Trajectory Prediction Learning Using Deep Generative Models

MSc. Thesis of Jing Li Department of Electrical Engineering and Computer Science

Dec 19, 2023

YORK U

M

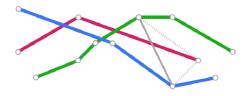
Introduction

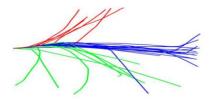
Trajectory/Mobility Data

Trajectory: A Sequence of (Spatiotemporal) Points

Vast Amounts of Trajectory/Mobility Data

Trajectory-related Problems

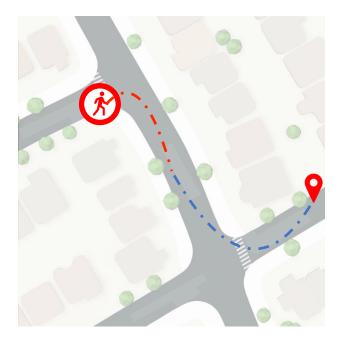




trajectory similarity trajectory clustering trajectory imputation pedestrian crowd behavior

. . .

Problem of Interest: Trajectory Prediction



Predict future trajectory

Plethora of Applications

Ride-sharing services

Traffic flow optimization

Problem Statement

Trajectory Prediction

Let

- an observation area M
- an observation period [0, W]
- a set of objects **N** and their history trajectories **S**'

Input: Given

- a moving object *i* in **N**
- a partial trajectory $T = \langle p_{i1}, p_{i2}, \dots, p_i \rangle$
- a prediction horizon k > 0

Output: We want to

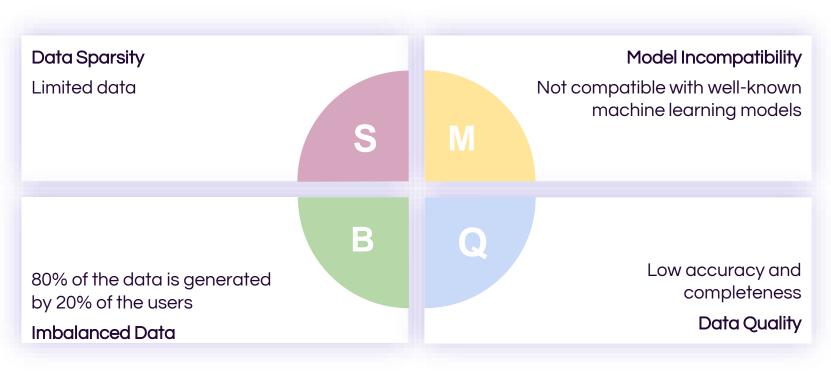
predict the next **k** spatiotemporal points $\langle p_{i|+1}, p_{i|+2}, \dots, p_{i|+k} \rangle$ of the partial trajectory **T**

Overview

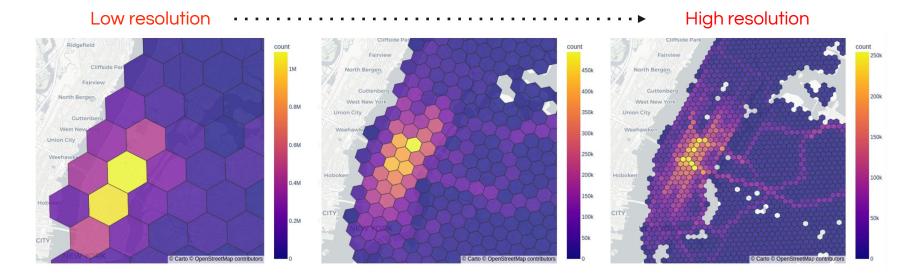
- Higher-order Mobility Flow Data
- (Revisit) Problem Statement
- Existing Works
- Methodology
- Evaluation
- Conclusions

