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Introduction
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Trajectory/Mobility Data

Vast Amounts of Trajectory/Mobility Data

Trajectory: A Sequence of (Spatiotemporal) Points
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Trajectory-related Problems

trajectory similarity

trajectory clustering

trajectory imputation

pedestrian crowd behavior

…
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Problem of Interest: Trajectory Prediction

Predict future trajectory
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Plethora of Applications

Ride-sharing services Next POI recommendation

Autonomous vehicles Traffic flow optimization



Problem Statement
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Trajectory Prediction

Let

● an observation area M

● an observation period [0, W]

● a set of objects N and their history trajectories Sl

Input: Given 

● a moving object i in N

● a partial trajectory T = <pi1 , pi2 , … , pil>

● a prediction horizon k > 0

Output: We want to

predict the next k spatiotemporal points <pil+1 , pil+2 , … , pil+k> of the partial trajectory T
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Overview
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‣ Higher-order Mobility Flow Data

‣ (Revisit) Problem Statement

‣ Existing Works

‣ Methodology

‣ Evaluation

‣ Conclusions
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Higher-order Mobility Flow Data
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Challenges of Working with Trajectory Data

Data Sparsity

Limited data

Model Incompatibility

Not compatible with well-known 
machine learning models

80% of the data is generated 
by 20% of the users

Imbalanced Data

Low accuracy and 
completeness

Data Quality
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Map Tessellation
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Why hexagons?

● More circular that fully tessellates the space
● Same distance to all adjacent neighbours

Low resolution High resolution
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Trajectories: Sequences of Hexagons

h1 h2

…
h22

h21…

Trajectory: h1, h2, h3 … h20, h21, h22
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Treat Trajectories as Language Statement
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Treat Trajectories as Language Statements

Advantages:

● Reduced data sparsity

● More compatible with well-known ML models (e.g., sequence models, LLMs)

Trajectory: 

Sentence: I like to learn English

Hexagons represent ‘tokens’ & trajectories represent ‘sentences’



Point2Hex: Overview of the Pipeline

GPS Traces or POI 
Check-Ins

(input)

Linestring of 
Trajectories

(Map-matching)

Map Tessellation with 
Trajectories

(Hexagon-shaped cells)

Intersection of Linestrings and Polygons
(Computational Geometry)

Higher-order Mobility Flow
(Output)
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Code of Point2Hex (Data Generator)
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The code to generate your HO dataset from raw GPS points

Check it on
GitHub

https://github.com/alifa98/point2hex


Datasets: Higher-order Mobility Flow
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Dataset Trajectories Time Period Resolutions

HO-T-Drive 65,117 02/02/08 - 02/08/08 {6,…,10}

HO-Porto 1,668,859 07/01/13 - 06/30/14 {6,…,10}

HO-Rome 5,873 02/01/14 - 03/02/14 {6,…,10}

HO-GeoLife 2,100 04/01/07 - 10/31/11 {6,…,10}

HO-FourSquare-NYC 49,983 04/12/12 - 02/16/13 {6,…,10}

HO-FourSquare-TKY 117,593 04/12/12 - 02/16/13 {6,…,10}

HO-NYC-Taxi 2,062,554 01/01/16 - 06/30/16 {6,…,10}

Download from 
Zenodo

https://doi.org/10.5281/zenodo.7879595


(Revisited) Problem Statement
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Trajectory Prediction (Revisited)

Let

● an observation area M

● an observation period [0, W]

● a set of objects N and their history trajectories Sl

Input: Given 

● a moving object i in N

● a partial trajectory T = <bi1 , bi2 , … , bil>

● a prediction horizon k > 0

Output: We want to

predict the next k blocks <bil+1 , bil+2 , … , bil+k> of the partial trajectory T
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Contributions
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● Point2Hex: GPS trajectories to HO mobility flow data

● Propose to leverage deep generative models for trajectory prediction

● Propose a transformer-based framework TrajLearn

● TrajLearn outperforms the state-of-the-art baselines

● Make the source code publicly available to facilitate the reproducibility 



Existing works
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Literature Overview
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Computer 

Vision

Trajectory 

Analysis

Macroscopic 

Analysis

Taxonomy

Microscopic 

Analysis

Statistical 

Methods

Deep Learning 

Methods



General Related Work

Computer Vision Domain

● Predict future path or movement of objects in a scene (a small scale) over time

Out of the scope: Rely on camera-generated video frames

Macroscopic Trajectory Analysis

● Focus on high-level (city-level or region-level) mobility predictions (instead of individual level)

Different focus: crowd flow prediction [Lin et al. AAAI’19], taxi demand prediction [Yao et al. AAAI’18]
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Statistical Methods

Matrix Factorization

● Decompose matrix into matrices that representing object preferences and location attributes

Examples: Fused MF [Cheng et al. AAAI’12], GeoMF [Lian et al. SIGKDD’14], Rank-geofm [Li et al. SIGIR’15]

Markov Chain

● Model the sequence of visits as a chain of states, governed by transition probabilities

Examples: HMM [Mathew et al. UbiComp’12], FPMC-LR [Cheng et al. IJCAI’13], Semantics-aware HMM [Shi et al. TKDE’19]

Limitations

● Limited scalability

● Often rely on assumptions about the data distribution

● Feature engineering is required
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Deep Learning Methods - 1/2

