
Batch Query Memory Prediction Using

Deep Query

Template Representations

NICOLAS ANDRES JARAMILLO DURAN

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

GRADUATE PROGRAM IN ELECTRICAL AND

COMPUTER ENGINEERING

YORK UNIVERSITY

TORONTO, ONTARIO

MAY 2023

© NICOLAS ANDRES JARAMILLO DURAN, 2023

Abstract

Resource demand prediction is vital to many database optimization tasks such as ad-

mission control, database monitoring, query scheduling, resource management, and

more [1], [2]. Current techniques are based on statistical models for each operator

in the current processing query’s plan. Resource demands focus on estimating the

demand of a single query in isolation, which often fails to capture the net resource

demand of a batch of queries, denoted as a workload. Estimating the net resource de-

mand of a collection of queries is a challenging task due to the difficulty of capturing

the correlation between different queries [3].

We introduce the novel problem of workload memory prediction and formalize it as

a distribution regression problem. A methodology for estimating the collective re-

source demand of a batch of queries, we call it LearnedWMP. Specifically, we focus

on predicting the memory cost demand of a batch of queries. LearnedWMP makes

use of existing components of the optimizer engine, such as the query plan. We group

queries with similar query plan characteristics into a set of learned query templates.

Ideally, these templates are pre-built such that each template represents a group of

queries with similar resource demands. Thereafter, the system generates a histogram

representation of the query templates in the workload. Lastly, a regressor uses the his-

togram representation of the workload to predict the resource demand(e.g., Memory

cost) of the workload. In our experimental settings, we use three database bench-

marks to demonstrate a 47.6% improvement of the memory estimation in comparison

to the existing state-of-the-art. We also compare our approach to different machine

and deep learning techniques, which learn the resource demand of individual queries.

ii

Through our experiment comparison, we demonstrate that our model was 3x to 10x

faster and at least 50% smaller when compared to a single query prediction approach.

iii

Acknowledgments

I want to express my profound gratitude to my supervisors, Dr. Marin Litoiu and Dr.

Manos Papagelis, for their support and guidance throughout my graduate studies. I

was very fortunate to have had such great supervisors with such deep and extensive

knowledge. Thank you for your continuous patience, encouragement, and guidance

over these past years.

I am also grateful to Ph.D. student Shaikh Quader; it was a fantastic experience

and a privilege to have worked and learned from you.

I wish to thank the members of my supervisory committee: Dr. Marin Litoiu, Dr.

Manos Papagelis, Dr. Hamzeh Khazaei, and Dr. Xiaohui Yu for volunteering their

time to read and examine this thesis.

Lastly, I would like to thank the Lassonde faculty for their teachings and guid-

ance; specifically, I would like to extend my gratitude to Aijun An, Jarek Gryz, and

Ruth Urner. They made their classes fascinating, and their passion for their field of

expertise opened up different avenues of interest for me.

iv

Co-Authorship

This thesis is based on my upcoming published work listed below. In these pub-

lications, I contributed in collaboration with Shaikh Quader in the following ways:

materializing the initial research idea, researching related work, conducting experi-

ments and analyzing the resulting data (developing required tools), writing the pa-

per’s drafts, and contributing to the final paper. Parts of this thesis will be published

as follows:

• Shaikh Quader, Nicolas Andres Jaramillo Duran, Sumona Mukhopadhyay, Cal-

isto Zuzarte, David Kalmuk, Marin Litoiu, Manos Papagelis, LearnedWMP:

Database Workload Memory Prediction Using Distribution of Query Templates

It is noteworthy to mention that the thesis in question has been granted a patent

[4], indicating that the research carried out is recognized as possessing novelty and

innovation. Patents are legal documents that afford inventors exclusive rights to their

inventions for a defined duration. In this case, the patent pertains to the particular

technique or technology that was developed during the research process. The granted

patent information is listed below:

• Quader, Shaikh Shahriar, Nicolas Andres Jaramillo Duran, Sumona Mukhopad-

hyay, Emmanouil Papangelis, Marin Litoiu, David Kalmuk, and Piotr Mierze-

jewski. “Learning-based workload resource optimization for database manage-

ment systems.” U.S. Patent 11,500,830, issued November 15, 2022.

v

Table of Contents

Abstract iii

Acknowledgments iv

Co-Authorship v

Table of Contents v

List of Tables viii

List of Figures ix

Chapter 1: Introduction and Background 1

1.1 Introduction . 1

1.2 The State of the Practice & Limitations 3

1.3 The State of the Art & Limitations 4

1.4 Our Approach . 4

1.5 Contributions . 5

Chapter 2: Literature Review 7

2.1 ML for Database . 9

2.1.1 ML for Cardinality Estimation 9

2.1.2 ML for Database Configuration Tuning 11

2.1.3 ML for Database Indexing Selection 12

2.1.4 ML for Arrival Rate Prediction 13

vi

2.1.5 ML for Query Performance Prediction 14

2.1.6 ML for Query Resource Cost Estimation 15

2.1.7 ML for Query-based Workload 17

2.1.8 Comparative Analysis of ML Techniques for Databases and

LearnedWMP . 17

2.2 ML for Distribution Regression Problems 19

Chapter 3: Preliminaries and Problem Definition 21

3.1 Modelling of the Problem as a Distribution Regression Problem . . . 22

Chapter 4: Methodology 25

4.1 High-level Overview of the ML Pipeline 26

4.1.1 Users and the Database . 26

4.1.2 Training Stage . 27

4.1.3 Inference Stage . 29

4.2 Training Stage Phase 1: Learning Query Templates 29

4.2.1 Learning Rule-based Query Templates 31

4.2.2 Learning Clustering-based Query Templates 32

4.3 Training Stage Phase 2: Constructing Histograms from Workloads . . 42

4.4 Training Stage Phase 3: Training a Distribution Regression Deep Learn-

ing Model . 44

4.4.1 Multilayer Perceptron (MLP) Model 44

4.4.2 Activation Function . 45

4.4.3 Loss Function . 46

4.4.4 Optimizer . 47

4.4.5 Hyperparameter Tuning of the MLP Model 47

4.4.6 Other Machine Learning Methods 48

4.5 LearnedWMP: Inference Stage . 51

vii

Chapter 5: Experimental Evaluation 52

5.1 Experimental Setup . 52

5.1.1 Environment . 52

5.1.2 Datasets . 52

5.1.3 Workload . 53

5.2 Experimental Evaluation and Discussion 54

5.2.1 Learning Query Templates Performance 54

5.2.2 An Evaluation of the Learning Query Template Strategies . . 58

5.2.3 Learning Batch Memory Performance 62

Chapter 6: Conclusion and Future Work 74

6.1 Conclusion . 74

6.2 Future Work . 75

6.2.1 Dataset . 75

6.2.2 Resources Prediction . 75

6.2.3 Generating Templates . 76

6.2.4 Deep Learning Model . 76

Bibliography 77

v

List of Tables

3.1 Summary of key notations . 24

5.1 Interquartile range (IQR) of residual errors in estimating workload

memory by different models and datasets 66

viii

List of Figures

2.1 DBMS . 7

2.2 Query Plans . 8

4.1 LearnedWMP: Training Stage . 27

4.2 LearnedWMP: Inference Stage . 29

4.3 Query Plans Feature Vector . 35

4.4 Query Plans Feature Vector . 37

5.1 Query Templatization Influence for Achieving Workload Memory Es-

timation Accuracy for TPC-DS Benchmark 58

5.2 Query Templatization Influence for Achieving Workload Memory Es-

timation Accuracy for JOB Benchmark 59

5.3 ML Model Root Mean Squared Errors (smaller is better) 65

5.4 ML Model Training Latency . 67

5.5 ML Model Inference Latency . 68

5.6 ML Model Size . 70

5.7 TPC-DS Dataset: Mean Absolute Percent Error (MAPE) at different

batch sizes . 72

ix

Abbreviations & Acronyms

BOW Bag of Words.

CCAEO Cardinality Cost Aggregation for Aach Operator.

CPU Central Processing Unit.

DBA Database Administrators.

DBMS Database Management Systems.

DBSCAN Density-Based Spatial Clustering of Applications With Noise.

DFS Depth-First Search.

DL Deep Learning.

DNN Deep Neural Network.

IQR Interquartile Range.

JOB Join Order benchmark.

LearnedWMP Learned Workload Memory Prediction.

MAPE Mean Absolute Percent Error.

ML Machine Learning.

MLP Multilayer Perceptron.

x

NLP Natural Language Processing.

NN Neural Network.

OLAP Online Analytical Processing.

OLTP Online Transactional Processing.

QPEWMTS Query Plan Encoding While Maintaining Tree Structure.

RELU Rectified Linear Unit.

RL Reinforced Learning.

RMSE Root Mean Square Error.

SGD Stochastic Gradient Descent.

SingleWMP Single Workload Model Predictor.

SQL Structured Query Language.

tanh Hyperbolic tangent.

TPC-C Transaction Processing Performance Council Benchmark C.

TPC-DS Transaction Processing Performance Council Decision Support.

XGBoost Extreme Gradient Boosting.

xi

Chapter 1

Introduction and Background

1.1 Introduction

Today, numerous companies in different industries are now using data for decision-

making, accelerating innovation, improving customer experience, and much more. For

example, banks generate an astronomical amount of data for everyday activities such

as banking transactions, behavior patterns, customer information, and more. The

Internet of Things (IoT) devices collect and share data for optimizing performance to

aid us in everyday life. E-commerce data plays an essential key role in tracking con-

sumer shopping behavior. Self Driving Cars combine a variety of sensors to perceive

their surroundings, such as radar, computer vision, sonar, Global Positioning System

(GPS), and more. The car’s data must be stored and analyzed to determine the best

present or future course of action. To fully leverage their data, these industries require

a dependable database system that can quickly store and collect data for future accu-

rate and fast access. However, achieving fast query processing, which is an essential

requirement for any DBMS, can be a challenging task for Database Administrators

(DBAs) who need to manually tune the system to improve query performance. As a

result, researchers have proposed various approaches to optimize query performance

and alleviate the burden on DBAs, including machine learning-based approaches.

This research aims to predict resource demand, with a specific focus on memory

cost. Accurately predicting memory usage is critical for optimizing database perfor-

1

mance and resource allocation. Currently, state-of-the-art DBMS typically uses static

resource estimation models for each query’s operator in the query plan. When a SQL

query arrives in the system, it is decomposed into low-level database operators (e.g.,

GROUP BY). A static model computes many low-level features for each operator

and then estimates the operator’s resource utilization. At the query level, all the unit

operators’ resource estimations are aggregated to come up with the resource demand

for an individual query. These models use a set of heuristics that make assumptions

about the system and therefore do not adapt well to the database configuration and

system changes.

An active commercial database management system continuously receives an ex-

tensive stream of query requests. For commercial database management systems to

be efficient, they must process the maximum number of SQL queries while using all

of the available computing resources in the system. For this purpose, the database

management system must find an efficient method of deriving the resource estimation

of the database workload - the collection of queries that are to be executed concur-

rently on the system. For example, a DBMS can only simultaneously execute a finite

number of queries due to its limited system memory. Inaccurate memory estima-

tions can produce a performance bottleneck in the system when the system under

or over-commits its memory’s capabilities. To achieve low query latency and high

throughput, the DBMS needs an accurate estimation of the memory utilization of

the queries before admitting them for execution.

In this research, we address the problem of predicting resource demand for database

queries, specifically within the context memory cost of a workload. Current meth-

ods for estimating memory demand for individual queries often fail to capture the

net memory demand of multiple queries in a batch. We formalize this problem as a

distribution regression problem and propose a novel approach, called LearnedWMP,

for Learned Workload Memory Prediction . Unlike single-query based estimation ap-

proaches, LearnedWMP does not require memory estimations of individual database

2

operators. Instead, it groups queries within a workload based on query plan similarity,

generating a histogram representation of the query templates. This representation is

then used to train a regressor that predicts the memory demand of the workload. In

an experimental evaluation using three database benchmarks, LearnedWMP was able

to reduce the memory estimation errors of state-of-the-art practices by 47.6%. In ad-

dition, we conducted a comparison between LearnedWMP and an alternative machine

learning method that involves training memory estimation models for single queries.

Our results indicate that the LearnedWMP models were significantly faster, with 3x

to 10x faster training and inferencing times, as well as being at least 50% smaller in

most cases. These findings demonstrate the benefits of the LearnedWMP approach

and its potential to have a broader impact in the field of database optimization.

1.2 The State of the Practice & Limitations

In contemporary DBMS systems, the query optimizer’s cost model relies on simplified

assumptions for deriving cardinality estimates. These assumptions include assuming

that distinct column values are uniformly distributed for join cardinality estimation

and that columns are independent of each other without advanced statistics. However,

these assumptions are often inaccurate, leading to inaccurate memory estimations [5].

Furthermore, traditional DBMS methods derive estimations for each query separately

[1], without considering the fact that concurrent queries may stress certain resources,

such as memory, on the system. For example, when a DBMS processes two concur-

rent queries, each with a group by operation, their collective memory demand will

be higher than if they were executed separately. When the collective memory re-

quirement exceeds the available system memory, some of the queries may take longer

to finish, resulting in increased query execution time and decreased DBMS through-

put. Currently, human experts are relied upon to define the features and rules for

calculating runtime metrics of queries [6]. However, this approach is expensive, and

these estimation rules do not generalize well to unseen workloads and new operational

3

environments of the DBMS.

1.3 The State of the Art & Limitations

In recent years, there has been a growing body of research that proposes the use

of deep learning-based methods for addressing query optimization problems [7], [8],

particularly for cardinality estimation [8]–[12], which is closely related to memory

usage estimation. These methods show promise as they can learn hidden patterns

in the data and understand relationships between interdependent variables. How-

ever, there is still a lack of evidence that these methods are suitable for enterprise-

grade DBMS instances [7]. This is because they are typically evaluated on simplified

benchmark datasets that may not accurately reflect the characteristics of complex

enterprise datasets [7]. Furthermore, these methods often require complex hyperpa-

rameter tuning, which can limit their reproducibility and interpretability. Kim et al

[13] provides a comprehensive comparative analysis of learned cardinality estimators

for single queries and their limitations. It should be noted that deep learning-based

models designed for single query memory estimation may not generalize well to the

workload memory prediction problem.

