_s = \min(Sk_Max_Id[x]). \end{array}$$

$$d_s = min(Sk_Max_Id[x], Sk_Max_Id[y])$$

$$\mathbf{s} \qquad \qquad \mathbf{if} \ a \leq d_s \ \mathbf{then}$$

$$| \qquad | \qquad M[y] \leftarrow M[y] + (d/d_s) \cdot v \cdot y_v$$

$$10 \qquad \qquad \ \ I_a \leftarrow I_a \cup \{(x,v)\}$$

11 $S_x \leftarrow \mathbf{Filter_Similarities}(M, \epsilon)$ (Remove similarities in M whose value is less than ϵ)

13 return S

9

Offline Pairwise Similarities via Sorting

```
Algorithm 3: Offline Pairwise Similarities via Sorting
    Input: sketches of D: Sk, sketch max ids: Sk_Max_Id, similarity threshold: \epsilon,
              dimensionality of original data: d
    Output: pairwise similarities: S
 1 S \leftarrow \emptyset
 2 I_1, I_2, ..., I_d \leftarrow \emptyset
 3 Sorted_Sk_Indices \leftarrow \arg\_sort(Sk\_Max\_Id, ascending)
 4 for i \in range(|Sk|) do
        x_{id} = Sorted\_Sk\_Indices[i]
 5
        x \leftarrow Sk[x_{id}]
 6
        M \leftarrow \emptyset
 7
        for (a, v) \in x do
 8
            for (y, y_v) \in I_a do
 9
                d_s = Sk_Max_Id[y]
10
            M[y] \leftarrow M[y] + (d/ds) \cdot v \cdot y_v
11
           I_a \leftarrow I_a \cup \{(x, v)\}
12
         S_x \leftarrow \mathbf{Filter\_Similarities}(M, \epsilon)
\mathbf{13}
        S \leftarrow S \cup (x, S_x)
\mathbf{14}
15 return S
```

Offline Pairwise Similarities via Matrix Precomputations

```
Algorithm 4: Offline Pairwise Similarities via Matrix Precomputations
   Input: sketches of D: Sk, sketch max ids: Sk_Max_Id, similarity threshold: \epsilon,
             dimensionality of original data: d
   Output: pairwise similarities: S
 1 S \leftarrow \emptyset
 2 I_1, I_2, \dots, I_d \leftarrow \emptyset
 \mathbf{s} \ n \leftarrow |Sk|
 4 for i \in range(n) do
      for j \in range(n) do
 5
        6
 7 for x \in Sk do
       M \leftarrow \emptyset
 8
       for (a, v) \in x do
 9
           for (y, y_v) \in I_a do
10
              d_s = d_s-pairwise[x][y]
11
             if a < d_s then
12
          | M[y] \leftarrow M[y] + (d/ds) \cdot v \cdot y_v 
13
         I_a \leftarrow I_a \cup \{(x, v)\}
\mathbf{14}
       S_x \leftarrow \mathbf{Filter\_Similarities}(M, \epsilon)
15
       S \leftarrow S \cup (x, S_x)
16
17 return S
```

Bloom filters for set summarization

- Set membership
- The item has *definitely not been stored*, or the item has *probably been stored*
- Having *k* hash functions and map each item with each of them
- Set all the corresponding bits to 1. If all were one for an item, say it is a member, if any of them were 0, say it is not a member

Counting with count-min sketch

- Counts the number of items of a certain type
- Sketch: an array of counters, and a set of hash functions which map items into the array
- Count of the desired item is to take the smallest of counters in each row as our estimate.

PCA vs. RP

- PCA
 - Extracting a small number of directions from the data which captures most of variation of dataset
 - Finding the direction requires finding eigenvectors of the covariance matrix

Substantial amount of work

- Random projection
 - Rather than finding "the best" directions, it suffices to use random vectors.
 - Picking a moderate number of random directions captures a *comparable amount of variation*, while requiring *much less computation*.