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Abstract

Large-scale network mining and analysis is key to revealing the underlying dynamics of

networks, not easily observable before. Lately, there is a fast-growing interest in learning

low-dimensional continuous representations of networks that can be utilized to perform

highly accurate and scalable graph mining tasks. A family of these methods is based on

performing random walks on a network to learn its structural features before feeding the

sequence of random walks in a deep learning architecture to learn a network embedding.

While these methods perform well, they can only operate on static networks. However, in

real-world, networks are evolving, as nodes and edges are continuously added or deleted.

As a result, any previously obtained network representation will now be outdated having

an adverse effect on the accuracy of the network mining task at stake. The naive approach

to address this problem is to re-apply the embedding method of choice every time there is

an update to the network. But this approach has serious drawbacks. First, it is inefficient,

because the embedding method itself is computationally expensive. Then, the network

mining task outcome obtained by the subsequent network representations are not directly

comparable to each other, due to the randomness involved in the new set of random walks

involved each time. In this research, we propose a random-walk based method for learning
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representations of evolving networks (EVONRL). The key idea of our approach is to main-

tain a set of random walks that are consistently valid with respect to the updated network

topology. That way we are able to continuously learn a new mapping from the evolving

network to a low-dimension network representation, by only updating a small number of

random walks required to re-obtain an embedding. Moreover, we present an analytical

method for determining the right time to obtain a new representation of the evolving net-

work balancing accuracy and time performance. A thorough experimental evaluation is

performed that demonstrates the effectiveness of our method against sensible baselines, for

a varying range of conditions.
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1 Introduction

Network science, built on the mathematics of graph theory, leverage network structures to

model and analyze pairwise relationships between objects (or people) [31]. With a growing

number of networks – social, technological, biological – becoming available and represent-

ing an ever increasing amount of information, the ability to easily and effectively perform

large-scale network mining and analysis is key to revealing the underlying dynamics of

these networks, not easily observable before. Traditional approaches to network mining

and analysis inherit a number of limitations. First, networks are typically represented as

adjacency matrices, which suffer from high-dimensionality and data sparsity issues. Then,

network analysis typically requires domain-knowledge in order to carry out the various

steps of network data modeling and processing that is involved, before (multiple iterations

of) analysis can take place. An ineffective network representation along with a require-

ment for domain expertise, render the whole process of network mining cumbersome for

non-experts and limits their applicability to smaller networks.
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1.1 State-of-the-art and Limitations

To address the aforementioned limitations, there is a growing interest in learning low-

dimensional representations of networks, also known as network embeddings. These repre-

sentations are learned in an agnostic way (without domain-expertise) and have the potential

to improve the performance of many downstream network mining tasks that now only need

to operate in lower dimensions. Example tasks include node classification, link prediction

and graph reconstruction [46], to name a few. Network representation learning methods

are typically based on either a graph factorization or a random-walk based approach. The

graph factorization ones (e.g., GraRep [8], TADW [48], HOPE [33]) are known to be mem-

ory intensive and computationally expensive, so they don’t scale well. On the other hand,

random-walk based methods (e.g., DeepWalk [36], node2vec [14]) are known to be able to

scale to large networks. A comprehensive coverage of the different methods can be found

in the following surveys [7] [16] [51].

A major shortcoming of these network representation learning methods is that they can

only be applied on static networks. However, in real-world, networks are continuously

evolving, as nodes and edges are added or deleted over time. As a result, any previously

obtained network representation will now be outdated having an adverse effect on the ac-

curacy of the data mining task at stake. In fact, the more significant the network topology

changes are, the more likely it is for the mining task to perform poorly. One would ex-

pect though that network representation learning should account for continuous changes in

the network, in an online mode. That way, (i) the low-dimensional network representation
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could continue being employed for downstream data mining tasks, and (ii) the results of the

mining tasks obtained by the subsequent network representations would be comparable to

each other. Going one step further, one would expect that while obtaining the network rep-

resentation at any moment is possible, the evolving network representation learning frame-

work suggest the best time to obtain the representation based on the upcoming changes in

the network.

1.2 Research Objective

The main objective of this thesis is to develop methods for learning representations of

evolving networks. The focus of our work is on random-walk based methods that are known

to scale well. The naive approach to address this problem is to re-apply the random-walk

based network representation learning method of choice every time there is an update to the

network. But this approach has serious drawbacks. First, it will be very inefficient, because

the embedding method is computationally expensive and it needs to run again and again.

Then, the data mining results obtained by the subsequent network representations are not

directly comparable to each other, due to the differences involved between the previous and

the new set of random walks, as well as, the non-deterministic nature of the deep learning

process itself (see chapter 3 for a detailed discussion). Therefore the naive approach would

be inadequate for learning representations of evolving networks.

In contrast to the naive approach, we propose a random-walk based method for learning

representations of evolving networks. The key idea of our approach is to design efficient
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methods that are incrementally updating the original set of random walks in such a way

that it always respects the changes that occurred in the evolving network. As a result, we

are able to continuously learn a new mapping function from the evolving network to a

low-dimension network representation, by only updating a small number of random walks

required to re-obtain the network embedding. The advantages of this approach are multi-

fold. First, since the changes that occur in the network topology are typically local, only a

small number of the original set of random walks will be affected, giving rise to substantial

time performance gains. In addition, since the network representation will now be contin-

uously informed, the accuracy performance of the network mining task will be improved.

Furthermore, since the original set of random walks is maintained as much as possible,

subsequent results of the mining tasks will be comparable to each other.

1.3 Contributions

In summary, the major contributions of this work include:

• a systematic analysis that illustrates the instability of the random-walk based network

representation methods and motivates our work.

• an algorithmic framework for efficiently maintaining a valid set of random walks

with respect to the changes that occur in the evolving network topology. The frame-

work treats random walks as “documents” that are indexed using an open-source

distributed indexing and searching library. Then, the index allows for efficient ad

hoc querying and update of the collection of random walks in hand.
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• a novel algorithm, EVONRL, for Evolving Network Representation Learning based

on random walks, which offers substantial time performance gains without loss of ac-

curacy. The method is generic, so it can accommodate the needs of different domains

and applications.