1.4 Our Approach

In this study, we propose a novel approach for estimating the resource usage of a

batch of database queries, referred to as a workload. This approach departs from

the traditional method of estimating the resource usage of each query separately and

instead focuses on modeling the resource demand of concurrent queries. By doing so,

we aim to achieve higher accuracy in estimating resources and provide additional ben-

efits, such as reducing development and maintenance costs of the DBMS’s resource

estimators and speeding up the computation of resource estimation. For this re-

search, we initially focus on estimating memory usage, an important resource type, of

4

database workloads. To this end, we design a Learned Workload Memory Prediction

(LearnedWMP) model in three steps.

First, we use historical queries to learn query templates that serve as groups for

queries with similar memory demands. We based this on the intuition that queries

with similar plan characteristics and estimated cardinalities have similar memory

demands.

Second, we randomly divide training queries into fixed-size training workloads and

represent each workload as a histogram or distribution over query templates. This

histogram-based representation allows us to capture the underlying statistical distri-

bution of the queries by grouping them into bins or templates. Histograms have been

utilized in various domains to aggregate multiple observations and obtain approxi-

mate data distributions [14]. To reduce the complexity of the experiment setup, the

current design of LearnedWMP uses fixed-length workloads. However, the design can

easily be extended to work with variable-length workloads.

In the third and final step, using training workloads and their historical collective

actual memory usage, we learn a regression function that can estimate the memory

usage of an unseen workload based on its distribution of query templates. As the

learning algorithm has access to diverse training workloads, its accuracy at estimating

the collective workload memory will improve over time. A production DBMS can use

a trained LearnedWMP model to predict the memory demand of unseen workloads.

1.5 Contributions

We summarize our key contributions as follows:

• We introduce a novel problem of workload memory prediction. To the best of

our knowledge, this is the first attempt to predict a workload’s memory demand

using machine learning techniques.

• We formulate the problem of workload memory prediction as a distribution

5

regression problem, which learns a regressor function from workloads represented

as distributions of query templates. We use machine learning techniques to learn

the regressor without relying on the hand-crafted query-level or operator-level

features.

• We propose LearnedWMP, a novel prediction model that can estimate the mem-

ory demand of a batch of SQL queries called a workload. This is a departure

from the state of the practice and the state-of-the-art methods, which estimate

the memory demand of each query separately.

• We devise unsupervised machine learning methods to group queries of similar

memory needs to reduce the computational overhead of workload memory usage

estimation significantly.

• We present a thorough experimental evaluation of our LearnedWMP model em-

ploying three database benchmarks, including two OLTP transactional work-

loads and one OLAP analytical workload. In the evaluation, our model reduced

the memory estimation errors of DBMS by at least 47.16%. These experimen-

tal results prove the merit of our proposed technique in workload-based query

processing and resource estimation.

6

Chapter 2

Literature Review

The Application of machine learning (ML) techniques for improving databases has

become more popular due to advances in large-scale data, novel methods, and high

processing power [2]. These improvements have provided additional opportunities for

the research community to improve the autonomic capabilities of current approaches

[15]. Tuning a database management system (DBMS) to increase run-time perfor-

mance can be costly and rigorous as it requires extensive knowledge of the system and

experts such as Database administrators (DBAs) to carry out the task. This endeavor

has been made considerably more difficult by the complexity of implementing new

data-driven applications and services online. Many of the complexities and expenses

of DBMS tuning may be reduced if the DBMS could optimize itself without human

interaction, resulting in an autonomous DBMS [16].

Figure 2.1: DBMS

Standard DBMS consists of a parser, query optimizer, and query execution. The

parser is in charge of parsing the submitted SQL query and checking if the syntax

7

is correct. If the submitted SQL query is correct, it generates the parser tree and

submits it to the query optimizer. The query optimizer is responsible for creating an

optimal process for executing the query called a query plan. After the plan is created,

it is sent to the query execution engine, where the query will be executed and the

data retrieved. Even today, current DBMS can select a poor execution plan[17].

Figure 2.2: Query Plans

Due to their importance, much research has been conducted to improve the parser

and the query optimizer. The parser is important because writing these SQL queries

can be challenging, require expertise, and is prone to mistakes that can hinder perfor-

mance [18] [2]. The query optimizer is responsible for selecting the most efficient way

to execute a given query. The optimizer functions by evaluating different query plans

and choosing the plan with the lowest estimated cost, but this can be a challenging

task as the search space for picking the optimum query plan can be in the millions.

To generate the optimal execution plan, the query optimizer takes into account fac-

tors such as available indexes, table size, distribution of data, query complexity, and

more.

8

2.1 ML for Database

Research into the query optimizer for producing a query plan focused on a number of

areas, including but not limited to 1) cardinality estimation 2) database configuration

tuning 3) database indexing selection 4) arrival rate prediction 5) query performance

prediction 6) resource cost estimation 7) Query-based Workload Analysis and more.

This work focuses on examining the potential of machine learning and deep learning

techniques to enhance the query optimizer’s capability to predict memory resource

demand for queries.

2.1.1 ML for Cardinality Estimation

One of the critical aspects of the optimizer is the ability to predict the execution cost

of the query, and an accurate cardinality estimation at all stages of a query plan is

needed to predict this cost [10]. Cardinality estimation is the process of correctly

estimating the number of tuples each sub-query will produce. It refers to how unique

a specific attribute’s values are in the database table instance. This means that the

greater the cardinality of an attribute, the more unique the value is. However, esti-

mating the cardinality can be challenging, especially if the query contains numerous

join operators [19]. Recently, the research community has used different machine

learning techniques to predict the cardinality estimation of the query. Kipf et al [11]

uses the query features from the query plan to predict the query’s cardinality estima-

tion. Specifically, they use a CNN that learns to predict the join crossing correlations

in the data while managing known weak points of existing sampling-based techniques.

Ortiz et al [19] uses encoding techniques to encode a query into a single-dimension

vector that is used as the input to a deep neural network model. It encodes the query

into a vector containing three sections representing the query’s selection, join, and

relation. For the model, they leverage a Recurrent Neural Network’s (RNN) ability

to handle sequential data. Normally, the input to an RNN is a sequence of time steps,

9

so they model the queries as a set of action steps where each action represents a query

operation. It then goes on to experiment with the trade-offs between the estimation

error and model size. Liu et al [10] uses a 3-layer augmented Neural Network (NN)

to learn the selectivity function, in which the input is a bound range on each column.

This model can effectively estimate the selectivity of all relational operators. A query

optimizer uses the selectivity metric to justify applying an index to specific table

attributes. A general optimization guide is to apply an index when the selectivity

is high, meaning the cardinality is high. Hasan et al [12] presents two complemen-

tary approaches for the problem of estimating query selectivity in databases which

are effective for multi-attribute queries with a large number of predicates and low

selectivity. The first approach models selectivity estimation as a density estimation

problem and uses techniques from neural density estimation to build an accurate es-

timator. The second approach formulates selectivity estimation as a supervised deep

learning problem. The authors also address practical challenges when adapting deep

learning for relational data, such as query/data featurization, query workload infor-

mation, and the dynamic scenario where both data and workload queries could be

updated. Hilprecht et la [8] introduce Relational Sum-Product Networks (RSPNs), a

new deep probabilistic modeling approach for databases aimed at capturing key char-

acteristics of a database. The model captures the joint probability distribution of

the data and its correlations across attributes while supporting direct updates to the

database. The model devises a probabilistic query compilation approach that trans-

lates database queries into probabilities and expectations for RSPNs. The authors

evaluate the performance of the data-driven approach by implementing the DeepDB

DBMS architecture.

10

2.1.2 ML for Database Configuration Tuning

Database systems require hundreds of knob-turning configurations to achieve opti-

mum results and high-performance [20]. It is an NP-hard problem where current

existing methods cannot solve the problem because of certain limitations [21]. More-

over, traditional methods leverage DBAs to manually tune and configure these knobs,

requiring extensive experience and knowledge of the system. Additionally, these knob-

tuning settings can take days to weeks to set up, which can hinder productivity, and

it is not optimal when DBAs have to set up many database instances on the cloud.

Due to this, The research community has been trying to leverage machine learning

techniques to automate this database knob tuning for this problem[2].

Van et al [22] implemented OtterTune, which uses both supervised and unsuper-

vised machine learning techniques to select and recommend best knob-tuning config-

urations. OtterTune collects running statistics which are recorded once the query is

executed. Next, they use K-means clustering to narrow down the space of the metrics

collected during run-time. Lastly, OtterTune uses Lasso (Liner Regression) model to

chose the knobs that have the strongest correlation to the query’s performance. Li et

al [21] created a query-aware database tuning system called QTune. It uses reinforced

learning, deep learning, and unsupervised learning to predict the database tuning re-

quirements. Qtune clusters the queries such that all the queries in the cluster have

similar tuning properties. For this task, Qtune uses the query plan to vectorize the

query, which becomes the input to a reinforced learning model. The model learns a

configuration pattern for each input query. Next, the system uses deep learning to

build a second vector that maps the configuration patterns’ queries. Once this new

vector has been created, the authors use DBSCAN to cluster the queries together.

11

2.1.3 ML for Database Indexing Selection

The goal of the index selection process is to determine what available attributes of

the database schema will be selected for creating secondary indexes. Index selection

can result in a significant reduction of a query’s execution cost. However, most

state-of-the-art index tuning systems depend on accurate cost estimation from the

query optimizer for good index recommendations, which are subject to well-known

limitations such as cardinality estimation inaccuracy [23].

Index selection has been an active research area where machine learning has been

used for this recommendation. Query2Vec from Jain et al [24] uses supervised and

unsupervised machine learning techniques to achieve workload summarization for in-

dex selection. In this work, workload summarization refers to summarizing a large

set of query logs. Query2Vec first vectorizes the query for the input to the clustering

algorithm. Query2Vec uses LSTM to learn the vector representations of the SQL

queries; this has the added benefit of constructing vectors where similar vectors are

closer to each other. Once the vectors are built, Query2Vec uses k-means to cluster

similar queries together. The process of workload summarization is beneficial as it

enables the identification of a representative subset of queries from a given workload.

This subset can then be used to optimize the creation of indexes that improve the

performance of these queries and, in turn, enhance the overall performance of the

workload. Ding et al [23] improves index selection by iteratively generating hypo-

thetical configurations and checking if the new configuration improved the previous

configuration through the query plans generated by the configurations. This query

plan comparison works by turning a query plan into a vector representation of the

query and training a classifier to compare the cost of two query plans. When the

model learns on pairs of plans, it can minimize the errors that lead to comparison

errors. Therefore, training a classifier to predict which of the two query plans has a

cheaper execution cost can derive a higher accuracy for comparing costs.

12

2.1.4 ML for Arrival Rate Prediction

Proper query workload scheduling can significantly help improve performance. For

this task, the system must be able to estimate future query workloads correctly [25].

Traditional approaches focus on rule-based methods that use metrics from current

workload characteristics. Additionally, these statistics often need to be changed once

the workload or physical design of the database varies[25][23][26].

Different works focus on predicting workload arrival rates by using machine learn-

ing techniques. Ma et al [25] created the framework Querybot5000 that predicts the

expected arrival rate of queries in the future. Their approach uses the logical compo-

sition of queries in the workload rather than the amount of physical resources used for

query execution to support complex optimization planning decisions. Querybot5000

uses a joined supervised and unsupervised approach for predicting future query arrival

rates based on historical arrival rate logs. First, the authors templatize the queries

by removing literals and replacing them with the symbol ”?”. It next uses DBSCAN

to cluster the queries based on their arrival rate, such that queries with similar arrival

rates are clustered together. The goal of this step is to minimize the space of queries

the system has to look at. Lastly, Querybot5000 uses RNN to predict the future

arrival rate for the queries in the clusters.

13

2.1.5 ML for Query Performance Prediction

Query performance prediction focuses on predicting the query’s latency before ex-

ecution, meaning how long it will take to process the query at hand [6]. Existing

approaches rely upon DBAs to understand database workload characteristics. DBAs

need to be able to understand the execution features of queries and apply data mining

techniques to understand the nature of the workload [27].

Current works focus on using machine learning techniques to predict the queries per-

formance for one or multiple queries. Marcus et al [6] use a tree-structure neural

network architecture where the network’s structure matches that of the query plan.

Here, the entire query plan is modeled as a tree of neural units where each neural unit

is an operator-level neural network. The task of each neural unit is to predict the

performance of each operation type and interesting features of the operator, which the

parent neural unit can use. Overall, the plan-level neural network is trained to predict

the query plan’s latency. Zhou et al [3] also try to predict the query performance, but

take it one step further by attempting to predict concurrent query performance. The

authors aim to capture the correlation between concurrent queries’ buffer sharing and

lock conflicts. It uses a graph model to encode query features by representing a query

plan as a graph where each node is a value of the query plan, and the edge is the

correlation between these two values. For example, the shared data which is accessed

by both nodes. Once the graphs have been built, the authors use this information to

predict the query performance through a graph-embedded network.

14

2.1.6 ML for Query Resource Cost Estimation

Query resource cost estimation focuses on predicting physical resources used to exe-

cute a query. These resources can include memory, I/O, CPU, memory, logical page

reads, etc. Traditional methods focus on statistical methods for resource estimation

or manual cost models. These models fail to capture the improvements made by the

optimizer to the query execution plan or capture the physical characteristics of the

DBSM [28]. The physical accurate resource estimations of SQL queries are central

to many key DBMS operations and goals, including admission control [10], resource

management, query optimization [10], and managing user expectations. Sub-optimal

resource estimations of the database queries can affect business outcomes, such as

losing customers from a slow online storefront. Ganapathi et al [1] goal is to predict

the resource usage characteristics (e.g. CPU, memory, disk, and message bytes sent)

of queries executed. The study aims to make these predictions using information

available before query execution starts, such as the SQL statement or query plan.