Higher-order Mobility Flow Data

Challenges of Working with Trajectory Data



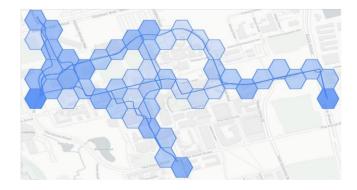
Map Tessellation

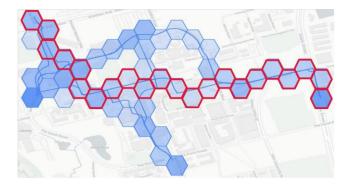


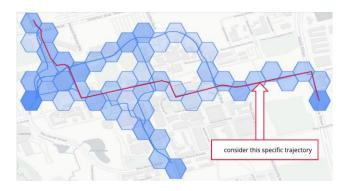
Why hexagons?

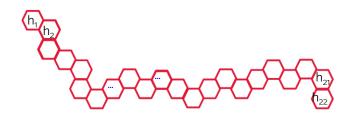
- More circular that fully tessellates the space
- Same distance to all adjacent neighbours

Trajectories: Sequences of Hexagons









 $\textbf{Trajectory:} \ h_1, \ h_2, \ h_3 \dots \ h_{20}, \ h_{21}, \ h_{22}$

Treat Trajectories as Language Statement

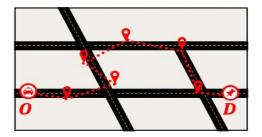
Treat Trajectories as Language Statements

Hexagons represent 'tokens' & trajectories represent 'sentences'

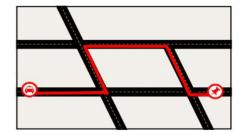
Advantages:

- Reduced data sparsity
- More compatible with well-known ML models (e.g., sequence models, LLMs)

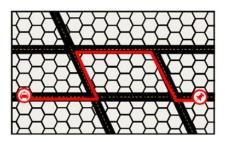
Point2Hex: Overview of the Pipeline



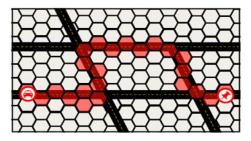
GPS Traces or POI Check-Ins (input)



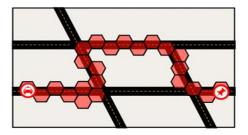
Linestring of Trajectories (**Map-matching**)



Map Tessellation with Trajectories (**Hexagon-shaped cells**)



Intersection of Linestrings and Polygons (Computational Geometry)



Higher-order Mobility Flow (Output)

Code of Point2Hex (Data Generator)

The code to generate your HO dataset from raw GPS points

0	iliellen Update caltime.py	4a67768 on Sep 28	 133 commit
	img	Added new pipeline image	5 months ag
	lib	feat: generate hexagons with multiple threads, optimize the RAM $\boldsymbol{u}_{\rm sm}$	5 months ag
	preprocess	Update preprocess.py	6 months ag
	scripts	feat: scripts to convert each dataset to the desired format.	5 months ag
in .	tutorial	add update note	3 months ag
۵	gitignore	chore; add .vscode to gitignore	6 months ag
۵	README.md	docs: enhance grammar and correct the docs misspellings	5 months ag
D	caltime.py	Update caltime.py	2 months ag
۵	environment.yml	chore: add swifter to dependency list	5 months ag
۵	loc2point_run.py	fix: fix the split point bug	5 months ag
D	matching_run.py	fix: fix the problem with output which duplicating each row, reason \ldots	5 months ag
۵	plot_run.py	fix: change zoom level input type from int to float when plotting.	5 months ag
D	point2hex_run.py	fix: remove running by python features for cocurrency because it m	5 months ag

Point to Hexagon @

This is an implementation of how to convert trajectory datasets to higher-order trajectory datasets. We provide the code and datasets used in our paper: Point2Hex: Higher-order Mobility Flow Data and Resour