• an analytical method for determining the right time to obtain a new representation of

the evolving network. The method is based on adaptive evaluation of the the degree

of divergence between the most recent random-walk set and the random-walk set

utilized in the most recent network embedding. The method is tunable so it can be

adjusted to meet the accuracy/sensitivity requirement of different domains, therefore

can provide support for a number of real-world applications.

• a thorough experimental evaluation on synthetic and real data sets that demonstrates

the effectiveness of our method against sensible baselines, for a varying range of

conditions.

An earlier version of this work appeared in the proceedings of the International Con-

ference on Complex Networks and their Applications 2018 [17]. The conference version

addressed only the case of adding new edges. The current version extends the problem to

the cases of deleting existing edges, adding new nodes and deleting existing nodes. In ad-

dition, it provides an analytical method that aims to provide support to the decision making

process of when to obtain a new network embedding. This decision is critical as it can

effectively balance accuracy versus time performance of the method extending its applica-

bility in domains of diverse sensitivity. In addition, it provides further experiments for the
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additional cases that offer substantial, new insights of the problem’s complexity and the

performance of our EVONRL method.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: After reviewing the related work in the

following chapter 2, chapter 3 provides background and motivates our problem. Chapter

4 presents our algorithmic framework for efficiently indexing and maintaining a valid set

of random walks. Our evolving network representation method and analytical method for

obtaining new representations of the evolving network are presented in chapter 5. Chapter

6 presents the experimental evaluation of our methods and in chapter 7, we conclude our

work.
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2 Related Work

The recent success of neural networks has resulted in a significant progress in pattern recog-

nition and data mining. Many machine learning tasks such as object detection, machine

translation, and speech recognition, which once relied on feature engineering, has been re-

cently revolutionized by end-to-end deep learning methods, i.e., convolutional neural net-

works (CNNs) [24], long short-term memory (LSTM) [18], and auto-encoders [47]. While

deep learning methods has been particularly successfull in dealing with data which there is

an underlying Euclidean structure, recently there has been a growing interest in trying to

apply learning on non-Euclidean data, i.e., graph data. To handle the complexity of graph

data, new generalization and methods has been rapidly developed. As a generalization of

standard 2D convolution, graph neural networks operate on graphs. In 2D convolution,

analogous to the graph, each pixel in an image is taken as a node where neighbours are

determined by filter size. Similarly, graph convolution takes the average value of node fea-

tures of the node along with its neighbours. Different from image data, the neighbours of

a node are unordered and variable in size. While graph neural networks have proven to be

successful in the downstream task, they are not scalable and perform better in supervised

data-mining. On the other hand, random-walk based methods, inspired by the word2vec’s
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skip-gram model of producing word embeddings [29], try to establish an analogy between

a network and a document. While a document is an ordered sequence of words, a network

can be effectively described by a set of random walks. It is important to note that there

are many possible sampling strategies for nodes, resulting in different learned feature rep-

resentations. Different strategies work better for specific prediction tasks. The methods

we present are orthogonal to what features the random walks aim to learn, therefore they

can accommodate most of the existing random-walk based network representation learn-

ing methods. In fact, we just need to continuously maintain a set of random walks. Our

work is mostly related to research in the area of static network representations learning and

dynamic network representation learning. It is also related to research in random walks.

2.1 Static Network Representations Learning

Network embedding aims to represent network vertices into a low-dimensional vector

space, by preserving both network topology structure and node content information, so

that any subsequent graph analytic tasks such as classification can be easily performed

by using simple off-the-shelf machine learning algorithm. Starting with DeepWalk [36],

these methods use finite length random walks as their sampling strategy and inspired by

word2vec [29] use skip-gram model to maximize likelihood of observing a node’s neigh-

borhood given its low dimensional vector. This neighborhood is based on random walks.

LINE [44] proposes a breadth-first sampling strategy which captures first-order proximity

of nodes. In [14], authors presented node2vec that combines LINE and DeepWalk as it
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provides a flexible control of random walk sampling strategy. HARP [10] extends random

walks by performing them in a repeated hierarchical manner. Also there have been further

extensions to the random walk embeddings by generalizing either the embeddings or ran-

dom walks [9] [37]. Role2Vec [2] maps nodes to their type-functions and generalizes other

random walk based embeddings.

2.2 Dynamic Network Representation Learning

Existing work on embedding dynamic networks often apply static embedding to each snap-

shot of the network and then rotationally align the static embedding across each time-

stamp [15]. Graph factorization approaches attempted to learn the embedding of dynamic

graphs by explicitly smoothing over consecutive snapshots [1]. DANE [26] is a dynamic

attributed network representation framework which first proposes an offline embedding

method, then updates the embedding results based on the changes in the attributed evolv-

ing network. Know-Evolve [45] proposes an evolving network embedding method in a

knowledge-graph for entity embeddings based on multivariate event detection. CTDN [32]

is a random walk-based continuous-time dynamic network embedding. Authors propose

a temporal random walk on the network and the adjacency of nodes in the random walks

refers to their adjacency in the network and in time both. The main drawback of this method

is that you have to collect all snapshots of the network and then perform temporal random

walks on them and it is not an online representation learning method.HTNE [52] tries to

model the temporal network as a self-excited system and using Hawkes process model
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neighbourhood formation in the network and optimize the embedding based on point-time

process. HTNE is an online dynamic network embedding framework. It uses history in

its optimization and it needs to be tuned for history in each step. Moreover it uses an

attention mechanism to discriminate effect of different neighbours on the target node. Net-

Walk [50] is a random walk based clique embedding. First in NetWalk, the reservoir is in

memory which finds the next step based on the reservoir and it doesn’t use any sampling

method or inverted-indexing tools. In [12], authors propose a dynamic skip-gram frame-

work. A time parameter has been added to skip-gram main optimization equation based

on the application different time-stamped sentences can be fed into the neural network and

the representation will respect their time. [42] proposes a dynamic word embedding which

uses Gaussian random walks to project the vector representations of words over time.