The study categorizes the queries into three categories (feather, golf ball, and bowl-

ing ball). It uses the kernel canonical correlation analysis (KCCA) method to build

the predictive model by creating feature vectors for the query and performance data.

Performance data is the data collected from executing the data, and it is only used

during training. The Gaussian kernel is used as the distance metric in KCCA. Sun

et la [29] focuses on an end-to-end solution for cost estimation, which uses a tree

structure model. They use feature extractions and encoding techniques that consider

both queries and physical operations. Moreover, they extract the features from the

query plan and encode them into a tree-structure vector that is taken as an input

to the model. Lastly, a tree-structured neural network learns to predict the cost

of the query from these vectors. Li et la [28] focuses on constructing a regression

tree modules for each type of physical database operator. Each model is trained to

predict the resource cost of the operators. Additionally, there is a scaling function

15

that is trained for different resource/operator combinations. Tang et al [30] propose

a SQL query cost predictor service that uses machine learning techniques to forecast

the CPU and memory resource usage of online queries. The service aims to improve

query scheduling by relieving imbalanced online analytical processing workloads in

SQL engine clusters. Two machine learning models are trained from historical query

request logs for CPU time and peak memory prediction. The raw data is cleaned,

discretized, and vectorized using Natural Language Processing techniques, such as

Bag of Words (BOW) and TF-IDF (term frequency-inverse document frequency).

Then three types of classifiers (Random Forest, XGBoost, and Logistic Regression)

are trained on the transformed data. The evaluation results show that the XGBoost

model with the TF-IDF approach outperforms other CPU models.

16

2.1.7 ML for Query-based Workload

Higginson et al [31] describes a method for applying time series analysis techniques,

specifically ARIMA and Seasonal ARIMA (SARIMA), to database workload mon-

itoring data with the aim of identifying patterns and trends, including seasonality

(reoccurring patterns) and shocks. These findings were then utilized for database ca-

pacity planning purposes. Mozafari et al [32] created DBSeer, a system for analyzing

transaction logs in a database management system (DBMS) to predict resource uti-

lization. The system first aligns and joins the logs, then categorizes transactions into

types based on their SQL statements and table access patterns. These transactions

are then clustered using the DBSCAN algorithm and summarized into a workload

summary. DBSeer uses linear regression, decision trees, and feedforward neural net-

works to predict demand for CPU, I/O, and memory.

2.1.8 Comparative Analysis of ML Techniques for Databases
and LearnedWMP

The present study builds upon prior research that has shown the effectiveness of

several techniques used to analyze database queries. Specifically, these techniques

involve representing queries using their text or query plans and utilizing both super-

vised and unsupervised machine learning methods to enhance the database optimizer.

It is important to note that previous research in machine learning for databases has

focused on addressing different problems, and when resource demand prediction is

considered, it has been performed at the level of individual queries. In contrast, the

approach proposed in this study estimates resource demand at the level of workload

query batches. This change in analysis provides several potential benefits, including

increased accuracy and computational efficiency.

Our approach differs from previous query-based workload methods as it does not

cluster transactions based on query expressions or table access patterns. Instead, we

utilize a set of query templates that are learned from simple features of the query plan.

17

Our experiments have shown that these features have a stronger correlation with the

runtime memory usage of the workload when compared to other methods. Further-

more, we compared the performance of our approach with that of the DBSCAN-based

templates and found that k-means resulted in a more accurate prediction of resource

usage.

18

2.2 ML for Distribution Regression Problems

Recently, there has been substantial attention paid to distribution regression as a gen-

eral approach for addressing the challenge of supervised learning in situations where

labels are provided at the group level, rather than the individual level [33]. For su-

pervised machine learning problems in which accounting for uncertainty in the inputs

and model is crucial, distribution regression emerges as a potentially superior alter-

native to traditional techniques, such as random forests and neural networks [34]. To

the best of our knowledge, we are the first instance in which distribution regression

has been utilized for modeling resource demand forecasts of database workloads. Dis-

tribution regression is a statistical method used in supervised learning for situations

where labels are available at the group level, rather than at the individual level. It

involves modeling the distribution of the target variable for each group rather than

modeling the individual target values. This allows the model to account for uncer-

tainty in the observations and estimate the distribution of the target variable rather

than just a single-point estimate. Distribution regression has been used in various

applications, such as predicting health indicators from a patient’s list of blood tests

[35], solar energy forecasting [34], and traffic prediction [34]. Law et al [33] proposes

a set of Bayesian methods for distribution regression. The work uses point estimates

for the input variables and accounts for uncertainty in the regression model through

Bayesian linear regression. It considers uncertainty in the input variables and uses

a Bayesian mean shrinkage model to make predictions based on a sparse represen-

tation of the target function. lastly, it combines the two previous methods into a

fully Bayesian model and uses Hamiltonian Monte Carlo for inference. Li et al [34]

proposes an ensemble learning method for conditional density estimation. It trans-

forms the problem into a multi-class classification task using distribution regression,

where different machine learning algorithms can be used, such as neural networks.

Mao et al [35] specifies a coefficient-based regularized method for learning distribution

19

regression functions using indefinite kernels.

20

Chapter 3

Preliminaries and Problem
Definition

In this section, we introduce notation and preliminaries to help to define the novel

workload memory prediction problem. Next, we formally present our approach to

model and solve the problem as a distribution regression problem.

Definition 1 (Query) Let q = (e, p,m) be a single SQL query where (i) e is a query

expression, provided by either a user or an application, (ii) p is a query execution

plan generated by the query optimizer of a DBMS for evaluating e, and (iii) m is the

actual highest memory usage of e after the execution of p in the DBMS. m is available

only for training queries that the DBMS has already executed. We assume that each

query is executed in isolation. For unseen queries, m is unknown.

Definition 2 (Workload) Let w = (Q, y) be a workload, which consists of (i) Q,

a set of queries where qi ∈ Q is a tuple (ei, pi,mi), as per def. 2.1, and (ii) y is the

sum of actual memory utilization of all queries in Q after the DBMS executes them.

y =

|Q|∑︂
i=1

mi (3.1)

y value of a workload (eq. 3.1) is available only during the training phase, as part of

a labeled training set. During the inference phase, LearnedWMP will receive only Q,

a collection of queries, but not y.

21

Problem 3 (Workload Memory Prediction) Let us assume a training corpus of

n workloads, as follows:

{(w1, y1), . . . , (wn, yn)} (3.2)

Here, each tuple, (wi, yi) corresponds to the collective historical memory utilization

yi of all queries in the workload wi. Now, given an unseen workload w, we wish to

learn a predictor function f̂(·) that can accurately estimate the workload w’s collective

memory usage y:

f̂(w) = y (3.3)

3.1 Modelling of the Problem as a Distribution

Regression Problem

Definition 4 (Query templates) Let T = {t1,...,tk} be a set of k query templates.

A query template ti ∈ T represents a class of queries with similar plan characteristics

and memory requirements. As such, any query q can be mapped to a query template

ti ∈ T .

Definition 5 (Workload histogram) Let w be a workload, which consists of a set

of Q queries. ci is the number of queries in Q that can be mapped to query template

ti ∈ T . The counts of queries in Q that map to different query templates in T are

recorded in a 1-d vector of length k = |T |. We call this vector a workload histogram

H. Here, H = [c1, ..., ck] and
k∑︂

i=1

ci = |Q| (3.4)

We formulate estimating memory usage of an unseen workload as a distribution re-

gression problem Gretton, [36], where the estimate is computed from an input prob-

ability distribution - the distribution of queries Q among templates T . From such an

input distribution, encoded in a workload histogram, a distribution regression func-

tion computes as estimated memory usage for the workload. Let us assume we have

22

a training corpus of n workload histograms, one for each workload, as follows:

{(H1, y1), . . . , (Hn, yn)} (3.5)

Here, each tuple, (Hi, yi), corresponds to a single workload; Hi is the workload his-

togram and yi is the collective historical memory utilization of all queries in the

workload. On the workload histogram, we assume:

1. The distribution of queries among the query templates (i.e., the workload his-

togram bins) is uniform.

2. The query templates are independently and identically distributed.

3. An underlying function, f(·), exists that can accurately compute any workload’s

memory usage, y, from the workload histogram, H.

f(H) = y (3.6)

We, however, neither know f(·) nor have access to the set of all possible workload

examples to derive f(·).

Using distribution regression, we wish to learn a function, f̂(·), an approximation of

f(·). From the input workload histogram, H, of a workload, f̂(·) can compute ŷ, an

accurate estimate of the actual memory usage y.

f̂(H) = ŷ (3.7)

Using training workloads labeled with their actual memory utilization, f(·)ˆ learns to

estimate the memory demand of unseen workloads. We expect that the larger and

more diverse the training data set of workload examples are, the more precise the

predictor f(·)ˆ will be. Table 3.1 provides a summary of the key notations.

23

Table 3.1: Summary of key notations

Notation Definition

w A workload.

n The number of workloads.

Q The set of queries in a workload.

T The set of query templates in the DBMS.

H H ∈ Rk is a workload histogram, representing the distribution
of queries in a workload w over the k query templates T .

f(H)ˆ The learned function (predictor) that predicts the memory de-
mand of an input workload histogram H.

ci The number of queries in a workload w that are mapped to a
query template ti ∈ T .

y The actual collective historical memory utilization of all queries
Q in a workload w.

ŷ The predicted collective memory demand of all queries Q in an
unseen workload w as estimated by f(·)ˆ .

24

Chapter 4

Methodology

This section provides an overview of how our system Learned Workload Memory

Prediction (LearnedWMP) can predict the memory resource demand of a batch of

queries. Our methodology is formulated into three main steps.

1. Phase 1: Learning Query Templates. A commercial database system’s

query log can have diverse types of large volumes of queries. Storing and pro-

cessing these queries for building a predictive model can be expensive. We look

at templatizing the queries to reduce our model’s time and space complexity.

2. Phase 2: Constructing Histograms from Workloads. The input to the

model is a vector histogram representation of the query distribution in the

workload. Therefore, we look at binning the workload’s queries to represent the

query workload as a histogram - a distribution of query templates.

3. Phase 3: Training a Distribution Regression Deep Learning Model.

The third step of our methodology focuses on training a deep learning model

to predict the resource cost of the workload.

25

4.1 High-level Overview of the ML Pipeline

The LearnedWMP model has two stages: training and inference. The training stage

uses a machine learning training pipeline and a training dataset to build a Learned-

WMP model. The inference stage uses the trained LearnedWMP model to predict

memory usage for unseen workloads. Figure 4.1 and 4.2 shows an overview of the

LearnedWMP workflow.

4.1.1 Users and the Database

The left section of figure 4.2 shows the interaction between users and a database and

the database’s interaction with two LearnedWMP stages. The users, human users

and applications, send SQL queries to the database. The database processes their

queries and returns responses. During this excecution, the database records the query

expression, the query execution plan, and the actual memory utilization in a query

log. Periodically, the LearnedWMP training pipeline (Left section of figure 4.1) uses

the latest dump of the query log for re-training the model. In this section, we first

briefly describe the steps of this workflow and then discuss the technical details of

each step.

26

Figure 4.1: LearnedWMP: Training Stage

4.1.2 Training Stage

In figure 4.1, TR1 through TR6 are the steps of the training pipeline. Training begins

with a set of training queries, Qtrain, collected from a dump of the DBMS query

log. At TR1, the pipeline extracts training queries, their final execution plans, and

the actual memory usage from the past execution. At TR2, from the query plans, the

pipeline generates a set ofm features to represent the training queries as a |Qtrain|×m

feature matrix. Here we use the cardinality cost aggregation for each operator to

extract the m features (cf. section 4.2.2). At TR3, the pipeline learns T , a set of

k query templates, from the query feature matrix. We use K-Means to learn the

templates and determine k experimentally (cf. section 4.2.2). At TR4, the pipeline

equally divides the training queries of Qtrain into a set of n workloads,W = |Qtrain|/s.

Each workload contains s, a constant, queries. We found a value of s experimentally

(cf. subsection 5.2.3). At TR5, the pipeline generates a workload histogram H for

each training workload w = (Q, y) inW . H represents the distribution of queries of Q

among k query templates of T . In addition, the collective actual memory utilization

27

y of the workload w is computed by summing up the memory utilization of each

query qi ∈ Q. Each (H, y) pair represents a supervised training example for training

a regression model. At TR6, the model receives as input a large collection of training

examples of the form (H, y). From these examples, the model learns a regression

function f̂(H) to map an input histogram H to its memory demand, y. At the end

of TR6, the training pipeline produces a trained LearnedWMP model.

28

Figure 4.2: LearnedWMP: Inference Stage

4.1.3 Inference Stage

In figure 4.2, IN1 through IN5 are the steps of the LearnedWMP inference pipeline,

which generates estimated memory usage of an unseen workload w, consisting of Q

queries. Step IN1 collects the query plans of the queries Q in w; step IN2 generates

the feature vectors for these plans. Step IN3 assigns each query qi ∈ Q to a template

ti ∈ T , from which IN4 constructs a workload histogram H. The final step, IN5, uses

the histogram H as input to the LearnedWMP model and predicts the memory usage

ŷ of the workload, w.

4.2 Training Stage Phase 1: Learning Query Tem-

plates

Collecting database access logs is standard practice and can be used in many settings;

however, logs from DBMS can be very large. Therefore, building Machine or Deep

Learning models on these logs would require a considerable computing footprint. In

data processing systems such as online transactional processing (OLTP) and online

29

analytical processing (OLAP), queries are frequently created by applications that

interact with the user rather than the user themselves. OLTP queries typically in-

volve executing the same queries while varying input parameters. Meanwhile, OLAP

queries are generally constructed by users who engage with dashboards or report-

ing tools. These tools create queries using different parameters and predicates. As

a result, both OLTP and OLAP queries tend to require similar levels of resource

utilization within the system [25]. In phase 1, we aim to identify the |T | number of

templates from all queries in the database access logs. By intuition, we expect queries

associated with the same template to have similar resource requirements during ex-

ecution. However, the templatization scheme doesn’t need to be highly accurate.