RNN/LSTM/GRU

● Use recurrent neural networks to process sequential data

Examples: ST-RNN [Liu et al. AAAI’16], HST-LSTM [Kong et al. IJCAI’18], DeepTrip [Zhang et al. IEEE trans Intell Transp Syst’23]

Attention Mechanism

● Allow models to focus on different parts of the input sequence when producing the output

Examples: DeepMove [Feng et al. WWW’18], GeoSAN [Lian et al. KDD’20], STAN [Luo et al. WWW’21]

Limitations

● Mostly designed for the POI prediction

● Data sparsity and imprecision
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Deep Learning Methods - 2/2

Specialized Works

● DeepUrbanMomentum [Jiang et al. AAAI’18]

○ Limitations: Need other information

● Continuous Trajectory Prediction [Sadri et al. IMWUT’18]

○ Limitations: Heavily rely on a single historical record of an individual

● From movement purpose to mobility prediction [Amichi et al. SIGSPATIAL’21]

○ Limitations: Need to add movement semantic to trajectories
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Methodology
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Architecture Overview
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Beam Search



Input of Transformer

3
0

The input to the transformer 

Where 
:  Higher-order mobility flow

: Block embedding matrix 

: Position embedding matrix



Hidden State Computation

3
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The hidden state of each transformer layer

Where LayerNorm(): Layer normalization

Self-Attention() : Masked multi-head self-attention operation

FeedForward() : Position-wise feed-forward network 



Activation Function
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Gaussian Error Linear Unit (GELU)

Where and implemented as 



Next Block/Hexagon Prediction

3
3

Based on the probabilities of all possible next blocks



Model Training

<EOT> in Trajectories

● Temporal cutoff: time threshold

Gap in GPS data beyond this threshold indicates the end of the trajectory

● Spatial cutoff: distance threshold

Distance between consecutive GPS points is greater than this threshold
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Model Training
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Teaching Forcing



Beam Search with Constraints

A heuristic search algorithm that explores the most promising trajectory paths

● Initialization

● Beam expansion

● Beam pruning

● Termination
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Beam Expansion

3
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The probability at each step is updated based on their cumulative probabilities



Evaluation
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Experimental Scenarios
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RQ 1) Accuracy

● What is the accuracy performance of our method against baselines?

RQ 2) Sensitivity Analysis

● How does the performance vary with different input trajectory lengths and 

prediction lengths?

RQ 3) Map Resolution Analysis

● How does the performance vary with different tessellation levels?

RQ 4) Ablation Study

● How does beam search with the constraints impact the performance?



Datasets
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Dataset Objects Trajectories Time Period Resolutions

HO-Rome 315 5,873 02/01/14 -
03/02/14 {7, 8, 9}

HO-Porto 442 1,668,859 07/01/13 -
06/30/14 {7, 8, 9}

HO-GeoLife 57 2,100 04/01/07 -
10/31/11 {7, 8, 9}

Timely ordered trajectory data set is split into:

70% Training, 10 % Validation, 20% Testing



Experimental Setup
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Computational Environment

● NVIDIA RTX A6000 graphics card and 320GB of memory

● Implementation: Python 3, PyTorch 1.13 

Map Tessellation and Resolutions

● H3 geo-indexing system

Deep Generative Model

● Based on the GPT-2 LLM architecture

Training Parameters

● AdamW optimizer with learning rate = 5 × 10−3

● Batch size = 64

● Dropout rate = 0.1



Baselines
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Statistical Methods

● MC

Deep Learning Methods

● LSTM

● GRU

● LSTM-ATTN

● DeepMove

Our Method

● TrajLearn



Metrics
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Accuracy@N [↑]

● Measure the proportion of true samples included in the predictions

BLEU Score [↑]

● Measure how many n-grams of the predicted sequence match with the n-grams 

in the actual sequence



RQ 1) Model Accuracy Performance
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RQ 2) Parameter Sensitivity Analysis
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RQ 3) Map Resolution Analysis
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7: star

8: circle

9: triangle 



RQ 4) Ablation Study
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Embedding vector size # Attention heads # Transformer layers



Conclusions
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Summary
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point2hex: software 
and datasets

GenAI for 
trajectory prediction

TrajLearn Beam search



Limitations
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● Discretization and precision: 

○ Too coarse → miss important details

○ Too fine → increased computational complexity

● Data volume

○ May end up with a large amount of data → strain computational resources 

and require efficient data storage



Future Work - Interaction Prediction
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Can we use trajectory prediction models for predicting mobility network interactions?



Future Work - Trajectory Foundation Model
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Trajectory similarity Trajectory imputation

Can we develop trajectory foundation models for addressing many trajectory-related tasks?



Papers Published/Submitted
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● (Big Data Research) T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, M. Papagelis, “Epidemic Spreading in 

Trajectory Networks”, Vol. 27, 100275, pp 1-15, 2022

● (ACM SIGSPATIAL) T. Pechlivanoglou, G. Alix, N. Yanin, J. Li, F. Heidari, and M. Papagelis, “Microscopic 

modeling of spatiotemporal epidemic dynamics”, pp 11–21, 2022
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Recommendation System for Mitigating the Risk of Infection during Epidemics”, pp 292-295, 2022

● (ACM SIGSPATIAL) A. Faraji*, J. Li*, G. Alix, M. Alsaeed, N. Yanin, A. Nadiri, and M. Papagelis, “Point2Hex: 
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Questions?

Thank you!
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