2.3 Random Walks

Our work is also related to general concept of random walks on networks [27] and its appli-

cations [11, 34]. READS [20] is an indexing scheme for Simrank computation in dynamic

graphs which kepng an online set of reverse-random walks and re-simulates the walks on

all of the instances of the node queries. Our proposed method, kepng a set of finite-length

random walks which is different from pagerank random walks and has a different sampling

strategy and application compared to READS. Another aspects of random walk used in

streaming data are continuous-time random walks [21]. CTRW are widely studied in time-

series analysis and has applications in Finance [35]. CTRW is orthogonal to our work as
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we are not using time-variant random walks and our random walks do not jump over time.
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3 Background and Motivation

As mentioned earlier, there are many different approaches for static network embedding.

A family of these methods is based on performing random walks on a network. Random-

walk based methods, inspired by the word2vec’s skip-gram model of producing word em-

beddings [29], try to establish an analogy between a network and a document. While a

document is an ordered sequence of words, a network can effectively be described by a set

of random walks (i.e., ordered sequences of nodes). Typical examples of these algorithms

include DeepWalk [36] and node2vec [14]. In fact, the latter can be seen as a generaliza-

tion of the former, as node2vec can be configured to behave as DeepWalk. We collectively

refer to these methods as StaticNRL for the rest of the manuscript. A typical StaticNRL

method, is operating in two stpng:

(i) a set of random walks, say walks, is collected by performing r random walks of

length l starting at each node in the network (typical values are r = 10, l = 80).

(ii) walks are provided as input to an optimization problem that is solved using variants

of Stochastic Gradient Descent using a deep neural network architecture [5]. The

context size employed in the deep learning phase is k (typical value is k = 5). The
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outcome is a set of d-dimensional representations, one for each node.

These representations are learned in an unsupervised way and can be employed for a num-

ber of predictive tasks. It is important to note that there are many possible strategies for

performing random walks on nodes of a network, resulting in different learned feature

representations and different strategies might work better for specific prediction tasks. The

evolving network representation learning framework is orthogonal to what features the ran-

dom walks aim to learn, therefore they can accommodate most of the existing random-walk

based network representation learning methods.

3.1 Evaluation of the Stability of StaticNRL Methods

In this paragraph, we present a systematic evaluation of the stability of the StaticNRL

methods, similar to the one presented in [3]. The evaluation aims to motivate our approach

to address the problem of interest. Intuitively, a stable embedding method is one in which

successive runs of it on the same network would learn the same (or similar) embedding.

Our interest for such an evaluation is stemming from the fact that StaticNRL methods are

to a great degree dependent on two random processes: (i) the set of random walks collected,

and (ii) the initialization of the parameters of the optimization method. Both factors can be

a source of instability for the StaticNRL method.

Comparing two embeddings can happen either by measuring their similarity or by mea-

suring their distance. Let us introduce the following measures of instability:

• Cosine Similarity: Cosine similarity is a popular similarity measure for real-valued
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vector space models. It can also been used to compare two network embeddings

using the pairwise cosine similarity on the learned d-dimensional representations

[15, 22]. Formally, given the vector representations ni and n′i of the same node ni

in two different network embeddings obtained at two different attempts, their cosine

similarity is represented as:

sim(ni,n′i) = cos(θ) =
ni ·n′i
‖ni‖‖n′i‖

We can extend the similarity to two network embeddings E and E ′ by summing and

normalizing over all nodes:

sim(E,E ′) =
∑i∈V sim(ni,n′i)

|V |

• Matrix Distance: Another possible way is to obtain the distance between two network

embeddings by subtracting the matrices that represent the embeddings of all nodes,

similarly to the approach followed in [13]. Formally, given a graph G = (V,E), a

network embedding is a mapping f : V → Rd , where d � |V |. Let F(V ) ∈ R|V |×d

be the matrix of all node representations. Then, we can define the following distance

measure for the two network embeddings E, E ′:

distance(E,E ′) = ||F ′(V )−F(V )||F
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3.2 Experimental Scenario

We design a controlled experiment on two real-world networks, namely Protein-Protein-

Interaction (PPI) [6] and a collaboration network (dblp) [49] that aims to evaluate the effect

of the two random processes in the final network embeddings. In these experiments, we

have three settings. For each setting, we run StaticNRL on a network (using parameter

values: r = 10, l = 10, k = 5) two consecutive times, say t and t+1, and compute the cosine

similarity and the matrix distance of the two network embeddings Et , Et+1 obtained. We

repeat the experiment 10 times and report averages. The three settings are:

• StaticNRL Each run collects independent random walks and random weights are used

in the initialization phase.

• StaticNRL-i Each run collects independent random walks but employs the same set

of weights for the initialization phase, over all runs. The purpose is to eliminate one

of the random processes.

• StaticNRL-rw-i Each run employs the same set of random walks and the same set of

weights for the initialization phase, over all runs. The purpose is to eliminate both

random processes.

3.3 Results

The results of the experiment are shown in Fig. 3.1a (cosine similarity) and Fig. 3.1b

(matrix distance). They show that the set of random walks and the randomized initialization
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(a) cosine similarity (b) matrix distance

Figure 3.1: Instability of the StaticNRL methods. Controlled experiments on running Stat-
icNRL multiple times on the same network depict that the network representations learned
are not stable, as a result of random initialization and random walks collected. When any of
these random processes are fixed, then the network representations learned become more
stable.

of the deep learning process have a significant role in moving the embedding despite the

fact that there is no actual change in the topology of the network. As a matter of fact, when

the same set of random walks and the same initialization is used then consecutive runs of

StaticNRL result in the same embedding (as depicted by the sim(·, ·) = 1 in Fig 3.1a or

distance(·, ·) = 0 in Fig. 3.1b). However, when the set of random walks is independent or

both the random walks and the initialization are independent then substantial differences

are illustrated in consecutive runs of the StaticNRL methods.

3.4 Implications

Let us start by noting that the implications of the experiment is not that StaticNRL is not

useful. In fact, it has been shown to work very well. The problem is that while each in-
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dependent embedding is inherently correct and has approximately same performance in

downstream data mining task, these embeddings are not directly comparable to each other.