Rather, a fast and decent performance in finding loosely close queries regarding re-

source requirements is sufficient for the downstream resource prediction task. We are

not looking for an optimal template assignment, which will require computation of

operator-level features, increase computation overhead, and outweigh the acceleration

we hope to gain from compressing queries into templates. Overall, estimating the cost

of individual queries is a separate research problem [1], [28] that we are not address-

ing in our current research. Instead, we rely on a best-effort algorithmic principle for

assigning each query to a template.

The database community has widely used query log optimization for different

database optimization tasks. For example, index selection, query processing, his-

togram tuning, and statistics selection [37] [38], and there are different approaches to

accomplishing these tasks. This work explores two main approaches:

1. Learning rule-based query templates

2. Learning clustering-based templates

Both of these methods fall under the category of query compression techniques that

are commonly employed by the database community. This section aims to provide a

comprehensive explanation of these two primary approaches and outline their respec-

30

tive features. Afterward, in the experimental section, we will present a comparative

analysis of their results and an analysis of their capabilities.

4.2.1 Learning Rule-based Query Templates

To build the rule-based query templates, one or more rules are associated with a

query statement of a predefined template. Typically, database benchmarks come

with a predetermined collection of templates that we can use to create queries. Each

template has a fixed query corpus where only the constants and literals are randomly

generated. If a benchmark has a large set of predefined templates, we map the

generated queries back to their corresponding templates. For database benchmarks

where the queries are generated based on a limited set of query templates. We

change our strategy as following the same approach would result in a limited number

of templates, which could negatively impact the prediction accuracy. Therefore, for

these types of benchmarks, we choose to group these queries based on their estimated

cardinality similarity, where each template consists of queries with similar cardinality

estimation. Overall, learning rule-based query templates are often created by DBAs,

database researchers, and experiments [3].

31

4.2.2 Learning Clustering-based Query Templates

Clustering algorithms belong to the class of unsupervised machine learning methods.

They work by dividing a set of input data points into homogeneous groups called

clusters [39]. Data points within the same clusters are expected to be similar, while

data points in different clusters are expected to be dissimilar. In the training phase

of our approach, we utilize a clustering algorithm to construct templates. During the

inference phase, we utilize the same algorithm to map new queries to the appropriate

cluster. By doing so, we are able to efficiently categorize new data points based on

their similarity to existing data points within a given cluster.

Clustering Features from SQL Query

To identify if a set of points belong to the same cluster, the clustering algorithm

needs to use a set of features to compute the distance between the data points. In

this section, we focus on features that can be collected before execution time and not

post-execution. Post-execution features are called physical features; they can provide

accurate information about how a query will behave in execution but depend on the

DBMS hardware, and content [25]. For our case, we have considered two sources of

features from pre-execution time: 1) query text 2)query execution plans

Query text feature encoding: It refers to the query’s expressions that the user

or application sends to the database. To extract information from the query text, we

mainly focus on three forms of feature encoding: Bag of words, Word Embedding,

and Text Mining.

1. Bag of words (BoW): BoW is used to keep track of the frequency of a

word in a document. BoW first constructs a dictionary vector containing all

the words from the documents in the training set. Each slot in the dictionary

vector represents a unique word found in one or more documents, and the

value assigned to each slot represents the frequency count of each word in the

32

document. In this work, we apply BoW to SQL queries by representing each

query as a document. BoW builds dictionary vector L = {E1, E2, ..., EF} where

the size of the vector represents the F tokens that were located from all of the

Qtrain queries. Additionally, we keep track of the tokens using Term Frequency

(TF) which is the frequency of a term i in a query j such that TF = ti,j. TF

is a common method used to represent text data. However, relying solely on

TF can lead to biased results due to the high frequency of common terms that

may not hold significant meaning. To mitigate this issue, the Term Frequency-

Inverse Document Frequency (TF-IDF) is often employed as a normalization

technique to account for the importance of each term. TF-IDF = ti,j × log M
ni

where ni is the number of queries (e.g., documents) containing term ti, and M

is the number of queries (e.g., documents) in the training dataset. Tokens are

removed if they appear too many or too few times across all M = Qtrain queries.

2. Word embedding encoding: Word embedding is widely used in natural

language processing (NLP). Early approaches of NLP use one-hot encoding to

represent words in a document. Given a document where the word ai occurs, it

is represented as a vector the size of the dictionary with all zeros except for a

single position with a one representing the word ai. However, this approach does

not provide any correlation between words ai and aj. For example, the words

queen and king or cat and mouse have a correlation that cannot be pinpointed

by the one-hot encoding method. On the other hand, word embedding provides

meaning to a word depending on its surrounding words. Meaning, semantically

related words are close to each other in the embedding space. Mikolov et al.

[40], [41] focuses on learning the representation of a word in a document by

predicting the following word based on previous words. Mikolov expands this

approach by setting the sentence, paragraph, or document as a window and

learning the window’s representation of its given parent paragraph, document,

33

or documents. Devlin et al. [42] focus on learning the word representation to

the document based on the words before and after the targeted word we wish

to learn. We can apply this approach to vectorizing our queries by learning the

representation of each token to the query itself.

3. Text mining approach: has shown to work remarkably well for extracting

features from SQL queries [43], [44]. Text mining focuses on identifying use-

ful information through pattern recognition in the data. It concentrates on

semistructured or unstructured data such as emails, text documents, or web-

sites. We can map this process to an SQL query by viewing the query as a

small document. In this step, we follow the process designed in Makiyama’s

work [43], where we focus on extracting the terms in the selection, from, joins,

projection, and order-by operators. The terms are then joined to the table they

are applied to. Once the new tokens are created, we follow similar steps to BoW

and construct a vector dictionary where each slot contains the query token and

its frequency count.

SELECT u.username, u.date purchase

FROM user u, accounts a

WHERE u.id = a.userid

SELECT u 2

FROM user 1

FROM accounts 1

WHERE id=userid 1

As seen in the above example, we join the operators select, from,where to the

table with the symbol ” ”. Then, a feature vector is created using the token

34

frequency as weights to calculate the pairwise similarity.

Query plan base feature encoding

In this section, we use the query plan generated by the DBMS. When the DBMS

processes a query, the optimizer generates a query plan with the optimum execution

process. The query plan takes the form of a tree where each node contains the operator

and supplementary information. Generating the query plan is a standard process and

can be obtained in milliseconds or seconds [1]. Previous research has utilized features

extracted from the query plan for database clustering tasks [45]. For extracting the

features from the query plan, we mainly focus on two methods Ganapathi et al. [1],

and Sun et al. [29].

Figure 4.3: Query Plans Feature Vector

1. Cardinality cost aggregation for each operator (CCAEO)

follows the steps from Ganapathi et al. [1]. At each node of the query plan

tree, we can extract the operator type and the cardinality estimation. The

cardinality estimation is the process of estimating the number of rows that will

be returned by a particular operation in the query plan during its execution.

35

For each operator in the query plan, we track the aggregate cardinality cost and

its instances in the query plan tree. As shown in figure 4.3, we use the query

plan generated by the DBMS’s optimizer to build our feature matrix. The

feature matrix contains two columns: one column for the frequency count of an

operator and a second column for the total cardinality cost of the operator in a

given query plan. Given that the database management system (DBMS) being

used is known, the set of operators that could potentially appear in the query

plan can also be determined. As a result, the feature matrix can be constructed

such that each row represents an operator, so the matrix ends up with a fixed

length size. If an operator does not appear in the query plan, then its frequency

count and total cardinality cost are recorded as zero in the matrix.

In figure 4.3, the query plan contains four main operators: CTQ, UNIQUE,

HSJOIN, and TBSCAN. Once the unique operators have been extracted from

the query plan, we track the frequency of each operator: CTQ: 1, UNIQUE:

1, HSJOIN: 3, and TBSCAN: 4. Finally, we aggregate the cardinality cost for

all of the occurrences of each operator: CTQ: 1020, UNIQUE: 11045, HSJOIN:

1020 + 21442 + 160293 = 182755, and TBSCAN: 11045 + 138851 + 10397 +

11045 = 171338. Note that the operator ”SPLIT” does not appear in the query

plan; therefore, its count and total cardinality are recorded as zero.

2. Query plan encoding while maintaining tree structure (QPEWMTS)

this approach follows the steps presented by Sun et al. [29], which focuses on

feature encoding a query while maintaining the structure of the query plan tree.

We start by constructing an empty skeleton tree. As seen in section one of figure

4.4, we build the skeleton tree based on the trees we see in the training query

corpus. For example, in figure 4.4, queries 1 and 2 construct the skeleton tree in

the top right of the figure. If there were a third query in the training corpus, we

36

Figure 4.4: Query Plans Feature Vector

would add the missing section from the new query’s plan tree onto the skeleton

tree. Next, each query’s plan tree is mapped to the skeleton tree, as seen in

figure 4.4. The nodes that are not filled are left blank. Lastly, we traverse the

tree using depth-first search (DFS) and fill the feature vector accordingly, where

each node represents a slot in the vector. If the node is empty, then the vector

slot representation for this node will also be empty.

37

Clustering Algorithms

In the clustering step, we aim to identify query templates T such that all queries

q ∈ Q that map to t ∈ T have similar resource demands. We explore three popular

clustering algorithms to accomplish this objective: 1) K-means, 2) K-Medoids, and

3) DBSCAN. For all three clustering algorithms, we use the Euclidean Distances:

d(x, y)2 =

p∑︂
i=1

(xi − yi)
2 (4.1)

1. K-Means clustering: K-Means is a distance-based clustering algorithm widely

applied in different domains due to its simplicity and speed [46]. K-means

works by partitioning a set of n observation points (x1, x2, ..., xn) into K sets

C = C1, C2, ..., C3. It initiates by randomly selecting k mean µ values and as-

signing each point to the closest µ centroid. Once all of the points have been

assigned, the algorithm focuses on re-selecting the k centroid by re-calculating

µ of each cluster. The algorithm re-assigns the points to their closet new µ cen-

troid. This process continues until K-means converges or reaches the stopping

criteria. Formally, if µi is the means of the points in Ci then the overall goal of

the algorithm is to minimize the within clusters sum of the squares:

argminS

K∑︂
i=1

∑︂
x∈Ci

||X = µi||2 (4.2)

Algorithm 1 Kmeans

Int K ▷ Number of clusters
Data D ← x1, x2, ..., xn ▷ Input data
function KMEANS(D, K)

Initialize: pick cluster centroids µi, . . . , µk randomly.
while until coverage do

Compute clustering C1, . . . , Ck such that Ci = argminj (xi − µj)
2

Update the centroids µj =
1

|Ci|
∑︁

x∈Ci
x

return centers µi, . . . , µk

end

38

2. K-Medoids clustering: K-Medoids works very similar to K-means by also

partitioning a set of n observation points (x1, x2, ..., xn) intoK sets C = C1, C2, ..., C3.

However, K-Medoids does not use the mean value µ as the cluster center; in-

stead, it uses a medoid which is normally the most centrally located point in

the cluster. This allows K-Medoids to be less affected by outliers in the dataset

due to the effect that an extremely large value can have on the data’s distri-

bution. K-Medoids, start by selecting k medoid points at random, let M be

the set of medoids such that M = {m1,m2, ...,mk}. The algorithm assigns the

remaining points to their closest medoid. Once the clusters have been created,

the algorithm chooses at random a non-medoid point xi /∈M and computes the

new cost P if xi replaces mi as the new medoid. If O, the old cost, and P < O

then the algorithm leaves xi as the new medoid. K-Medoids continues the pro-

cess until the convergence criteria is reached. The cost function is calculated as

follows:

K∑︂
j=1

∑︂
x∈Cj

|x−mi| (4.3)

Algorithm 2 KMedoids

1: Data D ← x1, x2, ..., xn ▷ Input data
2: function kmedoids(D)
3: Initialize: pick cluster medoids mi, . . . ,mk randomly.
4: while until coverage do
5: Compute clustering C1, . . . , Ck such that Ci = argminj (xi −mj)

2

6: Update the medoids mj = argminj

(︂∑︁
xj∈Ci,xz∈Ci,xj ̸=xz

d(xj, xz)
2
)︂

7: return medoids mi, . . . ,mk

8: end

39

3. DBSCAN is a density-based clustering algorithm. DBSCAN mines dense re-

gions of points that are separated by low-density of regions from other high-

density of regions. It can be useful when the clusters’ are of arbitrary shapes

and not spherical. It can also handle noise and does not require the user to

choose the number of clusters K, and it has also been used to classify queries

[21][25]. DBSCAN starts by arbitrarily selecting an unprocessed point p. p is

a core point if there are at least a minimal number of minPts points in its ϵ

neighborhood. Point q is density-reachable from p if point q is within ϵ distance

from p. Additionally, a point q is density-reachable by p if there exist core

points e1, ..., en such that q is density-reachable to e1, p is density-reachable to

en, and each ei+1 is density-reachable by ei. A cluster is formed from p with all

of its density-reachable core and non-core points, and these points are marked

as processed. If p is not a core point, then DBSCAN moves on to the next

non-process arbitrary point and repeats the above process until all of the points

have been processed.

Algorithm 3 DBSCAN

1: Int minPts ▷ Number of clusters
2: Long ϵ ▷ Number of clusters
3: Data D ← x1, x2, ..., xn ▷ Input data
4: function DBSCAN(minPts, ϵ)
5: for i = 1; i < D.size; i++ do
6: Point ← D.get(i)
7: Point.visited← True
8: if isCoreP t(Point) then
9: C ← Cluster
10: explanCluster(Point, C, ϵ, minPts)

11: end

In this section, we proposed different methods for grouping similar queries into tem-

plates in order to efficiently model the concurrent memory requirements of the queries

and speed up the computation of the training and inference stages. We emphasized

that our approach does not aim for an optimal template assignment, but rather a

40

Algorithm 4 Learning query templates with clustering algorithm

1: Qtrain ← {q1, q2, ... , qn} ▷ Qtrain is a set of historical training queries collected
from a DBMS.