Datasets: Higher-order Mobility Flow

Dataset	Trajectories	Time Period	Resolutions
HO-T-Drive	65,117	02/02/08 - 02/08/08	{6,,10}
HO-Porto	1,668,859	07/01/13 - 06/30/14	{6,,10}
HO-Rome	5,873	02/01/14 - 03/02/14	{6,,10}
HO-GeoLife	2,100	04/01/07 - 10/31/11	{6,,10}
HO-FourSquare-NYC	49,983	04/12/12 - 02/16/13	{6,,10}
HO-FourSquare-TKY	117,593	04/12/12 - 02/16/13	{6,,10}
HO-NYC-Taxi	2,062,554	01/01/16 - 06/30/16	{6,,10}

(Revisited) Problem Statement

Trajectory Prediction (Revisited)

Let

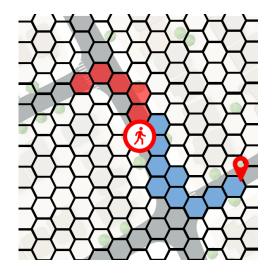
- an observation area M
- an observation period [0, W]
- a set of objects N and their history trajectories S'

Input: Given

- a moving object / in N
- a partial trajectory $T = \langle b_{i1}, b_{i2}, \dots, b_{i} \rangle$
- a prediction horizon k > 0

Output: We want to

predict the next **k** blocks $\langle b_{i|+1}, b_{i|+2}, \dots, b_{i|+k} \rangle$ of the partial trajectory **T**

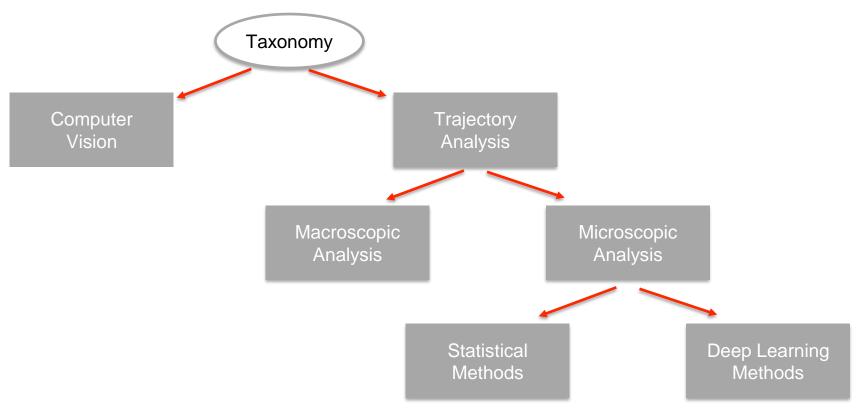


Contributions

- **Point2Hex**: GPS trajectories to HO mobility flow data
- Propose to leverage deep generative models for trajectory prediction
- Propose a transformer-based framework TrajLearn
- TrajLearn outperforms the state-of-the-art baselines
- Make the source code publicly available to facilitate the reproducibility

Existing works

Literature Overview



General Related Work

Computer Vision Domain

• Predict future path or movement of objects in a scene (a small scale) over time

Out of the scope: Rely on camera-generated video frames

Macroscopic Trajectory Analysis

• Focus on high-level (city-level or region-level) mobility predictions (instead of individual level)

Different focus: crowd flow prediction [Lin et al. AAAI'19], taxi demand prediction [Yao et al. AAAI'18]

Statistical Methods

Matrix Factorization

• Decompose matrix into matrices that representing object preferences and location attributes

Examples: Fused MF [Cheng et al. AAAI'12], GeoMF [Lian et al. SIGKDD'14], Rank-geofm [Li et al. SIGIR'15]

Markov Chain

• Model the sequence of visits as a chain of states, governed by transition probabilities

Examples: HMM [Mathew et al. UbiComp'12], FPMC-LR [Cheng et al. IJCAI'13], Semantics-aware HMM [Shi et al. TKDE'19]