In reality, the embeddings will be approximately equivalent if we are able to rotation-

ally align them — most of similar work in the literature correct this problem by applying

an alignment method [15]. While alignment methods can bring independent embeddings

closer and eliminate the effect of different embeddings, this approach won’t work well

in random walk based models. The main reason for that is that as we have showed in

the experiment, consecutive runs suffer from instability that is introduced by the random

processes. Therefore, in the case of evolving networks (which is the focus of this work),

changes that occur in the network topology will not be easily interpretable in the changes

observed in the network embedding (since differences might incorporate changes due to

the two random processes). However, changes in the evolving network need to be propor-

tional to the changes in the learned network representation. For instance, minor changes

in the network topology should cause small changes in the representation, and significant

changes in the network topology should cause large changes in the network representation.
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4 Algorithmic Framework of Dynamic Random Walks

In chapter 3, we have established the instability of random-walk based methods even when

they are repeatedly applied to the same static network. That observation alone highlights

the main challenge of employing these methods for learning representations of evolving

networks. In this chapter we describe a general algorithmic framework and novel meth-

ods for incrementally updating the set of random walks obtained on the original network

Gt(Vt ,Et) at time t so that they remain valid to the updated network Gt ′(Vt ′ ,Et ′) at time

t ′, where t ′ > t. This is the updated set of random walks could have been obtained by

performing random walks on the updated network. The framework we describe is generic

and can be used in any random walk-based embedding method. The first part of the chap-

ter presents algorithms for incrementally updating the set of random walks in hand, as

edges and/or nodes are added to and/or deleted from the evolving network. The second

part, presents an indexing mechanism that supports the efficient storage and retrieval (i.e.,

querying, insert, update, deletion operations) of the set of random walks that are used for

learning subsequent representations of the evolving network. A summary of notations is

provided in Table 4.

18



Table 4.1: Summary of notations used in dynamic random walk framework
Notations Descriptions

Gt Network at time t
Vt Network’s vertices at time t
Et Network’s edges at time t

Gt+1 Network at time t +1
E+ A set of the new edges
V+ A set of the new nodes
di

t Degree of nodei at time t
l Length of a random walk

lsim Length of a simulated random walk
r Number of random walks per node

RWt A set of random walks at time t
nodei A node ∈ Vt

ei j A new edge (nodei, node j)
Indi The position of nodei in a random walk wk

walksi Walks that contain nodei

4.1 Incremental Update of Random Walks

Given a network Gt = (Vt ,Et) at time t, we employ a standard StaticNRL method1 to sim-

ulate random walks. This method is configured to perform r random walks per node, each

of length l (default values are r = 10 and l = 80). Let RWt be the set of random walks ob-

tained, where |RWt |= |Vt |×r. We store the random walks in memory, using a data structure

that provides random access to its elements (i.e., a 2-D numpy matrix2). In practice,

each finite-length random walk is stored as a row of a matrix, and each matrix element

represents a single node of the network that is traversed by a random walk.

As we monitor changes in the evolving network, there are four distinct events that need

to be addressed: i) edge addition, ii) edge deletion, iii) node addition, and iv) node deletion.

1node2vec — code is available at https://github.com/aditya-grover/node2vec
2NumPy — https://www.numpy.org/
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These events can affect the network topology (and the set of random walks in hand) in

different ways, therefore they need to be studied separately. First, we provide details of the

edge addition and edge deletion events. This will bring up the challenges that need to be

addressed in updating random walks and will introduce our main methods. Then, we visit

node addition and node deletion and show that they can be treated as special cases of edge

addition and edge deletion, respectively.

4.1.1 Edge Addition

Assume that a single new edge ei j = (nodei,node j) arrives in the network at time t + 1,

so Et+1 = Et ∪ (nodei,node j). There are two operations that need to take place in order to

properly update the set RWt of the random walks in hand:

• Operation 1: contain the new edge to existing random walks in RWt .

• Operation 2: discard obsolete parts of random walks of RWt and replace them with

new random walks to form the new RWt+1.

Details of each operation are provided in the next paragraphs.

Operation 1: Contain a New Edge in RW We want to update the set RWt to contain

the new edge (nodei,node j). The update should occur in a way that it represents a valid

instance of a possible random walk on Gt+1, and at the same time, it preserves the previous

set of random walks RWt , as much as possible (to maintain network embedding stability).

Note that due to the way that the original set of random walks was obtained, both nodei and
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(a) Example addition of a new edge (1,4). Random
walks need to be updated to remain valid with re-
spect to the new edge in the network. Our method
guarantees that the new edge is equally represented
in the updated set of random walks.

(b) Example deletion of an existing edge (1,4).
Random walks need to be updated to remain
valid with respect to the deleted edge in the net-
work. In this example, random walk #2 and #4
traverse edge (1,4) and need to be updated.

Figure 4.1: Illustrative example of EVONRL updates for edge addition and edge deletion
(colored)

node j will occur in a number of random walks of RWt . We explain the update process for

nodei; the same process is followed for node j. First, we need to find all the random walks

walksi ∈RWt that include nodei. Then, we need to update them so as to reflect the existence

of the new edge (nodei,node j). In practice, the new edge offers a new possibility for each

random walk in Gt+1 that reaches nodei to traverse node j in the next step. The number of

these random walks that include (nodei,node j) depends on the node degree of nodei and

it is critical for correctly updating random walks in RW . Formally, if the node degree of

nodei in Gt is dt then in Gt+1 it will be incremented by one, dt+1 = dt + 1. Effectively, a

random walk that visits nodei in Gt+1 would have a probability 1
dt+1

to traverse node j. This

means that if there are f reqi occurrences of nodei in RWt , then f reqi
dt+1

edges (nodei,node j)

need to be contained, by setting the next node of nodei to be node j, in the current random

walk. If nodei is the last node in a random walk then, there is no need to update the new

edge in that random walk.
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Naive approach: The naive approach to perform the updates is to visit all f reqi occurrences

of nodei in walksi ∈ RW and for each of them to decide whether to perform an update of

the random walk (or not), by setting the next node to be node j. The decision is based on

tossing a biased coin, where with probability psuccess =
1

dt+1
we update the random walk,

and with probability p f ailure = 1− psuccess we do not. While this method is accurate, it is

not efficient as all occurrences of nodei need to be examined, when only a portion of them

needs to be updated.