2: function GetTemplates(Qtrain)
3: Array Z ← [][] ▷ feature matrix for Qtrain

4: for qi in Qtrain do
5: feature type ← ”CCAEO”
6: featuresi = getFeatures(qi, feature type)
7: Z.insert(featuresi)

8: alg type ← ”K-Means”
9: T ← Clustering(Z, alg type) ▷ learns templates using clustering algorithm
10: return T ▷ learned query templates

11: end

best-effort algorithmic principle for assigning each query to a template. Adding a few

incorrect assignments can add randomness and noise to the model, which can help

reduce overfitting and improve the model’s generalization [47], [48]. Our approach

represents a trade-off between accuracy and computational efficiency, and is intended

to provide a simple but efficient solution for assigning queries to templates.

Algorithm 4 outlines the steps involved in the function GetTemplates for the cre-

ation of a set of query templates, T , from the training queries in Qtrain. The process

starts by using the getFeatures() function (line 6) to extract features from each

query in Qtrain. The feature extraction process is guided by the feature type pa-

rameter, which is set to CCAEO (Line 7), meaning that the features will be based on

Cardinality Cost Aggregation for Each Operator. The extracted features are then

used as inputs for the clustering process performed by Clustering(). The type of

clustering algorithm used, either K-Means, K-Mediods, or DBSCAN, is specified through

the alg type parameter. After the clustering process, each cluster represents a query

template ti ∈ T (line 9).

41

4.3 Training Stage Phase 2: Constructing Histograms

from Workloads

This step presents how to create the input vector H for the ML model. The input

vectorH is a one-dimensional fixed-size vector of length |T | where each slot represents

a template. Here, |T | is defined by the number of templates generated in phase 1.

Consider n number of workloads where each workload comprises of |Q| number of

queries. In each workload, queries are binned into a vector H ∈ RD, where D = |T | is

the number of unique clusters. Each bin slot cd ∈ H represents the count of the queries

belonging to it such that
∑︁K

j=1 cj = |Qi|. The vector H = {c1, . . . , c|T |} becomes an

unknown distribution P which is associated by a label y ∈ R. Consequently, y denotes

the aggregated resource cost of the workload. For wi
th workload, the histogram

representation of the workload becomes (Hi, yi) where yi =
∑︁|Qi|

j=1mj.

Algorithm 5 Histogram construction from training workloads

1: w ← (Q, y) ▷ A training workload
2: T ← {t1, ..., tk} ▷ A set of k query templates
3: function BinWorkload(w, T)
4: Array H[0 ... (k − 1)]← 0
5: for qi in Q do
6: featuresi = getFeatures(qi)
7: qi.template = findTemplate(featuresi)

8: for tj in T do
9: H[j] = countTemplateInstances(tj, w)

10: return (H, y)
11: end

Algorithm 5 describes the steps of the binning of queries phase. It takes as input a

training workload, w, and a set of query templates, T , which were learned in section

4.2.2. In lines 5-7, for each query qi ∈ Q, the algorithm extracts the features

from the query using the method selected in section 4.2.2. findTemplate() (line 7)

identifies the query template tj ∈ T that qi belongs to. countTemplateInstances()

counts how many queries in Q map to each template and stores the counts in vector

42

H = [c1, ..., c|T |]. This binning process allows for the characterization of the training

workload through the histogram representation of the distribution of query templates.

The histogramH represents the distribution of queries in the workload w across the

set of query templates T . It is important to note that the histogram will typically be

sparse, with many zeros, as not all query templates in T are expected to be present in

workload w. The final step of the algorithm (line 10) returns a pair (H, y), where y is

the cumulative memory usage of all queries in Q. The combination of the histogram

and memory usage (H, y) becomes a labeled sample for the training of a supervised

machine learning and deep learning model in section 4.4.

43

4.4 Training Stage Phase 3: Training a Distribu-

tion Regression Deep Learning Model

In this step, we train a regression model to predict the workload’s memory usage. The

trained model takes an input workload, represented as a histogram of query templates,

and computes the workload’s memory usage. For training the model, we explored

several machine learning and deep learning techniques. In this section, we present the

design and implementation of a deep learning (DL) model for our regression model.

Section 4.4.6 describes the other machine learning algorithms we explored for the

model training. Recently, deep learning has had several algorithmic breakthroughs

and has been highly successful with many learning tasks over unstructured data.

For example, DL models for image recognition and language translation are now

highly accurate [49]. Through training, DL models are excellent at extracting hidden

relationships between input and output pairs [50]. They can be useful in learning a

non-linear mapping function between input and output without requiring low-level

feature engineering. In our case, we have dual complexities: the input is a complex

distribution of query templates, and there is a complex relationship between the

distribution of query templates and its collective memory demand. We wanted to

explore the effectiveness of deep learning for the problem.

4.4.1 Multilayer Perceptron (MLP) Model

Many DL networks exist for learning from unstructured data, such as images and

text. For example, convolution neural network (CNN) [51] is suitable for working

with images; recurrent neural network (RNN) [52] and transformers [53] work with

sequential data; graph neural networks (GNN) are available for graphs [54]. With

unstructured data, the dimension of the input vector has a variable length, and each

element in the vector usually has no meaning in isolation [54]. In our case, the

input vector for each workload is structured and has a fixed length corresponding to

44

the number of query templates. Each element of the vector represents the number of

workload queries belonging to a specific template. Since we want to learn a regression

function from fixed length input vectors, multilayer perceptron (MLP) is a good place

to begin with as it assumes the input data has a fixed dimension [54].

As a learning problem, we use the template vector H ∈ RD, for some D, and label

set Y . Remember that D is identified in the templatization step, which represents

the number of |T | templates, and y ∈ Y , where y is the aggregated resource cost of

workload w. We aim to learn function f(·) : RD → R that best approximates the

relationship between H and y.

A DNN can be represented as a directed graph, denoted as G = (V,E), where each

node in the graph represents a neuron. The neuron is modeled as a scalar function

σ : R→ R. The connections between neurons in the graph are represented by edges,

and each edge contains a weighted function w : E → R. In this way, the neural

network can be viewed as a graph with nodes and edges, where each node is a neuron

and each edge represents the connection between neurons. In this research, we focus

on an MLP, which is a feedforward DNN where the underline graph has no cycles.

4.4.2 Activation Function

The activation function of each hidden layer controls how the layer’s input is trans-

formed. It is used to introduce nonlinearity into the output of a neuron. The ac-

tivation function takes the weighted sum of the inputs to the neuron and applies a

mathematical function to it, producing an output. This output is then fed as input

to the next layer of neurons. In choosing the activation function, a nonlinear func-

tion is essential since, without it, the DNN model can collapse into a simple linear

model [55]. Popular choices for nonlinear functions include sigmoid and hyperbolic

tangent (tanh) functions. The sigmoid activation function σ(x) = 1/(1 + exp(−x))

transforms the input value into a value between [0, 1], and the tanh function tanh(x)

transforms an input to a value between [−1, 1]. However, both of these functions

45

saturate through most of their domain [48]. Meaning, that very large numbers are

converted to 1, and very small numbers are converted to 0 for sigmoid and -1 for tanh.

This saturation can become problematic as the network becomes deeper. MLPs are

trained using stochastic gradient descent (SGD), which involves calculating and de-

scending the slope of the function. At each step, the prediction error of the function

is computed and used to calculate the gradient. The gradient is then used to tune the

weights so that the error is reduced in the next iteration. In a DNN, the error used to

update the weights is propagated backward via the network. The saturation causes

the error to decrease largely as it propagates each layer. This phenomenon is called

the vanishing gradient problem, which prevents DNNs from learning effectively. To

solve this problem, the activation function ReLU is employed to tackle this problem

f(e) =

{︄
0 if e < 0

e otherwise.
(4.4)

The ReLU activation function is effective in addressing the issue of vanishing gra-

dient because it replaces all negative values in the input with zero when e ≤ 0,

effectively creating a threshold that prevents the gradient from becoming too small.

This means that the gradient will always be non-zero for positive input values (e > 0),

which helps to propagate the gradient through the network and prevents it from van-

ishing. It acts as a linear function when the error is greater than zero (e > 0). This

helps maintain many of the desirable properties of a linear activation function, but

it cannot be considered a true linear function since the error is zero when e ≤ 0.

Empirically, this correlates with our experimentation as the data complexity grows

our model performs better with ReLu in comparison to sigmoid and tahn.

4.4.3 Loss Function

Depending on the problem type, an MLP uses different loss functions. For the re-

gression task, we use the mean squared error loss function as follows:

Loss(ŷ, y,W) =
1

2N

N∑︂
i=1

||ŷi − yi||22 +
α

2N
||W ||22 (4.5)

46

where yi is the target value; ŷi is the estimated value produced by the MLP model;

α||W ||22 is an L2-regularization term (i.e., penalty) that penalizes complex models;

and α > 0 is a non-negative hyperparameter that controls the magnitude of the

penalty. Starting with an initial set of random weights, the MLP minimizes the

loss by iteratively updating these weights. After computing the loss each time, the

MLP propagates the loss backward — from the output layer to the previous layers;

it updates the weights in each layer to decrease the loss. For training, MLP uses

stochastic gradient descent (SDG), where the gradient ∇LossW of the loss, with

respect to the weights, is computed and deducted from W . More formally,

W i+1 = W i − ϵ∇LossiW (4.6)

where i is the iteration step, and ϵ is the learning rate with a value larger than 0.

The algorithm stops either after completing a preset number of iterations or when

the loss doesn’t improve beyond a threshold.

4.4.4 Optimizer

We compared L-BFGS [56] and Adam [57] optimizers using two datasets — a small

dataset and a relatively large one.

For the small dataset, L-BFGS was more effective than Adam as it ran faster and

learned better model coefficients. In contrast, Adam worked better with the large

dataset. Our observation is consistent with scikit-learn’s MLPRegressor1 documenta-

tion.

4.4.5 Hyperparameter Tuning of the MLP Model

To find an optimum final model, we tuned several hyperparameters, including the

number of hidden layers, the number of nodes in each layer, the optimizer, and the

1https://scikit- learn.org/stable/modules/generated/sklearn.neural network.MLPRegressor.
html

47

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

dropout rate. Since we operate on a large dataset and the parameter search space is

large (i.e., the combination of different parameter values), we used randomized search

to reduce the time for optimizing hyperparameters [58]. The randomized search,

which is similar to the grid search, performs a randomized scan of the parameter

space. Compared to grid search, randomized search is faster with a slight sacri-

fice of the model performance. We used the RandomizedSearchCV 2 method of the

scikit-learn library for random search. For instance, using randomized search with

one of our experiment datasets, we came up with a tuned neural network architecture

that had eight layers: an input layer, six hidden layers, and an output layer. The

input layer receives an input workload, represented as a histogram or a distribution

of its queries over query templates; the output layer generates an estimated memory

demand for the input workload. Left to right, the hidden layers have 48, 39, 27, 16,

7, and 5 nodes, respectively.

Model complexity. Suppose there are n training samples, k features, l hidden

layers, each containing h neurons — for simplicity, and o output neurons. The time

complexity of backpropagation is O(n ·k ·hl ·o · i), where i is the number of iterations.

4.4.6 Other Machine Learning Methods

Besides deep learning networks, for a comparative analysis, we explored four addi-

tional ML techniques to train LearnedWMP models. They include a linear and three

tree-based techniques. For the linear model, we picked Ridge, a popular method for

learning regularized linear regression models [59], which can help reduce the over-

fitting of the linear regression models. From the tree-based approaches, we used

Decision Tree (DT), Random Forest (RF), and XGBoost (XGB).

2https://scikit-learn/stable/modules/generated/sklearn.model selection.RandomizedSearchCV.
html

48

https://scikit-learn/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

Similar to section 4.4.1, as a learned problem, from n training examples

(H1, y1), (H2, y2), . . . , (Hn, yn), the model learns a function f(·) : RD → R, where D

is the number of dimensions for input H = [c1, ..., cD=|T |] and R is the scalar output

y. We aim to learn function f(·) that best approximates the relationship between H

and y.

Ridge

is a common tool used by the machine learning community for identifying the rela-

tionship between an explanatory variable and some valued outcome [60]. For Ridge

regression, the Hypothesis class is the set of linear functions. In the following equa-

tions below, w denotes the weight vector used by the models.

Ld = {x→ ⟨w, x⟩+ b : w ∈ RD, b ∈ R} (4.7)

Next, we need to define a loss function. A loss function measures how well f(·)

correctly predicts y, and it assigns a penalty for not predicting correctly. For Ridge

Regression we minimize the square-loss function with L2 regularisation.

argminw∈RD

(︄
1

m

m∑︂
i=1

1

2
(⟨w,Xi⟩ − yi)

2 + λ||w||22

)︄
(4.8)

Decision Tree

is a predictor, f : H → y, which functions by predicting instance H by traversing the

path of a tree from the root node to a leaf node. Normally, a decision tree algorithm is

used as a classification. However, decision trees can be applied to both classification

and regression tasks [55]. Therefore, we use decision trees as a regression task in our

problem and MSE to identify how much the prediction ŷ differed from the target y.

MSE =
1

n

n∑︂
i=1

(ŷi − yi) (4.9)

49

Random Forest

works by building a group of decision trees based on bootstrapped samples of data

from the training set. We create R number of trees f̂
1
(x1), f̂

2
(x2), ..., f̂

R
(xB) using B

random sample training datasets such that R = B. To retrieve the model’s prediction,

we average the results of all of the trees to obtain a single output, given by.

f̂ rf (x) =
1

R

R∑︂
r=1

f̂ r(x) (4.10)

When building each decision tree f̂
r
, we use a sample of m predictors out of p pre-

dictors as a candidate when considering a split. Each split can use only one of the m

candidates, and m new sample candidates are picked at each split, m ≈ √p. Allowing

only m selectors at each split helps to create a mixture of trees. If there is a very

strong feature, then all decision trees will pick this feature as their root split, and all

trees will look very similar and highly correlated.

XGBoost

is a scalable machine-learning approach for tree boosting [61]. For our n workloads

and D templates. N = {(xi, yi)}(|N | = n, xi ∈ RD, yi ∈ R) XGBoost uses K additive

functions to predict the output.