Limitations

- Limited scalability
- Often rely on assumptions about the data distribution
- Feature engineering is required

Deep Learning Methods - 1/2

RNN/LSTM/GRU

• Use recurrent neural networks to process sequential data

Examples: ST-RNN [Liu et al. AAAI'16], HST-LSTM [Kong et al. IJCAI'18], DeepTrip [Zhang et al. IEEE trans Intell Transp Syst'23]

Attention Mechanism

• Allow models to focus on different parts of the input sequence when producing the output

Examples: DeepMove [Feng et al. WWW'18], GeoSAN [Lian et al. KDD'20], STAN [Luo et al. WWW'21]

Limitations

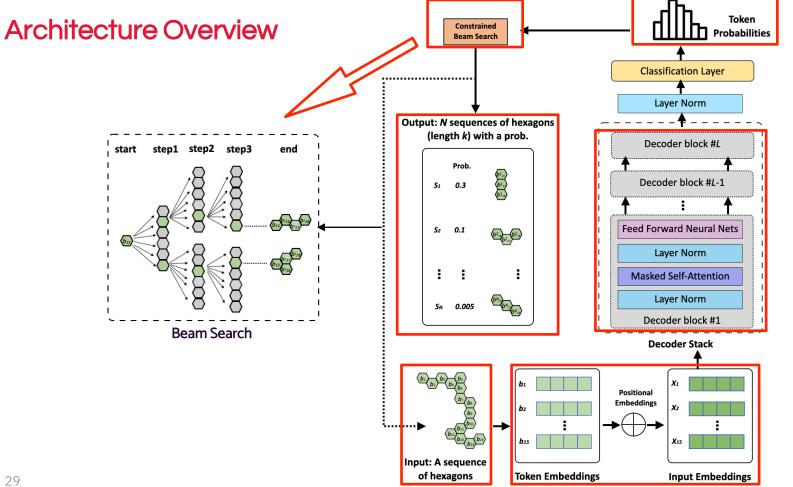
- Mostly designed for the POI prediction
- Data sparsity and imprecision

Deep Learning Methods - 2/2

Specialized Works

- DeepUrbanMomentum [Jiang et al. AAAI'18]
 - Limitations: Need other information
- Continuous Trajectory Prediction [Sadri et al. IMWUT'18]
 - Limitations: Heavily rely on a single historical record of an individual
- From movement purpose to mobility prediction [Amichi et al. SIGSPATIAL'21]
 - Limitations: Need to add movement semantic to trajectories

Methodology



YORK

Input of Transformer

The input to the transformer

$$h_0 = BW_e + W_p$$

Where

- : Higher-order mobility flow
- : Block embedding matrix
- : Position embedding matrix

Hidden State Computation

The hidden state of each transformer layer

$$\begin{aligned} h'_{j} &= h_{j-1} + Self - Attention(LayerNorm(h_{j-1})) \\ h_{j} &= h'_{j} + FeedForward(LayerNorm(h'_{j})) \end{aligned}$$

Where LayerNorm(): Layer normalization Self-Attention() : Masked multi-head self-attention operation FeedForward() : Position-wise feed-forward network

Activation Function

Gaussian Error Linear Unit (GELU)

 $GELU(x) = x \cdot P(X \le x)$

Where and implemented as

$$0.5x\left(1+\tanh\left(\sqrt{\frac{2}{\pi}}\left(x+0.044715x^3\right)\right)\right)$$