Faster approach: A more efficient way is to find all the f reqi occurrences of nodei, and

then to uniformly at random sample f reqi
dt+1

of them and update them by setting the next node

to be node j. While this method will be faster than the naive approach, it still resides on

finding all the f reqi occurrences of nodei in the set of random walks RW , which is an

expensive operation. We will soon describe how this method can be accelerated by using

an efficient indexing library that allows for fast querying and retrieval of all occurrences a

node in random walks.

Operation 2: Replace Obsolete Random Walks Once a new edge (nodei,node j) is con-

tained in an existing random walk, it renders the rest of it obsolete, so it is best to be

avoided. Our approach is to replace the remainder of the random walk by simulating a

new random walk on the updated network Gt+1. The random walk starts at node j and has a

length lsim = l−(Indi+1), where Indi,0≤ Indi ≤ l−1, is the index of nodei in the random

walk that is currently updated. Once updates for nodei have been performed, the updates

that are due to node j are computed and performed.
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Fig. 4.1a presents an illustrative example of how updates of random walks work, in

the case of a single incoming edge on a simple network. First, a set of random walks RWt

are obtained (say 5 as illustrated by the upper lists of random walks). Let us assume that

a new edge (1,4) arrives. Note that now, the degree of node 1 and node 2 will increase

by 1 (dt+1 = dt + 1). Because of the new edge, some random walks need to be updated

to account for the change in the topology. To perform the updates, we first search for all

occurrences of i, f reqi. Then, we uniformly at random sample f reqi
dt+1

= 2/2 = 1 of them to

determine where to contain the new edge. In the example, node 4 is listed after node 1 (i.e.,

the second node in the random walk #4 is now updated). The rest of the current random

walk is obsolete, so it needs to be replaced. To perform the replacement a new random

walk is simulated on the updated network Gt+1 that starts at node 4 and has a length of

lsim = l− (Ind1 + 1) = 10− (0+ 1) = 9. The same process is repeated for node 4 of the

added edge (1,4) (see the updates in random walks #2 and #5, respectively).

The details of the proposed algorithm are described in Algorithm 1. Lines 2 and 12

of the algorithm invoke a Query operator. This operator is responsible for searching and

retrieving information about all the occurrences of nodei in the random walks set RWt .

In addition, lines 11 and 21 of the algorithm invoke a UpdateRandomWalks operator.

This operator is responsible for updating any obsolete random walks of RWt with the up-

dated ones to form the new set of random walks RWt+1, valid to Gt+1. However, these

operators are very computationally expensive, especially for larger networks, and there-

fore will perform very poorly. In paragraph 4.2, we describe how these two slow operators,
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Algorithm 1 Update RW — edge addition
1: procedure UPDATEWALKS

2: walksi← Query(nodei)
3: pi← 1

di
t+1

4: p j← 1
d j

t+1
5: si← Sample(walksi, pi)
6: if len(si)> 0 then
7: for wk in si do
8: Indi← Position(nodei, wk)
9: lsim = l− (Indi +1)

10: wk[Indi+1:]← SimulateWalk(node j, lsim)

11: UpdateRandomWalks()
12: walks j← Query(node j)
13: s j← Sample(walks j, p j)
14: if len(s j)> 0 then
15: for wk in s j do
16: Ind j← Position(node j, wk)
17: lsim = l− (Ind j +1)
18: wk[Ind j+1:]← SimulateWalk(nodei, lsim)

19: if di
t == 0 then

RW += SimulateWalk (nodei, l)
20: if d j

t == 0 then
RW += SimulateWalk (node j, l)

21: UpdateRandomWalks()

UpdateRandomWalks and Query, can be replaced by similar operators offered off-the-

shelf by high performance indexing and searching open-source technologies. In addition,

so far, we have relied on maintaining the set of random walks RWt in memory. However,

this is unrealistic for larger networks — while storing a network in memory as an edge list

requires O(E), storing the set of random walks requires O(V · r · l) that is typically much

larger for sparse networks. The indexing and searching technologies we will employ are

very fast and at the same time are designed to scale to very large number of documents.

Therefore, they are in position to scale well to very large number of random walks.
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To accommodate a set of new edges E+, the same algorithm needs to be applied repeat-

edly. The main assumption is that edges become available in a temporal order (a stream of

edges), which is a common assumption for evolving networks. The premise of our method

is that every time, only a small portion of the random walks need to be updated, therefore

large performance gains are possible, without any loss in accuracy. In fact, the number of

random walks affected depends on the node centrality of the nodes nodei and node j that

form the new edge (nodei,node j). While our approach suggests that a new representation is

required every time a single change occurs in the network that is not the case in real-world

use cases. In fact, in paragraph 5.2, we provide an analytical method for determining the

right time to obtain a new representation of the evolving network. As will see the method

is based on an adaptive evaluation of the the degree of divergence between the most recent

random-walk set and the random-walk set utilized in the most recent network embedding.

The method is tunable so it can be adjusted to meet the accuracy/sensitivity requirement of

different domains, therefore can provide support for a number of real-world applications.

We discuss also the implications of this issue to the time performance of the method in

chapter 6.

4.1.2 Edge Deletion

Assume a single existing edge ei j = (nodei,node j) is deleted from the network. Similar to

edge addition, there are two operations that need to take place:
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Algorithm 2 Update RW — edge deletion
1: procedure UPDATEWALKS

2: walks← Query(nodei,node j)
3: for wk in walks do
4: Indi← Position(nodei, wk)
5: lsim = l− (Indi +1)
6: wk[Indi+1:]← SimulateWalk(nodei, lsim)
7: UpdateRandomWalks()
8: walks← Query(node j,nodei)
9: for wk in walks do

10: Ind j← Position(node j, wk)
11: lsim = l− (Ind j +1)
12: wk[Ind j+1:]← SimulateWalk(node j, lsim)

13: if di
t+1 == 0 then . disconnected nodei

14: Remove from RW walks starting with nodei

15: if d j
t+1 == 0 then . disconnected node j

16: Remove from RW walks starting with node j

17: UpdateRandomWalks()

• Operation 1: delete the existing edge from current random walks in RWt by removing

any consecutive occurrence of edge’s endpoints in the set.