ŷi =
k∑︂

k=1

fk(xi), fk ∈ F, (4.11)

where F is the space of regression trees. To learn the appropriate weights, XGBoost

works to minimize the loss function.

LXGBoost =
∑︂
i

l(ŷi, yi) +
∑︂
k

Ω(fk)

where Ω(fk) = γT +
1

2
λ||w||2

(4.12)

l is a convex function that measures how close the target y is to the predicted ŷ.

1
2
λ||w||2 helps regularize the model, and γT helps to prune the tree. Both of these

sections help smooth the final learned weights, so the model does not overfit. If λ and

γ are both set to zero, then the model falls back to traditional gradient tree boosting.

50

4.5 LearnedWMP: Inference Stage

Algorithm 6 outlines the steps of LearnedWMP Inference Stage. The PredictMemory

function, which is used to estimate the memory demand of an unseen workload, w

utilizes two models: a trained clustering model which is trained to map a query qi ∈ Q

to its corresponding template ti ∈ T , and a trained predictive model for estimating

workload memory demand. Using the BinWorkload function from Algorithm 5,

The function takes an unseen workload as input and generates a histogram vector

H, which is a distribution of query templates. With the histogram H in hand, the

function then estimates the memory demand of the workload, which is ŷ.

Algorithm 6 Use of the trained MLP for workload memory prediction

1: T ← {t1, ..., tk} ▷ A set of k query templates
2: f̂ ▷ a workload memory estimation function
3: w ← (Q) ▷ An unseen input workload
4: function PredictMemory(w, T , f̂)
5: H = BinWorkload(w, T)
6: ŷ = f̂(H)
7: return ŷ

8: end

51

Chapter 5

Experimental Evaluation

In this section, we experimentally evaluated the performance of our proposed Learned-

WMP model for the workload memory prediction problem. We also evaluated vari-

ants of LearnedWMP’s phase 1 approach of learning query templates (see section

4.2). We’ll first describe the experimental setup and then present the experiment

results.

5.1 Experimental Setup

5.1.1 Environment

We conducted the experiments using a commercial DBMS instance running on a

Linux system with 8 CPU cores, 32 GB of memory, and 500 GB of disk space.

5.1.2 Datasets

For the experiments, we acquire different database instances and a collection of queries

from different databases to evaluate our methodology. We used the data and the

queries from the TPC-DS and JOB Benchmarks. These benchmarks are very pop-

ular and widely used in the database research community and have been created to

model online analytical processing (OLAP) workloads. Additionally, we also use the

TPC-C benchmark, which is used to model a medium complexity online transaction

processing (OLTP) workloads [62]. TPC-DS is a modern DSS benchmark that has

52

been widely used in the industry as it emulates real-world datasets and queries. TPC-

DS contains 24 tables with an average of 18 columns, 99 distinct SQL query templates

with random substitution, and a more representative skewed database content [63].

JOB is a real-world movie-related benchmark constructed based on information from

IMDB. JOB queries focus on join ordering which is a very important problem for

query optimization [17]. Lastly, TPC-C is similar to TPC-DS as it is also a Transac-

tion Processing Performance Council (TPC) Benchmark. All TPC benchmarks must

undergo stringent testing and approvals before they are accepted as TPC Benchmarks.

TPC-C is built to simulate an order entry workload with two types of transactions.

First, it contains simple transactions that emulate a debit or credit workload. Second,

it contains a medium complexity transaction which ranges from two to fifty times the

number of simple transaction calls [62].

5.1.3 Workload

To generate the queries, we use the tool kits provided by each benchmark. Alto-

gether, we generated 93,000 TPC-DS queries, 2300 JOB queries, and 3958 TPC-C

queries. After the queries and database are created, the ground truth is generated by

executing one query at a time through the database instance. The data collected is

the maximum memory cost of the given query during execution. It is important to

note that in our experimental setup, we assume that each query is executed in isola-

tion, and therefore, we do not consider concurrency. While this might not accurately

reflect real-world scenarios, it is sufficient for training our model and evaluating its

performance. We also collect the queries’ query plan. For the workload, the queries

are randomly grouped into a collection of s queries per group, where s = 10. Addi-

tionally, their individual resource cost (e.g., Memory) is aggregated to compute the

workload’s total resource cost.

53

5.2 Experimental Evaluation and Discussion

In the experimental evaluation and discussion section, we examine the following ele-

ments of our system.

• Learning query templates. What are the advantages of LearnedWMP’s

method for learning query templates over alternatives with respect to improving

workload memory estimation accuracy?

• LearnedWMP accuracy performance. What are the accuracy comparisons

between LearnedWMP-based models and SingleWMP-based models?

• LearnedWMP training and inference cost. How does learning the LearnedWMP-

based models compare to SingleWMP-based models in terms of runtime cost?

• LearnedWMPmodel size. What is the difference in size between LearnedWMP-

based models and SingleWMP-based models?

• Effect of the batch size parameter s. In the LearnedWMP model, how

does batch size s affect memory estimation accuracy?

5.2.1 Learning Query Templates Performance

The objective of phase 1, learning query templates, is to divide queries into sub-groups

called templates such that all queries belonging to the same template have a similar

resource demand (e.g., Memory). Our focus for experimenting with the learned query

templates is primarily on the TPC-DS and JOB benchmarks, not TPC-C. This is be-

cause we are not looking for an optimal template assignment, but rather a best-effort

algorithmic principle for assigning each query to a template. As mentioned in section

4.2, we use two main approaches for our process: the rule-base and the clustering

approach. To measure the performance, we fix a machine learning algorithm and

compare the model’s performance based on what template learning step is used to

54

build the workload histogram vector H|T |, where H = [c1, ..., c|T |]. Remember that in

the binning step, each bin ci ∈ H|T | is the aggregation of all queries in the workload

that map to the template’s bin ci.

Rule-based Templatization

In the Rule-base Templatization, one or more rules associate a query statement with a

predefined template. Database administrators (DBA) or researchers often create these

rules [3]. In this work, we investigated simple rules for identifying templates. TPC-DS

queries are based on a set of templates. In each template, the literals and constants

are generated randomly from a fixed query corpus. Consequently, because TPC-DS

contains a large set of predefined query templates, we map the TCP-DS queries back

to their original templates. JOB queries are generated based on a smaller set of query

templates. We cannot follow the same approach as the TPC-DS queries, as this will

result in a very small number of templates which can affect the prediction accuracy.

Thus, we opt to group the JOB queries based on similar cardinality estimation.

Clustering Templatization

To evaluate our clustering techniques, we construct the input vector for K-Means,

K-Medoids, and DBSCAN algorithms by using different query plan features from

the query expression or query plan. Overall, we experiment with five methods for

constructing the input feature vector to the clustering algorithms. These methods

from the query expression are: 1) bag of words 2) word embedding 3) text mining

and from the query plan: 4) Cardinality cost aggregation for each operator (CCAEO)

5) Query plan encoding while maintaining tree structure (QPEWMTS).

Bag of words (BoW): We focus on transforming the input query into a bag

of words by constructing a dictionary vector L = {E1, E2, ..., EL} containing all L

tokens from the Qtrain queries. Meaning, each slot in the dictionary vector represents

a unique token Ei found in the training queries Qtrain, and the value assigned to

55

each slot represents the frequency count of each token Ei in the query qi ∈ Qtrain.

We use Term Frequency TF = ti,j to keep track of the frequency of token Ki in

query xj. Lastly, we use the Term Frequency-Inverse Document Frequency TF-IDF

= ti,j × log M
ni

to normalize the term frequencies and remove common terms which

can produce unsatisfactory results.

Word embedding: As a first step, we construct a vocabulary based on all the

unique keywords found in the training queries. We assign a unique ID to each term

in the vocabulary so that a set of IDs represents each query. Each query’s ID set

becomes the input to the embedding layer, which learns a vector representation for

each keyword. Our query text features were represented using word embeddings with

a vocabulary of 1500 words. We chose this value based on analyzing the unique

number of keywords in the query corpus. Keywords may be SQL syntaxes, such as

the GROUP BY operator, or schema information, such as table and column names.

On average, the number of keywords ranges from 311 to a maximum of 1750 for each

query. For queries with fewer than 1750 keywords, we padded them with zero cells

to make their length 1750. The goal was to have all queries be 1750 characters long.

Using a word embedding model, we projected each keyword from the vocabulary

into a dense vector of length 16. Each query that had 1750 keywords now becomes a

2D-Vector. After flatting the 2D-Vectors, we represented each query as a 1-D vector

of length 28000 (1750x16).

Text mining approach: Text mining is very similar to the bag of words approach,

except that the tokens are constructed differently. Rather than tracking keyword

frequency in a query’s dictionary representation, we now track operators and tables

operated on. Next, to construct the text-mining feature vectors, we follow the same

steps as bag of words.

SELECT u.username, u.date purchase

FROM user u, accounts a

56

WHERE u.id = a.userid

SELECT u 2

FROM user 1

FROM accounts 1

WHERE id=userid 1

Overall, this technique reduces query log space [44] and attempts to discover the

correlation between operators and resource demand [43].

Cardinality cost aggregation for each operator (CCAEO): Prior research [1]

has seen query plan-based features as good predictors of the run-time metrics during

query execution. Additionally, generating the query execution plans is a fast process

that can take milliseconds or seconds [1]. Using a state-of-the-art RDBMS, we collect

the query plans for all queries in the training dataset. We run each query through the

DBMS and collect the query plans produced, which are then used to build the feature

vectors. We parse the query plans and collect all of the operators in the query plans.

With these operators, we construct the query vector where each unique operator

contains two slots in the feature vector: the aggregated cardinality estimation and

the operator’s frequency. If an operator is not located in the given query, then the

operator’s aggregated cardinality estimation and the operator’s frequency value are

set to zero.

Query plan encoding while maintaining tree structure (QPEWMTS):

focuses on feature encoding a query while maintaining the structure of the query plan

tree. Here, we follow the same steps as CCAEO for collecting the query plans. Next,

we use all of the query plans to construct the empty skeleton tree. Afterward, The

feature vector is filled based on the depth-first search (DFS) traversal of the tree,

where each node represents a position in the vector. In the case of an empty node,

the vector slot representation of the node will also be empty.

57

(a) K-Means (b) K-Medoid

(c) DBSCAN (d) Rules

Figure 5.1: Query Templatization Influence for Achieving Workload Memory Esti-
mation Accuracy for TPC-DS Benchmark

5.2.2 An Evaluation of the Learning Query Template Strate-
gies

To assess the effectiveness of the learning query templates step, we developed a total

of sixteen pipelines. Out of the sixteen pipelines, fifteen pipelines are created using the

clustering approach, and one pipeline is created using the rule-based approach. The

memory prediction section uses a fixed model algorithm (XGBoost) in all pipelines.

The only variation between the pipelines is the learning query template procedure,

and we evaluate the performance of the pipelines based on their RMSE (Root Mean

Squared Error) scores.

58

(a) K-Means (b) K-Medoid

(c) DBSCAN (d) Rules

Figure 5.2: Query Templatization Influence for Achieving Workload Memory Esti-
mation Accuracy for JOB Benchmark

59

Figure 5.1 and 5.2 summarize how the XGBoost model performed based on the

learning query template step used to construct the input vector H to the mode. Over-

all, it displays the RMSE performance of all sixteen template pipelines: Rule base,

K-Means CCAEO, k-Medoids CCAEO, DBSCAN CCAEO, K-Means QPEWMTS,

k-Medoids QPEWMTS, DBSCAN QPEWMTS, K-Means Bag of Words, k-Medoids

Bag of Words, DBSCAN Bag of Words, K-Means Word Embedding, k-Medoids Word

Embedding, DBSCAN Word Embedding, K-Means Text Mining, k-Medoids Text

Mining, and DBSCAN Text Mining.

Clustering algorithm results. The results illustrate that the clustering al-

gorithm approach outperforms Rule base approach. In the clustering approach, K-

means outperformed K-Medoids and DBSCAN clustering algorithms. Specifically,

K-means CCAEO surpasses all the other clustering pipelines.

We opt for the clustering approach instead of the rule-based approach due to the

limitations of the latter. One major drawback of the rule-based method is that cre-

ating effective rules may require the expertise of human professionals, which can be

time-consuming, expensive, and challenging. In the case of the TCP-DS benchmark,

the rule-based method performed well because the TPC-DS queries were constructed

based on pre-existing 99 query templates loosely associated with a set of rules. How-

ever, the rule-based method did not perform well in the JOB benchmark due to the

lack of access to pre-existing templates.

When selecting the clustering algorithm, we made sure to test different clustering

algorithms that have been previously used on SQL queries. Overall, in comparing

other clustering algorithms, K-Means outperformed K-medoids and DBSCAN. K-

medoids did perform fairly close to K-means; however, the K-Medoids training time

was much larger than K-Means. K-Medoids can be expensive as it requires the

computation of all pairwise distances. On the other hand, K-means works to find the

cluster’s centroid by calculating the average of all data points in the cluster, making

it a simple and fast algorithm [46], and its iterative approach can be easily scaled

60

to tackle large data [64]. Additionally, for our purpose of clustering queries with

similar resource costs, it is more helpful to use the centroid means approach because

it considers the distances of all data points from the centroid rather than just focusing

on one point. This way, we can group queries with similar resource costs even if they

are not necessarily similar to one particular query.

While DBSCAN has been used successfully in clustering queries based on certain

features, our encoding process involves generating a high-dimensional feature set.

Unfortunately, DBSCAN tends to underperform when it comes to high-dimensional

data. As a result, we found that DBSCAN had the lowest performance compared to

other clustering algorithms we evaluated for our needs.

