
Fast Similarity Graph Construction 

via Data Sketching Techniques
By: Hoorieh Marefat

Supervisors: Aijun An, Manos Papagelis

1



Introduction



Motivation
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We explore how to build similarity graphs in an efficient way

Entities
Similarity of Entities



Applications
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NN Search

Clustering

Collaborative Filtering

Link Prediction



Similarity-based Graphs

• Similarity Graph

• 𝜖-Graph

• Nearest Neighbour (NN) Graph
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Similarity graph
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The Dataset
Dataset’s Similarity Graph

Attributes

Entities Similarity of Entities

Based on Attributes



𝜖-graph
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𝜖 = 15



Nearest Neighbour (NN) Graph
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If we have k nearest neighbours for each node,

graph would be a kNN graph



Similarity-based graphs

• Each of these graphs lead to different problems

• Each of them have different solutions

• In our work, we focus on the 𝜖-similarity graph, a similarity graph 

whose edges are above the 𝜖 threshold
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Similarity Graph Construction Challenges 
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When we have to build similarity graphs many times

like in data streams for different snapshots or windows

D Attributes

Similarities should be computed 

for all pairs of entities

based on all attributes

𝑂(𝑛2𝑑)

Scalability



Main Objective

11

Proposing an efficient and effective method 

for similarity graph construction from high-dimensional data



Approaches

• Distributed solutions on MapReduce

• GPU-based solutions

• Efficient algorithmic optimizations

• Using inverted index

• Sampling/sketching based methods
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Our work



Inverted index
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Doc1: New Home Sales

Doc2: Home Sales In July

The Inverted Index

The Forward Index



Data Sketching 
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Summarizing data that might be thought of as a 

high dimensional vector, or matrix

Data sketches have mathematically 

proven error bounds



Problem Statement



Sparse Vector Representation of Matrix
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The Matrix

A1 A2 A3 A4 A5

R1 5 1 0 0 4

R2 0 0 3 0 0

R3 0 0 2 0 1

R4 3 2 0 0 4

R5 0 3 0 0 2

Its Sparse Vector Representation



Approximate Similarity Graph Construction 

• Given:

• a similarity threshold 𝜖
• a data matrix or its sparse vector representation

• the problem is:

• to build a similarity graph 𝐺(𝑉, 𝐸) where

• 𝑉 is the set of entities in the data matrix and 

• 𝐸 is the set of edges representing the similarity between two nodes and 

• the similarity is above the 𝜖 threshold
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Proposed Methodology



Overview of the Algorithm
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Step 1:

Data Sketching

Step 2:

Pairwise Similarity Computations

Step 3:

Similarity Graph 

Construction



Step 1: Data Sketching
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Main goal:

Start from a large dataset

Make it smaller

1 2 3 4 5 … … … D

1

2

3

4

5

The dataset

1

2

3

4

5

Dataset’s sketches

Sketch size: k << d



Step 1: Data Sketching

• Input

• Two different kinds of dataset

• A data matrix

• Sparse vector representation of a data matrix

• The sketch size (k)

• Output 

• Sketches of data
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Data Sketching From a Data Matrix
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1 2 3 4 5

1 5 1 0 0 4

2 0 0 3 0 0

3 0 0 2 0 1

4 3 2 0 0 4

5 0 3 0 0 2

Dataset: D

Random

Column Permutation

[1, 2, 3, 4, 5]

To

[4, 3, 1, 5, 2]

1 2 3 4 5

1 0 4 1 5 0

2 3 0 0 0 0

3 2 1 0 0 0

4 0 4 2 3 0

5 0 2 3 0 0

Permuted Dataset Taking the first k 

column ID/value pairs

with nonzero values

Sketches of D

Sketch size (K) = 2

Recording the highest 

column ID in each 

sketch

Sketch Max 

Column IDs



Data Sketching From Sparse Vector 

Representation 
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Original Dataset

Column Permutation

[1, 2, 3, 4, 5]

To

[4, 3, 1, 5, 2]

Permuted Dataset

Sorting

Sketch size (K) = 2

Sketch Max IDs Sketches



Data Sketching - Time Complexity

• From Data Matrix: 𝑂(𝑑) + 𝑂(𝑛𝑚)

• From Sparse Vector Rep.: 𝑂(𝑑) + 𝑂(𝑛 × (𝑓 + 𝑓. 𝑙𝑜𝑔(𝑓) + 𝑘))

• 𝑂(𝑛 × (𝑓 + 𝑓. 𝑙𝑜𝑔(𝑓) + 𝑘)) < 𝑂(𝑛𝑚)
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# entitiesdimensionality

average position of 𝑘𝑡ℎ nonzero entry

average number of 

nonzero entries
sketch size



Step 2: Pairwise similarity computations
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Input: Data sketches

Output:  Similarities of all pairs of sketches

Our similarity measure is the inner-product



Structure of An Inverted Index

26

Sketches of D (k = 2) The Inverted Index



Pairwise similarity computations
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Sketches