• Operation 2: discard obsolete parts of random walks of RWt and replace them with

new random walks to form the new RWt+1.

Details of each operation are provided in the next paragraphs.

Operation 1: Delete an Existing Edge from RW In edge deletion, unlike with the case of

edge addition (where we had to sample over all the occurrences of a specific node), all the

walks that have traversed the existing edge (nodei,node j) should be modified because all

of them are now invalid. Other than that, the rest of the process is similar to that of edge ad-

dition. First, all random walks that have occurrences of (nodei,node j) and (node j,nodei)
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need to be retrieved. Then, the retrieved random walks need to be modified according to

the method described in 4.1.1. Algorithm 2 describes this procedure in detail. Fig. 4.1b

presents an illustrative example of updates that need to take place due to a single edge

deletion. First, a set of random walks are obtained. Let us assume that a new edge (1,4)

is deleted, therefore random walks that traverse it, need to be updated. First, we retrieve

random walks where node 1 and node 4 occur the one right after the other. For example, in

random walk #4 of Figure 4.1b, node 4 appears right after 1. Since now that edge doesn’t

exist anymore in the network, we need to update the random walk so as to allow a valid

neighbor of node 1 to appear after node 4. This action is performed in operation 2.

Operation 2: Replace Obsolete Random Walks This operation is similar to the one in

the case of adding a new edge. We just need to replace the remainder of any random walk

affected by theOperation 1 by simulating a new random walk on the updated network Gt+1

of the right length. Following up with the running example, to perform the replacement of

the obsolete random walk, a new random walk is simulated on network Gt+1 that starts at

node 1 and has a length of lsim = l− (Ind1 +1) = 10− (0+1) = 9.

A Note About Disconnected Nodes: During the process of deleting edges, any of the edge

nodes might be disconnected from the rest of the network, forming isolated nodes. In that

case, all r random walks in RW that start from an isolated node need to be deleted. In

the case that only one of the nodes of a deleted edge becomes isolated, then the simulated

random walk is obtained by starting a random walk from the node that remains connected

in the network.
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4.1.3 Node Addition

Assume that a new node nodei is added to the network at time t+1, so Vt+1 =Vt ∪{nodei}.

Initially, this node forms an isolated node (i.e., dt+1
i = 0) and therefore there is no need to

update the set of random walks RW . Now, assume that at a later time the node connects

to the rest of the network through an edge (nodei,node j). In that case, we treat the new

edge as described earlier in paragraph 4.1.1. In addition to that we need to simulate a

set of r new random walks, each of length l, all of which start from the new node nodei

(recall that our original set of random walks consisted of r random walks of length l for

each node in the graph). The newly obtained random walks are appended to RW t (i.e., it

is |RW t+1|= |RW t |+ r) and are utilized in subsequent network embeddings. There is also

a special case where two isolated nodes are connected. In that case we need to simulate

r random walks of length l starting from each node of nodei and node j, respectively and

append them to RW t .

4.1.4 Node Deletion

Assume that an existing node nodei is deleted from the network at time t + 1, so Vt+1 =

Vt −{nodei}. In this case, first we obtain the set of neighbors N i of nodei. For each

node j ∈N i there is an edge (nodei,node j) in the network that needs to be deleted. We

delete each of these edges as described earlier in paragraph 4.1.2 and obtain the updated set

RW . The deletes can occur in an arbitrary order, without any side effect. Eventually, this

process forms an isolated node, which is removed from the graph. Deletion of the isolated
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Figure 4.2: Example inverted random walk index. Given a graph, five random walks are
performed. Each random walk is treated as a document and is indexed using an open-source
distributed indexing and searching library. The result is an inverted index that provides
information about the frequency of any node in the random walks and information about
where in the random walk the node is found.

node itself doesn’t further affect the set RW .

4.2 Efficient Storage and Retrieval of Random Walks

The methods of updating random walks presented in the previous paragraph are accurate.

However, they depend on operators Query and UpdateRandomWalks that are compu-

tationally expensive and cannot scale to larger networks. The most expensive operation is

to search the random walks RWt to find occurrences of nodei and node j of the new edge

(nodei,node j). In addition, updates of random walks can be expensive as large number of
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existing random walks might need to be updated.

To address these shortcomings, our framework of efficiently updating random walks

relies on popular open-source indexing and searching technologies. These technologies

offer operations for efficiently indexing and searching large collections of documents. For

example, they support efficient full-text search capabilities where given a query term q, all

documents in the collection that contain q are retrieved. In our framework we treat each

random walk as a text “document”. Therefore, each node visited by a random walk would

be represented as a text “term”, and all random walks would represent “a collection of doc-

uments”. Using this analogy, we build an inverted random walk index, IRW . IRW is an index

data structure that stores a mapping from nodes (terms) to random walks (documents). The

purpose of IRW is to enable fast querying of nodes in random walks, and fast updates of

random walks that can inform Algorithm 1. Fig. 4.2 provides an illustrative example of a

small inverted random walk index. In addition, we briefly describe how to create the index

and use it in our setting.

Indexing Random Walks: We obtain the initial set of random walks RWt at time t by per-

forming random walks on the original network, similarly to the process followed in stan-

dard StaticNRL methods. Each random walk is transformed to a document by properly

concatenating the ids of the nodes in the walk. For example, a short walk (x→ y→ z) over

nodes x, y and z, will be represented as a document with content “x y z”. These random

walks are indexed to create IRW . It is important to note that once an index is available, there

is no need to maintain the random walks in memory any more.
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Querying Random Walks: We rely on the index IRW to perform any Query operation.