Feature Encoding Results. We tested five feature encoding methods CCAEO,

QPEWMTS, Bag of Words, Word Embedding, and Text Mining. The results illus-

trate that the query plan methods CCAEO and QPEWMTS outperform the query

text methods: Bag of Words, Word Embedding, and Text Mining. In general, ex-

tracting features from the query text results in poorer performance when compared

to the query plan features. This is because extracting features from the text does

not consider how the optimizer is built or how the database is constructed. Bag of

Words only relies on the text of the query, which cannot be relied upon as different

operations to the database can have similar query syntax but entirely different re-

source costs. One example is the join operator, the cost of a join operation depends

entirely on the tables that are being joined. Word Embedding uses the idea of the

vector representation of one token based on the relationship to the document (query)

it appears on, which has been shown to work exceptionally well for clustering tasks.

However, even if two queries have similar query expressions, they can still have dif-

ferent resource costs. This is because the query optimizer may select different query

plans for each query based on the indexing strategy used to improve performance [24].

Lastly, the Text Mining approach tries to build a relationship between the operator

and the table operated on. Again, this approach relies solely on the query expressions

61

and does not consider the query plan selected by the optimizer.

Overall, the query plan CCAEO and QPEWMTS clustering approach outper-

formed the other query text methods, with CCAEO being the best. The performance

of CCAEO and QPEWMTS was very close; however, the QPEWMTS did generate

a large vectors, an almost 600-length vector for the TPC-DS benchmark.

5.2.3 Learning Batch Memory Performance

This work focuses on predicting a batch of query memory estimation (i.e., a work-

load). Consequently, there are no existing state-of-the-art techniques or literature

that we could utilize for comparative performance analysis. Therefore, we must de-

sign, develop, and evaluate different variants of LearnedWMP and available baselines

for a well-founded comparison analysis.

LearnedWMP-based methods.

As a learning problem, LearnedWMP accepts the input workload w and returns

the workloads memory prediction y. Because LearnedWMP utilizes different ML

and DL models, we build for the experiment five different pipelines with the models

described in chapter 4. These five modes pipelines are called LearnedWMP-MLP,

LearnedWMP-Ridge, LearnedWMP-DT, LearnedWMP-RF, and LearnedWMP-XGB.

Evaluation Metrics.

We compare our model with two different memory resources estimation approaches

Single Workload Model Predictor (SingleWMP) and a state-of-the-art SingleWMP-

DBMS.

1. SingleWMP follows the steps from et al. Kipf [11]. It predicts the resource

demand of each individual query based on the features of the query plan. We

construct five different pipelines with the same models used to construct the

62

LearnedWMP and name them: SingleWMP-MLP, SingleWMP-Ridge, SingleWMP-

DT, SingleWMP-RF, and SingleWMP-XGB.

2. SingleWMP-DBMS uses the state-of-the-art DBMS’s built-in optimizer to pre-

dict the resource demand of each query.

The optimization goal of the resource prediction model is to minimize loss, and

the loss is defined as the difference between the actual and the predicted value. In

our settings, this is the difference between actual and predicted resource demands

cost. To identify the loss, we use Root Mean Square Error (RMSE). Let’s assume our

test set contains n test workloads represented as {(w1, y1), . . . , (wi, yi), . . . , (wn, yn)}.

Then the absolute difference between the predicted resource demands yî and the

actual resource demand yi is computed. Now, we compute the root mean absolute

error (RMSE) for the loss of the data set.

RMSE =
√︂∑︁n

i=1 (yi−yî)2

n

For interpretability, we use RMSE to compare our approach to SingleWMP and

SingleWMP-DBMS by running the set of Qi queries from workload wi through each

model. Let’s look at SingleWMP first; given the workload wi, consisting of a set of Qi

queries, we run each query qj ∈ Qi through SingleWMP and collect the ŷj prediction.

Next, we aggregate all the ŷj predictions to get ŷi =
∑︁|Qi|

j=0 ŷj. We do the same for the

actual yj cost and get yi =
∑︁|Qi|

j=0 yj. Once ŷi and yi are calculated for all workloads,

we then use RMSE to calculate the SingleWMP’s loss and follow the same steps for

collecting SingleWMP-DBMS loss.

63

LearnedWMP accuracy performance.

In this section, we compare the performance of all the LearnedWMP and SingleWMP

pipelines. In these pipelines, we use the CCAEO K-means approach for locating the

templates from the queries. Figure 5.3 illustrates the RMSE results for the different

variants of LearnedWMP, SingleWMP, and SingleWMP-DBMS. The results illustrate

how the SingleWMP-DBMS in the TPC-DS benchmark had the largest RMSE score

compared to the other LearnedWMP and SingleWMP pipelines. This observation

detail how the ML and DL method outperformed the current state-of-the-art DBMS

prediction. We also observed SingleWMP-DBMS having the highest RMSE error in

the JOB and TPC-C benchmarks. The scores for SingleWMP-DBMS are 1868 RMSE

score for TPC-DS, 2034 RMSE score for JOB, and 915 RMSE score for TPC-C. In

comparison, the overall best model LearnedWMP-DNN had an RMSE score of 169 for

TPC-DS, 43 for JOB, and 175 for TPC-C. Overall, we see an improvement of TPC-

DS 90.95%, JOB 97.88%, and TPC-C 80.87% when compared to SingleWMP-DBMS.

Figure 5.3 also illustrates the comparison between LearnedWMP and SingleWMP.

Here, Ridge, XGBoost, and Deep Neural Network models performed best. Although

XGBoost and Ridge performed very well, DNN outperformed XGBoost in the TPC-

DS and JOB Benchmark. Ridge did perform well in the LearnedWMP approach

but did not do so well in the SingleWMP. Therefore, we conclude that linear algo-

rithms, such as Ridge, may not be the most effective strategy for modeling mem-

ory requirements associated with individual queries, which are based on low-level

database operations and their estimated cardinalities. Lastly, we observe from Figure

5.3 that LearnedWMP-DNN outperformed SingleWMP-DNN in the TPC-DS, JOB,

and TPC-C benchmarks.

Table 5.1 illustrates the Interquartile range (IQR) of the RMSE residual errors.

For each pipeline, IQR helps measure the spread of the errors and identify the skew-

64

(a) TPC-DS (b) JOB

(c) TPC-C

Figure 5.3: ML Model Root Mean Squared Errors (smaller is better)

ness of the errors. Table 5.1 indicates that SingleWMP-DBMS is skewed towards

underestimating when predicting the memory demand of the workload for TPC-DS

and TPC-C, and it is skewed towards overestimating the JOB benchmark. When

compared with ML-based estimates, the results reveal a fairly even distribution be-

tween overestimates and underestimates; they do not have a marked skew in either

direction. Furthermore, The IQR range for ML-based models is significantly smaller

when compared with singleWMP-DBMS. For Example, when glancing at the TPC-DS

Benchmark, the IQR range span of the singleWMP-DBMS is [-2063.8, -461], which

is quite larger and skewed compared with LearnedWMP-DNN [-92.4, 102.8]. JOB

singleWMP-DBMS IQR range span is [1394, 2367], which is also larger and skewed

when compared to LearnedWMP-DNN [-32.9, 24.3]. SingleWMP-DBMS consist of

human static rules which are not evenly distributed between overestimations and un-

derestimations. These rules are intentionally skewed in one direction. In contrast,

65

Table 5.1: Interquartile range (IQR) of residual errors in estimating workload memory
by different models and datasets

Model TPC-DS JOB TPC-C

SingleWMP-DBMS [-2063.8, -461] [1394, 2367] [-1025, -301.5]

SingleWMP-DNN [-29.6, 158.5] [-57.3, 64.7] [-119.9, 77]

SingleWMP-Ridge [-571.0, 665.2] [-52.0, 48.9] [-264.9, 113.6]

SingleWMP-XGB [-83.4, 93.6] [-18.2, 7.2] [-249.2, 114]

SingleWMP-RF [-83.2, 90.7] [-17.5, 5.3] [-87.8, 119.4]

SingleWMP-DT [-83.6, 94.5] [-17.5, 7.6] [-102.7, 156.7]

LearnedWMP-DNN [-92.4, 102.8] [-32.9, 24.3] [-94 , 78.8]

LearnedWMP-Ridge [-80.2, 90.3] [-22.6, 8.9] [-94, 78.8]

LearnedWMP-XGB [-85.5, 101.6] [-36.1, 41.6] [-98.8, 80.6]

LearnedWMP-RF [-352.6, 310.1] [-79.8, 89.2] [-175.5, 235.3]

LearnedWMP-DT [-460.5, 433.8] [-94.6, 173.6] [-231.7, 267.8]

ML-based models learn from historical workflows with instances of both overestimat-

ing and underestimating. Therefore, they learn to calculate memory predictions that

are not skewed in one direction.

66

(a) TPC-DS (b) JOB

(c) TPC-C

Figure 5.4: ML Model Training Latency

LearnedWMP training and inference latency.

Figure 5.4 and 5.5 report the training and inference time for all learned base modes.

Both SingleWMP and LearnedWMP use the same training and testing queries. Specif-

ically, LearnedWMP methods use a histogram representation of the workload as an

intake. In comparison, SingleWMP uses the queries themself as the input. Fig-

ure 5.4 conveys that LearnedWMP training time was faster than SingleWMP. To

illustrate, LearnedWMP-XGB for TPC-C training time was 15.8 ms. A 2x improve-

ment in the training time when compared with SingleWMP-XGB 38 ms time. We

notice similar results when we compare the training time in LearnedWMP versus

SingleWMP methods on the additional two benchmarks, TPC-DS and JOB. The

Ridge model was the only algorithm that demonstrated no significant improvement

in the training time between the LearnedWMP and SingleWMP; However, we do see

67

(a) TPC-DS (b) JOB

(c) TPC-C

Figure 5.5: ML Model Inference Latency

a significant improvement in the inference time. Figure 5.5 illustrates the inference

time results of LearnedWMP and SingleWMP. Similar to the training time results,

we also see a significant improvement in LearnedWMP’s inference time compared to

SingleWMP’s inference time. Specifically, we see an improvement of 3x to 10x accel-

eration when compared to SingleWMP. For example, when examining the TPC-DS

benchmark, the inference time for LearnedWMP-DNN was 87.3 µs. A 10x improve-

ment when compared to the 870.5 µs required by SingleWMP-DNN. Additionally,

LearnedWMP-Ridge had an inference time of 58 µs. Again, a 10x improvement to

the SingleWMP-Ridge 486.9 µs time. We observe similar results across the other

benchmarks.

We can attribute the improvements in training and inference latency to our ap-

proach of developing a prediction process for a workload of queries instead of sin-

gle queries. SingleWMP-based models only process one query at a time, which re-

68

quires a longer computation time for all the queries in a workload. On the other

hand, LearnedWMP-based models process batches of queries simultaneously at once.

Therefore, it can speed up the computation during both training and inference.

69

(a) TPC-DS (b) JOB

(c) TPC-C

Figure 5.6: ML Model Size

LearnedWMP model size.

The model size normally depends on the algorithm itself and the feature space com-

plexity of the training data. Figure 5.6 describes the ML model size of Learned-

WMP and SingleWMP. LearnedWMP-based models performed quite well in all three

benchmarks in comparison to SingleWMP-based models. The LearnedWMP-DNN is

59 percent smaller TPC-DS, 72 percent smaller JOB, and 97 percent smaller TPC-C

when compared to SingleWMP-DNN. We observe the same trend for XGBoost, RF,

and DT.

The improvement of LearnedWMP’s model size, when compared to SingleWMP, is

due to how LearnedWMP functions. LearnedWMP focuses on accepting a workload

as input, whereas SingleWMP has to process one individual query at a time. The

representation of processing the queries at a workload level allows LearnedWMP

70

to reduce the amount of information the model needs to learn during the training

process. In principle, this allows LearnedWMPmodels to be smaller than SingleWMP

models. The exemption to this conclusion was the pipeline with the Ridge model.

Here, LearnedWMP-Ridge was actually larger than the SingleWMP-Ridge. Still, this

outcome was expected. As a linear model, Ridge learns a set of coefficients for each

input feature in the training dataset, and LearnedWMP’s training examples contain

more input features than SingleWMP. LearnedWMP’s input is the distribution of

query templates. Therefore, Ridge has to learn more coefficients when compared to

SingleWMP, causing the model to be larger.

71

Effect of the batch size parameter s

Parameter s is a tunable parameter that represents the size of the batch. In our

experiments, we set the batch size to 10, so s = 10. In this section, we experiment

with different values for s on the TPC-DS dataset. Overall, we test a total of 12

different values for s : [2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50].

Figure 5.7: TPC-DS Dataset: Mean Absolute Percent Error (MAPE) at different
batch sizes

For this test, we generated a training and testing dataset with workloads of different

batch sizes s, and we used the LearnedWMP-XGB model to evaluate the performance

of each batch size. Additionally, we use Mean Absolute Percent Error (MAPE)5.1 to

compare the errors generated by the 12 different batch sizes.

MAPE =
1

N

N∑︂
i=1

| yi − ŷi |
yi

× 100 (5.1)

We choose MAPE over RMSE for this step as RMSE can be impacted by the scale

of the error value. We needed a method to compare the relative performance of models

trained with different batch sizes, and MAPE is more suitable for this task as it is not

impacted by the change in the error scale. Figure 5.1 illustrates the results from the

LearnedWMP-XGB model as a factor of batch size. The figure displays a decreasing

error that sharply decreases and then rounds off where there is not much improvement

afterward. This is typical behavior for a learning algorithm that is reaching optimum

72

prediction. We choose s = 10 for the optimum batch size, as we still get a significant

decrease in MAPE before ten and a small improvement afterward. We have also seen

similar patterns for TPCC and JOB benchmarks. This observation corroborates our

position that batch size prediction is more accurate than single query prediction.

73

Chapter 6

Conclusion and Future Work

6.1 Conclusion

DBMS needs to be able to process the maximum number of SQL queries while using all

available computing resources in the system. Therefore, being able to accurately pre-

dict the resource demand of a batch of queries is highly advantageous for the DBMS.