Next Block/Hexagon Prediction

Based on the probabilities of all possible next blocks

 $P(b_{l+1}|B) = \text{softmax}(\text{FeedForward}(\text{LayerNorm}(h_L)))$

<EOT> in Trajectories

• Temporal cutoff: time threshold

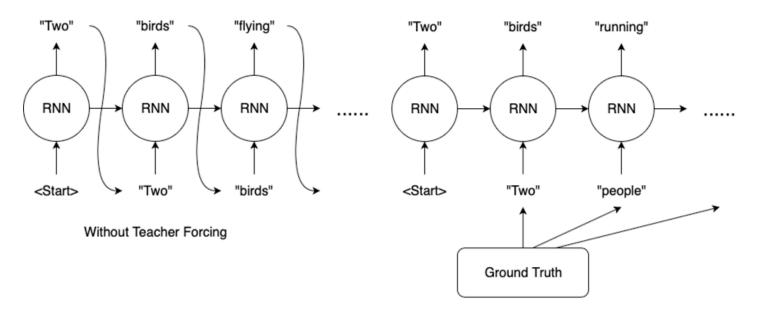
Gap in GPS data beyond this threshold indicates the end of the trajectory

• Spatial cutoff: distance threshold

Distance between consecutive GPS points is greater than this threshold

Model Training

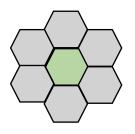
Teaching Forcing

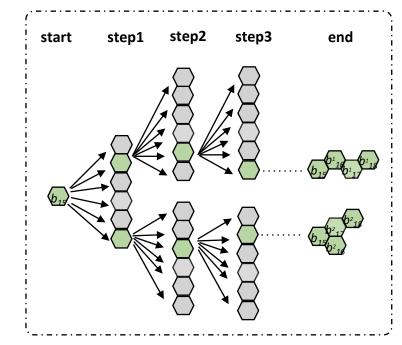


Beam Search with Constraints

A heuristic search algorithm that explores the most promising trajectory paths

- Initialization
- Beam expansion
- Beam pruning
- Termination





Beam Expansion

The probability at each step is updated based on their cumulative probabilities

$$P(b_{i_1}...b_{i_n}) = P(b_{i_1}...b_{i_{n-1}}) \times P(b_{i_n}|b_{i_1}...b_{i_{n-1}})$$

Evaluation

Experimental Scenarios

RQ 1) Accuracy

• What is the accuracy performance of our method against baselines?

RQ 2) Sensitivity Analysis

• How does the performance vary with different input trajectory lengths and prediction lengths?

RQ 3) Map Resolution Analysis

• How does the performance vary with different tessellation levels?

RQ 4) Ablation Study

• How does beam search with the constraints impact the performance?

Datasets

Timely ordered trajectory data set is split into:

70% Training, 10 % Validation, 20% Testing

Dataset	Objects	Trajectories	Time Period	Resolutions
HO-Rome	315	5,873	02/01/14 - 03/02/14	{7, 8, 9}
HO-Porto	442	1,668,859	07/01/13 - 06/30/14	{7, 8, 9}
HO-GeoLife	57	2,100	04/01/07 - 10/31/11	{7, 8, 9}

Experimental Setup

Computational Environment

- NVIDIA RTX A6000 graphics card and 320GB of memory
- Implementation: Python 3, PyTorch 1.13

Map Tessellation and Resolutions

• H3 geo-indexing system

Deep Generative Model

• Based on the GPT-2 LLM architecture

Training Parameters

- AdamW optimizer with learning rate = 5×10^{-3}
- Batch size = 64
- Dropout rate = 0.1

Baselines

Statistical Methods

• MC

Deep Learning Methods

- LSTM
- GRU
- LSTM-ATTN
- DeepMove

Our Method

• TrajLearn

Metrics

Accuracy@N [1]

• Measure the proportion of true samples included in the predictions

Accuracy@N =
$$\frac{\left|\{s \mid s \in P, true(s) \in Top_n(s)\}\right|}{|P|}$$

BLEU Score [1]