Note, however, that there are additional advantages on using an efficient index. Besides

searching and retrieving all random walks that contain a specific nodei, the index IRW can

be configured to provide more quantities of interest. Specifically, we configure IRW so

that every query retrieves additional information about the frequency of nodei, f reqi and

the position Indi of nodei in a retrieved random walk (see Fig. 4.2). The first quantity

( f reqi) is used to determine the number of updates that are required as discussed earlier.

The second (Indi), is used to inform the operator Position in Algorithm 1 (lines 8 and

16). Note that there is a slight variation of how the Query operation is configured in the

case of the edge deletion. Recall that in that event we need to retrieve random walks where

the two nodes nodei and node j are found the one right after the other (i.e., they form a

step of the random walk). To accommodate this case we just need to configure the Query

operation to retrieve all random walks that contain the bigram “nodei node j”. A bigram is

a pair of contiguous sequence of words in a document or, following the analogy, a pair of

contiguous sequence of nodes in a random walk. The indexing and searching technology

we employ can handily support such queries.

Updating Random Walks: We rely on the index IRW for any UpdateRandomWalk opera-

tion. An update of a random walk is analogous to an update of a document in the index. In

practice, any update of the index IRW is equivalent to deleting an old random walk and then

indexing a new random walk. While querying using an inverted index is a fast process,

updating an index is a slower process. Therefore, the performance of our methods is dom-
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inated by the number of random walks updates required. Still, our methods would perform

multitude of times faster than StaticNRL methods. A detailed analysis of this issue is pro-

vided in chapter 6. Following the discussion about the edge deletion/addition, special care

is required when these events involve isolated nodes. In particular, if a new edge connects

a previously isolated node nodei to the network, then r new random walks need to be added

in the index, each of which starts from nodei. The process of indexing the new random

walks is similar to the process described in paragraph 4.2. Similarly, if an edge deletion

resulted in isolating a node nodei , then all the r random walks that start from nodei need

to be removed from the index. Removing a random walk from the index is analogous to

deleting a document from the index.

Bulk updates: Additional optimizations are available as a result of employing an inverted

index for the random walks. For example, we can take advantage of bulk updates, where

the index need only be updated when a number of new edges have arrived. This means that

changes of single incoming edges won’t be reflected in IRW right away. While this opti-

mization has the premise to make our methods faster (since updates occur once in a while),

it risks harming its accuracy. In practice, it offers an interesting trade-off between accu-

racy and time performance that domain-specific applications need to tune. Experiments in

chapter 6 demonstrate this tradeoff.

32



5 Evolving Network Representation Learning

So far we have described our framework for maintaining an always valid set of random

walks RWt at time t. Recall that our final objective is to be able to learn a representation

of this evolving network. For the embedding process we resort to the same embedding of

standard StaticNRL methods. Below we describe how embeddings of the evolving network

are obtained, given a set of random walks RWt . Then, a general strategy for obtaining an

embedding only when it is mostly needed.

5.1 Learning Embeddings

Given a general network, Gt = (Vt ,Et), our goal is to learn the network representation f (Vt)

using the skip-gram model. f (Vt) is a |Vt |×d matrix where d is the network representation

dimension and each row is the vector representation of a node. At the first time-stamp,

the node vector representations (neural network’s weights) are initialized randomly and

we use this initialization for other timestamps’ training. The training objective function

is to maximize the log-probability of the nodes appearing in the context of the node ni.

Context of each node ni is found using the valid RWT set, same as the similar works in the
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literature [14,36]. Using the approximate objective, skip-gram with negative sampling [28],

these embeddings are optimized by stochastic gradient decent so that:

max
f

Σni∈V logPr(nj|ni) (5.1)

where

Pr(nj|ni) ∝ exp(nT
j ni) (5.2)

and ni is the vector representation of a node ni ( f (ni) = ni). Pr(nj|ni) is the probability

of the observation of neighbor node n j, within the window-size given that the window

contains ni.

In our experiments, we use gensim implementation of skip-gram model 3. We set our

context-size, k = 5 and the number of dimensions, d = 128, unless otherwise stated.

5.2 Analytical Method for Determining the Timing of a Network Em-

bedding

EVONRL has the overhead of first indexing the set of initial random walks RW . At that

time, we randomly initialize the skip-gram model and keep these initialization weights for

the learning phase of subsequent times. As new edges/nodes are added/deleted, EVONRL

performs the necessary updates as described earlier. At each time step a valid set of ran-

dom walks is available that can be used to obtain a network embedding. As we show in

3https://github.com/RaRe-Technologies/gensim
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chapter 6 an embedding obtained by our incrementally updated set of random walks ef-

fectively represents embeddings obtained by applying a StaticNRL method directly on the

updated network. However, while re-embedding the network every time a change occurs in

it will result in accurate embeddings, this process is very expensive and risks to render the

method non-applicable in real-world scenarios. Therefore, and depending on the domain,

it is reasonable to assume that only a limited number of re-embeddings be obtained. This

introduces a new problem: when is the right time to obtain a network embedding? In fact,

this decision process demonstrates an interesting tradeoff between accuracy and time per-

formance of the method proposed. In the rest of the paragraph we introduce two strategies

for determining the time to obtain network embeddings.

PERIODIC: This is a sensible baseline where, as the name reveals, obtains embeddings

periodically, every q time stpng. Depending on the sensitivity of the domain we operate on,

the period can be shorter or longer. This method is easy to implement, but it is obtaining

network embedding being agnostic of the different changes that occur in the network and

whether they are significant (or not).

ADAPTIVE: We introduce an analytical method for determining the right timing of ob-

taining a network embedding. The key idea of the method is to continuously monitor the

changes that occur in the network. Then, if significant changes are detected it obtains a

new network embedding. In fact, we monitor two conditions, the first is able to detect oc-

currence of a critical change (e.g., addition of a very important edge) and is based on the

idea of peak detection; the second is able to evaluate cumulative effects due to a number
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Figure 5.1: Example peak detection method for the case of adding edges in the BlogCatalog
network. The upper plot shows the number of random walks that are updated in RW as a
function of new edges added. It is evident that some edges have a larger effect in RW as
depicted by higher values. The middle plot, shows the mean (middle almost straight line),
as well as the boundaries defined by the current threshold of τ×std (the two lines above and
below the mean line). The bottom plot provides the signal for decision making; every time
that the current change at time t is outside the threshold it signals that a network embedding
should be obtained. In the example this is the case for five times t = {13,15,19,29,33}.

changes. We discuss the structure of these conditions in the following paragraphs.