In this research, we designed, developed, and evaluated the method LearnedWMP

which focuses on predicting the resource demand of query workloads (e.g., batches of

queries). LearnedWMP is a paradigm shift from the state-of-the-art methods, which

focus on estimating the resource demand of only one query at a time. Our proposed

method operates in three main phases. In the first phase, LearnedWMP learns the

query templates from historical queries. Next, In the second phase, LearnedWMP

uses the query templates that it learned in phase one to construct the histograms

from the workloads. Lastly, in the third and last phase, LearnedWMP uses the

histograms to train a predictive model that estimates the memory requirement of a

workload. We model the prediction task as a distribution regression problem. We per-

formed a comprehensive experimental evaluation of the LearnedWMP model against

the state-of-the-practice method of contemporary DBMSs, multiple sensible baselines,

and state-of-the-art methods. Our experiments extend into two OLTP benchmarks

and one OLAP benchmark. Our analysis provides evidence that our proposed method

can significantly improve the memory estimation of the current state-of-the-art tech-

74

niques. Additionally, LearnedWMP performs on par with methods that follow a

single-query-based approach, produces smaller models that are faster to train, and

predicts memory usage during inference to a great extent. We also evaluated different

strategies for learning query templates from historical DBMS queries and performed

parameter sensitivity analysis. Our proposed LearnedWMP model is novel, offers

an alternative perspective to a popular and challenging problem, and can be easily

integrated with major DBMS products. Our proposed LearningWMP method is a

novel approach that offers an alternative perspective on a challenging problem that

can easily be integrated with major database management systems.

6.2 Future Work

A number of directions can be taken for future research in this area. Here we briefly

discuss some of these ideas.

6.2.1 Dataset

Currently, we have used three state-of-the-art benchmarks for LearnedWMP exper-

iments and evaluation. However, there is still the need to test LearnedWMP on an

enterprise database system with real queries. We are currently working with industry

partners to procure the needed dataset and queries.

6.2.2 Resources Prediction

Currently, LearnedWMP is only trained to predict the resource demand of a work-

load’s memory consumption. Future extensions entail being able to predict differ-

ent resource demands, such as CPU and I/O. Additionally, LearnedWMP could be

trained to predict multiple resources simultaneously.

75

6.2.3 Generating Templates

For the generating query templates step, we experimented with two different tech-

niques called cardinality cost aggregation for each operator (CCAEO) and query

plan encoding while maintaining tree structure (QPEWMTS). These two approaches

used the query plan to extract features for the input to the clustering method.

Overall, CCAEO outperformed QPEWMTS in the experimental evaluation due to

QPEWMTS generating large vectors, a 600-length vector for the TPC-DS bench-

mark. QPEWMTS holds great promise as it can maintain the structure of the query

plan. Future works will focus on an improved approach for bringing vectors of dif-

ferent lengths, generated by the depth-first search (DFS) approach, to same-length

vectors. Such approaches could include Natural Language Processing (NLP) tech-

niques, as they are very useful for encoding vectors of different lengths. Future work

in finding query templates could significantly improve the performance of the model.

6.2.4 Deep Learning Model

in our LearnedWMP method, we experiment with five different models for machine

learning, deep learning, and reinforced learning. Future work would entail exploring

additional models such as Recurrent Neural Networks (RNNs), Convolutional Neural

Networks (CNNs), Long Short-Term Memory Networks (LSTMs), Deep Q-Networks,

Deep Deterministic Policy Gradients (DDPG), and more.

76

Bibliography

[1] A. Ganapathi, H. Kuno, U. Dayal, et al., “Predicting multiple metrics for
queries: Better decisions enabled by machine learning,” in 2009 IEEE 25th
International Conference on Data Engineering, IEEE, 2009, pp. 592–603.

[2] X. Zhou, C. Chai, G. Li, and J. Sun, “Database meets ai: A survey,”

[3] X. Zhou, J. Sun, G. Li, and J. Feng, “Query performance prediction for con-
current queries using graph embedding,” Proceedings of the VLDB Endowment,
vol. 13, no. 9, pp. 1416–1428, 2020.

[4] S. S. Quader, N. A. J. Duran, S. Mukhopadhyay, et al., Learning-based workload
resource optimization for database management systems, US Patent 11,500,830,
Nov. 2022.

[5] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality
estimation done right: Index-based join sampling.,” in Cidr, 2017.

[6] R. Marcus and O. Papaemmanouil, “Plan-structured deep neural network mod-
els for query performance prediction,” arXiv preprint arXiv:1902.00132, 2019.

[7] Y. Han, Z. Wu, P. Wu, et al., “Cardinality estimation in dbms: A comprehensive
benchmark evaluation,” arXiv preprint arXiv:2109.05877, 2021.

[8] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig,
“Deepdb: Learn from data, not from queries!” arXiv preprint arXiv:1909.00607,
2019.

[9] Z. Yang, A. Kamsetty, S. Luan, et al., “Neurocard: One cardinality estimator
for all tables,” arXiv preprint arXiv:2006.08109, 2020.

[10] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte, “Cardinality estimation
using neural networks,” in Proceedings of the 25th Annual International Con-
ference on Computer Science and Software Engineering, 2015, pp. 53–59.

[11] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning,” arXiv preprint
arXiv:1809.00677, 2018.

[12] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das, “Deep
learning models for selectivity estimation of multi-attribute queries,” in Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1035–1050.

77

[13] K. Kim, J. Jung, I. Seo, W.-S. Han, K. Choi, and J. Chong, “Learned cardi-
nality estimation: An in-depth study,” in Proceedings of the 2022 International
Conference on Management of Data, 2022, pp. 1214–1227.

[14] G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos, “Query workload-aware
overlay construction using histograms,” in Proceedings of the 14th ACM inter-
national conference on Information and knowledge management, 2005, pp. 640–
647.

[15] W.Wang, M. Zhang, G. Chen, H. Jagadish, B. C. Ooi, and K.-L. Tan, “Database
meets deep learning: Challenges and opportunities,” ACM SIGMOD Record,
vol. 45, no. 2, pp. 17–22, 2016.

[16] G. Lanfranchi, P. Della Peruta, A. Perrone, and D. Calvanese, “Toward a new
landscape of systems management in an autonomic computing environment,”
IBM Systems journal, vol. 42, no. 1, pp. 119–128, 2003.

[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann,
“How good are query optimizers, really?” Proceedings of the VLDB Endowment,
vol. 9, no. 3, pp. 204–215, 2015.

[18] S. Chu, K. Weitz, A. Cheung, and D. Suciu, “Hottsql: Proving query rewrites
with univalent sql semantics,” ACM SIGPLAN Notices, vol. 52, no. 6, pp. 510–
524, 2017.

[19] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “An empirical analysis
of deep learning for cardinality estimation,” arXiv preprint arXiv:1905.06425,
2019.

[20] J. Lu, Y. Chen, H. Herodotou, S. Babu, et al., “Speedup your analytics: Au-
tomatic parameter tuning for databases and big data systems,” Proceedings of
the VLDB Endowment, 2019.

[21] G. Li, X. Zhou, S. Li, and B. Gao, “Qtune: A query-aware database tuning sys-
tem with deep reinforcement learning,” Proceedings of the VLDB Endowment,
vol. 12, no. 12, pp. 2118–2130, 2019.

[22] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in Proceed-
ings of the 2017 ACM international conference on management of data, 2017,
pp. 1009–1024.

[23] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya, “Ai
meets ai: Leveraging query executions to improve index recommendations,” in
Proceedings of the 2019 International Conference on Management of Data, 2019,
pp. 1241–1258.

[24] S. Jain, B. Howe, J. Yan, and T. Cruanes, “Query2vec: An evaluation of nlp
techniques for generalized workload analytics,” arXiv preprint arXiv:1801.05613,
2018.

78

[25] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon,
“Query-based workload forecasting for self-driving database management sys-
tems,” in Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 631–645.

[26] S. Das, F. Li, V. R. Narasayya, and A. C. König, “Automated demand-driven
resource scaling in relational database-as-a-service,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 1923–1934.

[27] D. Paul, J. Cao, F. Li, and V. Srikumar, “Database workload characterization
with query plan encoders,” arXiv preprint arXiv:2105.12287, 2021.

[28] J. Li, A. C. König, V. Narasayya, and S. Chaudhuri, “Robust estimation of re-
source consumption for sql queries using statistical techniques,” arXiv preprint
arXiv:1208.0278, 2012.

[29] J. Sun and G. Li, “An end-to-end learning-based cost estimator,” arXiv preprint
arXiv:1906.02560, 2019.

[30] C. Tang, B. Wang, Z. Luo, et al., “Forecasting sql query cost at twitter,” in
2021 IEEE International Conference on Cloud Engineering (IC2E), IEEE, 2021,
pp. 154–160.

[31] A. S. Higginson, M. Dediu, O. Arsene, N. W. Paton, and S. M. Embury,
“Database workload capacity planning using time series analysis and machine
learning,” in Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, 2020, pp. 769–783.

[32] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance and resource
modeling in highly-concurrent oltp workloads,” in Proceedings of the 2013 acm
sigmod international conference on management of data, 2013, pp. 301–312.

[33] H. C. L. Law, D. J. Sutherland, D. Sejdinovic, and S. Flaxman, “Bayesian
approaches to distribution regression,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2018, pp. 1167–1176.

[34] R. Li, B. J. Reich, and H. D. Bondell, “Deep distribution regression,” Compu-
tational Statistics & Data Analysis, vol. 159, p. 107 203, 2021.

[35] Y. Mao, L. Shi, and Z.-C. Guo, “Coefficient-based regularized distribution re-
gression,” arXiv preprint arXiv:2208.12427, 2022.

[36] B. Póczos, A. Singh, A. Rinaldo, and L. Wasserman, “Distribution-free distribu-
tion regression,” in Artificial Intelligence and Statistics, PMLR, 2013, pp. 507–
515.

[37] S. Chaudhuri, A. K. Gupta, and V. Narasayya, “Compressing sql workloads,”
in Proceedings of the 2002 ACM SIGMOD international conference on Man-
agement of data, 2002, pp. 488–499.

[38] T. Xie, V. Chandola, and O. Kennedy, “Query log compression for workload
analytics,” Proceedings of the VLDB Endowment, vol. 12, no. 3,

79

[39] G. Gan, C. Ma, and J. Wu,Data clustering: theory, algorithms, and applications.
SIAM, 2020.

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[41] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Advances in
neural information processing systems, vol. 26, 2013.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[43] V. H. Makiyama, M. J. Raddick, and R. D. Santos, “Text mining applied to sql
queries: A case study for the sdss skyserver.,” in SIMBig, 2015, pp. 66–72.

[44] G. Kul, D. T. A. Luong, T. Xie, V. Chandola, O. Kennedy, and S. Upadhyaya,
“Similarity metrics for sql query clustering,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 12, pp. 2408–2420, 2018.

[45] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa, “Plan selection based on
query clustering,” in VLDB’02: Proceedings of the 28th international conference
on very large databases, Elsevier, 2002, pp. 179–190.

[46] M. Dash, H. Liu, and X. Xu, “’1+ 1¿ 2’: Merging distance and density based
clustering,” in Proceedings Seventh International Conference on Database Sys-
tems for Advanced Applications. DASFAA 2001, IEEE, 2001, pp. 32–39.

[47] C. M. Bishop, “Training with noise is equivalent to tikhonov regularization,”
Neural computation, vol. 7, no. 1, pp. 108–116, 1995.

[48] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning (adaptive compu-
tation and machine learning series),” 2016.

[49] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you
need,” arXiv preprint arXiv:2106.03253, 2021.

[50] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised
learning algorithms,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 161–168.

[51] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[52] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent advances
in recurrent neural networks,” arXiv preprint arXiv:1801.01078, 2017.

[53] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances
in neural information processing systems, vol. 30, 2017.

[54] K. P. Murphy, Probabilistic machine learning: an introduction. MIT press, 2022.

[55] G. James, D. Witten, T. Hastie, and R. Tibshirani, “An introduction to statis-
tical learning, vol 112 springer,” New York, 2013.

80

[56] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[58] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,”
Journal of machine learning research, vol. 13, no. 2, 2012.

[59] S. Raschka, Python Machine Learning Ed. 3. Packt Publishing, 2019.

[60] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[61] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, 2016, pp. 785–794.

[62] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c benchmark,”
ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.

[63] R. O. Nambiar and M. Poess, “The making of tpc-ds.,” in VLDB, vol. 6, 2006,
pp. 1049–1058.

[64] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable
k-means++,” Proceedings of the VLDB Endowment, Vol. 5, No. 7, 2012.

81

	Abstract
	Acknowledgments
	Co-Authorship
	Table of Contents
	List of Tables
	List of Figures
	Chapter Introduction and Background
	Introduction
	The State of the Practice & Limitations
	The State of the Art & Limitations
	Our Approach
	Contributions

	Chapter Literature Review
	ML for Database
	ML for Cardinality Estimation
	ML for Database Configuration Tuning
	ML for Database Indexing Selection
	ML for Arrival Rate Prediction
	ML for Query Performance Prediction
	ML for Query Resource Cost Estimation
	ML for Query-based Workload
	Comparative Analysis of ML Techniques for Databases and LearnedWMP

	ML for Distribution Regression Problems

	Chapter Preliminaries and Problem Definition
	Modelling of the Problem as a Distribution Regression Problem

	Chapter Methodology
	High-level Overview of the ML Pipeline
	Users and the Database
	Training Stage
	Inference Stage

	Training Stage Phase 1: Learning Query Templates
	Learning Rule-based Query Templates
	Learning Clustering-based Query Templates

	Training Stage Phase 2: Constructing Histograms from Workloads
	Training Stage Phase 3: Training a Distribution Regression Deep Learning Model
	Multilayer Perceptron (MLP) Model
	Activation Function
	Loss Function
	Optimizer
	Hyperparameter Tuning of the MLP Model
	Other Machine Learning Methods

	LearnedWMP: Inference Stage

	Chapter Experimental Evaluation
	Experimental Setup
	Environment
	Datasets
	Workload

	Experimental Evaluation and Discussion
	Learning Query Templates Performance
	An Evaluation of the Learning Query Template Strategies
	Learning Batch Memory Performance

	Chapter Conclusion and Future Work
	Conclusion
	Future Work
	Dataset
	Resources Prediction
	Generating Templates
	Deep Learning Model

	Bibliography