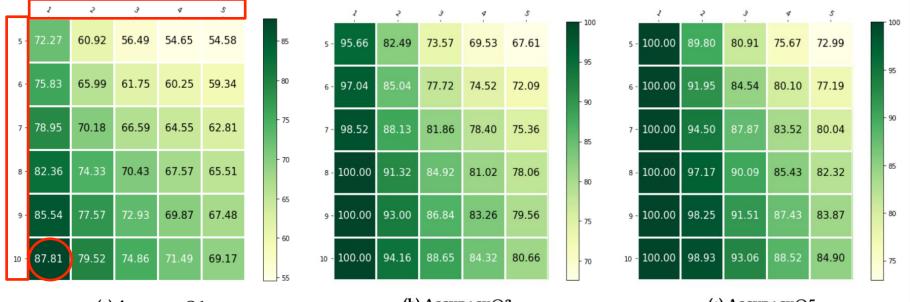
• Measure how many n-grams of the predicted sequence match with the n-grams in the actual sequence

$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right) \qquad BP = \begin{cases} 1 & \text{if } c > r\\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

RQ 1) Model Accuracy Performance

			RESOLUTION 7		RESOLUTION 8			RESOLUTION 9					
DATASET	MODEL	Acc@1	Acc@3	Acc@5	BLEU	Acc@1	Acc@3	Acc@5	BLEU	Acc@1	Acc@3	Acc@5	BLEU
Но-Рокто	MC LSTM LSTM-ATTN GRU DEEPMOVE	0.3284 <u>0.5970</u> 0.1113 0.5532 OOM	0.4586 <u>0.6318</u> 0.1923 0.5877 OOM	0.4908 <u>0.6400</u> 0.2065 0.5957 OOM	0.2444 <u>0.6302</u> 0.2035 0.5866 OOM	0.2478 <u>0.4579</u> 0.1112 0.3154 OOM	0.3354 <u>0.5087</u> 0.1705 0.3542 OOM	0.3893 <u>0.5172</u> 0.1929 0.3606 OOM	0.2359 <u>0.5021</u> 0.2065 0.3530 OOM	OOM <u>0.5044</u> 0.2716 0.3649 OOM	OOM <u>0.5588</u> 0.3682 0.4086 OOM	OOM <u>0.5643</u> 0.4011 0.4144 OOM	OOM <u>0.5479</u> 0.3842 0.4058 OOM
	TRAJLEARN (CURS) Improvement (%)	0.6917 15.86 %	0.8066 27.65 %	0.8490 32.64 %	0.7691 22.04 %	0.5135 12.14 %	0.6931 36.25 %	0.7590 46.75 %	0.5918 17.86 %	0.5772 14.43 %	0.8022 43.56 %	0.8741 54.90 %	0.6379 16.43 %
Ho-Rome	MC LSTM LSTM-ATTN GRU DEEPMOVE	$\begin{array}{c} 0.2088 \\ 0.2820 \\ 0.1079 \\ 0.2966 \\ \underline{0.3406} \end{array}$	0.3982 0.3138 0.1522 0.3298 0.4969	0.4690 0.3227 0.1850 0.3385 0.5793	$\begin{array}{c} 0.0685 \\ 0.3179 \\ 0.1819 \\ \underline{0.3335} \\ 0.2821 \end{array}$	$\begin{array}{c} 0.2374 \\ 0.3932 \\ 0.2264 \\ \underline{0.3997} \\ 0.3860 \end{array}$	$\begin{array}{c} 0.3811 \\ 0.4340 \\ 0.2845 \\ 0.4400 \\ \underline{0.5036} \end{array}$	$\begin{array}{c} 0.4590 \\ 