Current Sketch 

Iterating Over

Inverted Index
Similar Sketches of Sk[4]



Effective sample size (𝑑𝑠) Computation
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Our similarity measure is the inner-product

Original data

Sketches

Rows of original dataset
Dimensionality

Sketches



Three approaches for 𝑑𝑆 computation
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Online Offline via Sorting
Offline via Matrix 

Precomputation

Sk[4] = {(2, 4), (3, 

2)}

Sorting sketches based 

on their max ID
𝑑𝑠 pairwise matrix

Preprocessing



Extra Space Needed for 𝑑𝑠 computations

• Online: 𝑂(1)

• Offline via sorting: 𝑂(𝑛)

• Offline via matrix precomputations: 𝑂(𝑛2)
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Pairwise Similarity Computation - Time Complexity

• Online: 𝑂(𝑐 × 𝑛 × 𝑘 × 𝑙)

• Offline via sorting: 𝑂(𝑐′ × 𝑛 × 𝑘 × 𝑙) + 𝑂(𝑛. 𝑙𝑜𝑔(𝑛))

• Offline via matrix precomputation: 𝑂(𝑐′′ × 𝑛 × 𝑘 × 𝑙) + 𝑂(𝑛2)
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# entities sketch size

# operations 

in the inner-most loop

𝑐′, 𝑐′′ < 𝑐



Step 3: Similarity Graph Construction
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Similarities of all pairs of entities

NN Search

Clustering

Collaborative Filtering

Link Prediction



Evaluation



Evaluation Scenarios

• Runtime Cost

• Accuracy

• Effectiveness
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Datasets
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Evaluated methods

• Original

• Normal Random Projection (NRP)

• Sk_naive

• Sk_online

• Sk_offline_sorted

• Sk_offline_matrix
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Our proposed methods

Data sketching 

without using an inverted index

sim. operations on the vectors 

of the original dataset



Runtime vs. sample size
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62 ×

Sketching-based methods: sketch size (k)

NRP: # dimensions in the projected dataset



Accuracy vs. sample size
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The lower, 

the better

Relative error for each pair (𝑖, 𝑗): 

𝑒𝑖𝑗 =
|𝑠𝑖𝑗

𝑠𝑎𝑚𝑝𝑙𝑒
− 𝑠𝑖𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
|

𝑠𝑖𝑗
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙



Effectiveness
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Original Graph Approximated Graph

v



Effectiveness

• K-nearest neighbours

• Node centrality values

• show importance of the nodes in the graph

• we work with eigenvector centrality

• Node rankings

• Based on the centrality of the nodes in the graph, we have a ranking for them

• We use Spearman’s ranking correlation coefficient (𝜌)
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Effectiveness - kNN
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The higher, 

the better

kNN recall:

How many of the k real nearest neighbours of each node we are returning

Precision and recall are the same in this case



Effectiveness - Centrality Errors
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The lower, 

the better

Centrality error for node 𝑖: 

𝑒𝑖 =
|𝑐𝑖

𝑠𝑎𝑚𝑝𝑙𝑒
− 𝑐𝑖

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
|

𝑐𝑖
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙



Effectiveness - Node Ranking Correlations
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The higher, 

the better

We use Spearman’s ranking correlation coefficient: 

A measure to see how well node rankings of the approximated graphs are compared to the original. 



Conclusion & Future Work



Summary of contributions
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efficient, accurate and effective way of 

construction of similarity graphs

𝑂(𝑛2𝑑)

Inverted Index

Data Sketching     

building similarity graphs

from high-dimensional data



Summary of contributions
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three algorithms each of which has a 

trade-off for speed and space

Effective on different graph analysis tasks

v

Time efficient

Accurate



Limitations
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Scalability for very large datasets

Storage overhead for the inverted index + maintenance cost



Future Work
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Working with multi-dimensional arrays instead of matrix

Making the methods distributed

to increase scalability

Providing theoretical bounds

for the quality of graph downstream task results



Thank You!



Appendix



Online Pairwise Similarities
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Offline Pairwise Similarities via Sorting
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Offline Pairwise Similarities via Matrix Precomputations
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Bloom filters for set summarization

• Set membership

• The item has definitely not been stored, or the item has probably been stored

• Having k hash functions and map each item with each of them

• Set all the corresponding bits to 1. If all were one for an item, say it is a member, 

if any of them were 0, say it is not a member
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Counting with count-min sketch

• Counts the number of items of a certain type

• Sketch: an array of counters, and a set of hash functions which map items into 

the array

• Count of the desired item is to take the smallest of counters in each row as our 

estimate.
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PCA vs. RP

• PCA

• Extracting a small number of directions from the data which captures most of variation of 

dataset

• Finding the direction requires finding eigenvectors of the covariance matrix

• Random projection

• Rather than finding “the best” directions, it suffices to use random vectors. 

• Picking a moderate number of random directions captures a comparable amount of variation, 

while requiring much less computation.
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Substantial amount of work