0.4407 \\ 0.3055 \\ 0.4468 \\ \underline{0.5657} \end{array}$	$\begin{array}{c} 0.1504 \\ 0.4315 \\ 0.2998 \\ \underline{0.4379} \\ 0.3286 \end{array}$	0.2100 0.4617 0.2890 <u>0.4638</u> OOM	0.3157 0.5144 0.3704 <u>0.5158</u> OOM	0.3564 0.5186 0.3892 <u>0.5199</u> OOM	0.1686 0.5036 0.3735 <u>0.5052</u> OOM
	TRAJLEARN (OURS) Improvement (%)	0.3746 9.98 %	$rac{0.4740}{-4.61}$ %	$\frac{0.5167}{-10.81}$ %	0.4215 26.38 %	0.4974 24.44 %	0.6428 27.64 %	0.6996 23.67 %	0.5434 24.09 %	0.5671 22.27 %	0.7657 48.45 %	0.8431 62.17 %	0.6138 21.49 %
Ho-GEoLIFE	MC LSTM LSTM-ATTN GRU DEEPMOVE	$\begin{array}{c} 0.2153 \\ 0.5900 \\ 0.4944 \\ \underline{0.6229} \\ 0.5295 \end{array}$	$\begin{array}{c} 0.4917 \\ 0.6086 \\ 0.5559 \\ 0.6435 \\ \underline{0.6742} \end{array}$	$\begin{array}{c} 0.6050 \\ 0.6114 \\ 0.5621 \\ 0.6465 \\ \underline{0.7370} \end{array}$	$\begin{array}{c} 0.1113 \\ 0.6117 \\ 0.5478 \\ \underline{0.6439} \\ 0.3653 \end{array}$	$\begin{array}{c} 0.2149 \\ \underline{0.5616} \\ 0.3496 \\ 0.5514 \\ 0.4529 \end{array}$	$\begin{array}{c} 0.3951 \\ \underline{0.5836} \\ 0.4148 \\ 0.5742 \\ 0.5699 \end{array}$	$\begin{array}{c} 0.4897 \\ 0.5864 \\ 0.4249 \\ 0.5779 \\ \underline{0.6374} \end{array}$	$\begin{array}{c} 0.0866\\ \underline{0.5838}\\ 0.4101\\ 0.5732\\ 0.3374 \end{array}$	0.2063 <u>0.5725</u> 0.2905 0.5799 OOM	0.3314 0.6057 0.3664 <u>0.6132</u> OOM	0.3859 0.6085 0.3959 <u>0.6158</u> OOM	0.0848 <u>0.6039</u> 0.3872 0.6111 OOM
	TRAJLEARN (OURS) Improvement (%)	0.7481 20.10 %	0.8247 22.32 %	0.8635 17.16 %	0.7785 20.90 %	0.6249 11.27 %	0.7404 26.87 %	0.7823 22.73 %	0.6558 12.33 %	$0.5664 \\ -2.32 \ \%$	0.6781 10.58 %	0.7194 16.82 %	0.6004 -1.77 %

RQ 2) Parameter Sensitivity Analysis

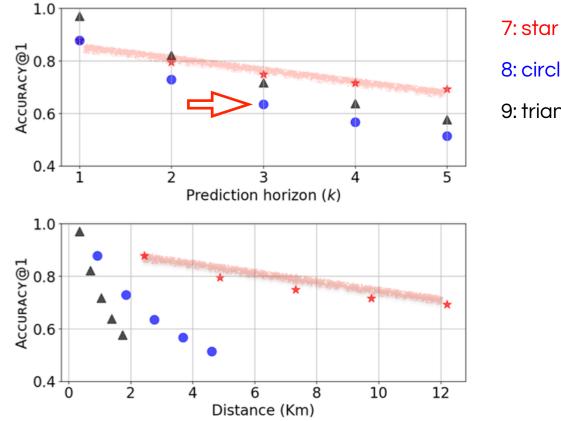


(a) ACCURACY@1

(b) ACCURACY@3

(c) ACCURACY@5

RQ 3) Map Resolution Analysis

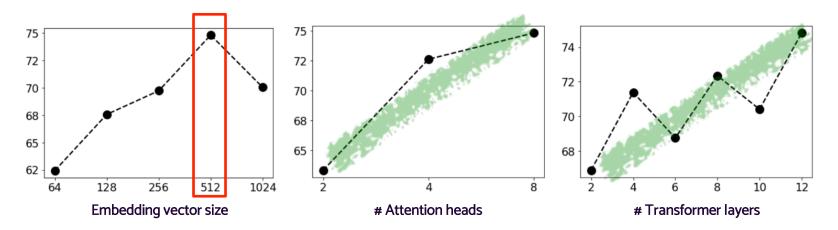


8: circle 9: triangle

YORK

RQ 4) Ablation Study

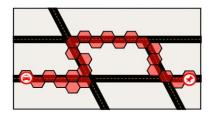
DATASET	ACCURACY@1	CHANGE
Ho-Porto@7	0.6844	-1.07%
Ho-Porto@8	0.4992	-2.86%
Ho-Porto@9	0.5672	-1.76%



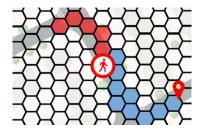
YORK

Conclusions

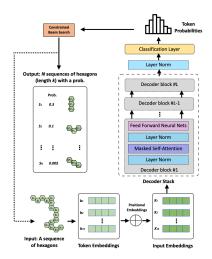
Summary



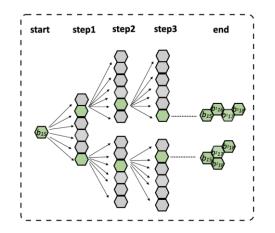
point2hex: software and datasets



GenAl for trajectory prediction



TrajLearn



Beam search

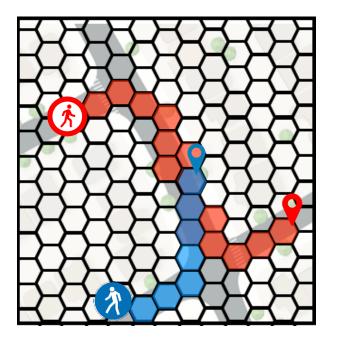
Limitations

- Discretization and precision:
 - \circ Too coarse \rightarrow miss important details
 - \circ Too fine \rightarrow increased computational complexity
- Data volume
 - \circ May end up with a large amount of data \rightarrow strain computational resources

and require efficient data storage

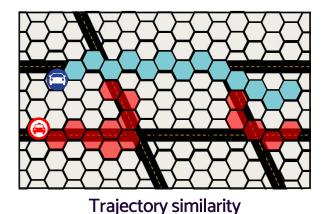
Future Work - Interaction Prediction

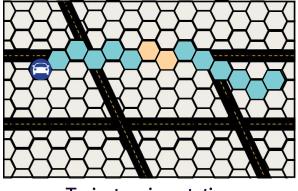
Can we use trajectory prediction models for predicting mobility network interactions?



Future Work - Trajectory Foundation Model

Can we develop trajectory foundation models for addressing many trajectory-related tasks?





Trajectory imputation

Papers Published/Submitted

- (Big Data Research) T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, M. Papagelis, "Epidemic Spreading in Trajectory Networks", Vol. 27, 100275, pp 1-15, 2022
- (ACM SIGSPATIAL) T. Pechlivanoglou, G. Alix, N. Yanin, J. Li, F. Heidari, and M. Papagelis, "Microscopic modeling of spatiotemporal epidemic dynamics", pp 11–21, 2022
- (IEEE MDM) G. Alix, N. Yanin, T. Pechlivanoglou, J. Li, F. Heidari and M. Papagelis, "A Mobility-based Recommendation System for Mitigating the Risk of Infection during Epidemics", pp 292-295, 2022
- (ACM SIGSPATIAL) A. Faraji*, J. Li*, G. Alix, M. Alsaeed, N. Yanin, A. Nadiri, and M. Papagelis, "Point2Hex: Higherorder Mobility Flow Data and Resources", pp 1-12, 2023
- (Submitted) A. Nadiri, A. Faraji, J. Li, and M. Papagelis, "TrajLearn: Leveraging Generative Models for Trajectory Prediction Learning," pp 1-10

Thank you!

Questions?