Peak detection: We start by providing background of a z-score. A z-score (or standard

score) is a popular statistical measure that indicates how many standard deviations away

an observation is from its mean. When the population mean and the population standard
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Table 5.1: Summary of notations used in decision-making algorithm
Notations Descriptions

RWt A set of random walks at time t
RWt+1 A set of random walks at time t
Nt+1

t Number of the nodes changed from t to t +1
#RW t+1

t Number of random walks changed from t to t +1
τ Threshold where algorithm signals

lag The size of the moving window
avg Moving average of the lag window
std Standard deviation of the lag window

deviation are unknown, the standard score may be calculated using the sample mean and

sample standard deviation as estimates of the population values. In that case, the z-score

of observed values x can be calculated from the following formula:

z =
x− x̂

σ̂
(5.3)

where x̂ is the mean of the sample and σ̂ is the standard deviation of the sample.

In our setting, we want to detect when important changes occur in the network, so as to

obtain a timely network representation. As we described earlier a good proxy for what

consists an important change in a network is the number of random walks that are affected

because of the change (edge addition/deletion, node addition/deletion). We can utilize the

z-score of equation (5.3) to detect peaks. A peak or spike is a generic term which describes

a sudden increase or outburst in a sequenced data [4]. In our problem, the number of

random walk changes are monitored and peaks represent significant changes in the number

of random walks affected. Formally, let lag be the number of changes observed in the
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sample. The observation window is spanning from t− lag to t and we compute the mean of

the sample at t as avg[t]. In a similar way, we calculate the standard deviation of the sample

at t to be std[t]. Let N[t] be the observation at time t that represents the number of random

walks that have been updated due to a network change. Now, given N[t], avg[t], std[t] and

a threshold τ , a peak occurs at time t if the following condition holds:

N[t]> τ× std[t]+avg[t] (5.4)

If the condition of equation (5.4) holds, then we know that a significant change has occurred

and we decide to obtain a new network representation. The details of the procedure are

shown in Algorithm 3. Notations used in this algorithm are summarized in Table 5.1.

Figure 5.1 provides an illustrative example of the peak detection method. In this example

we set lag = 10 and τ = 4. The figure shows the results of the peak detection method for

100 changes occurring in a network (BlogCatalog network, edge addition; edges are added

one by one and are randomly selected from the potential edges of the network). Our peak

detection algorithm detects a total of 5 peaks occurring at t = {13,15,19,29,33}.

Cut-off score: Sometimes, changes in the network can be smooth, without any acute

changes. In that case the peak detection method will fail to obtain any embedding as peaks

(almost) never occur. To avoid these cases, besides the peak detection method, we employ

an additional metric that monitors the cumulative effect of all the changes since the last

embedding was obtained. Formally, let N[t] be the observation at time t that represents the
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number of random walks that have been updated due to a network change. Then, the total

number of random walks that have been changed between the time that the last embedding

told was obtained and the current time t is given by:

#RW t
told

=
t

∑
t=told

N[t] (5.5)

Now, given #RW t
told

and a threshold cuto f f , we monitor the following condition:

#RW t
told

> cuto f f (5.6)

If at any time t equation (5.6) holds, then we know that significant cumulative changes have

occurred in the network and we decide to obtain a new network representation.

As we show in chapter 6 combining both conditions of equation (5.4) and (5.6) gives the

best results, as it balances locally significant as well as cumulative effect of changes.

39



Algorithm 3 Peak Detection Algorithm
Input: lag, τ , RW
Output: peaks

1: procedure OBTAINREPRESENTATION

2: UpdateRandomWalks()
3: N[t]← Length(RWt− (RWt ∩RWt+1)
4: avg[lag−1]← mean(N[0], ..,N[lag])
5: std[lag−1]← std(N[0], ..,N[lag])
6: for i in [lag+1 : t] do
7: if |N[i]−avg[i−1]|< threshold ∗ std[i−1] then
8: if N[i]> avg[i−1] then
9: peak[i]←+1

10: else peak[i]← 0
11: avg[i]← mean(N[i - lag], ..,N[i])
12: std[i]← std(N[i - lag], ..,N[i])
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6 Experimental Evaluation

In this section, we experimentally evaluate the performance of our dynamic random walk

framework and EVONRL4. In particular, we aim to answer the following questions:

• Q1 Effect of Network Topology How the topology of the network affects the num-

ber of random walks that need to be updated?

• Q2 Effect of Arriving Edge Importance How edges of different importance affect

the overall random walk update time?

• Q3 Accuracy Performance of EVONRL What is the accuracy performance of

EVONRL compared to the ground truth provided by StaticNRL methods?

• Q4 Classification Performance of EVONRL What is the accuracy performance of

EVONRL in a downstream data-mining task?

• Q5 Time Performance of EVONRL What is the time performance of EVONRL?

• Q6 Decision-Making Performance of EVONRL How well does the strategy of

EVONRL for obtaining network representations work?

4code is available at https://github.com/farzana0/EvoNRL
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Q1 and Q2 aim to shed light on the behavior of our generic computational framework

for dynamically updating random walks in various settings. Q3, Q4, Q5 and Q6 aim to

demonstrate how EVONRL performs. Before presenting the results, we provide details of

the computational environment and the data sets employed.

Environment: All experiments are conducted on a workstation with 8x Intel(R) Core(TM)

i7-7700 CPU @ 3.60GHz and 64GB memory. Python 3.6 is used and the static graph

calculations use the state-of-the-art algorithms for the relevant metrics provided by the

NetworkX network library.

Data: For the needs of our experiments both synthetic data and real data sets have been

employed.

• Protein-Protein Interactions (PPI): We use a subgraph of PPI for Homo Sapiens and

use the labels from the preprocessed data used in [14]. The network consists of 3890

nodes, 76584 edges and 50 different labels.

• BlogCatalog [41]: BlogCatalog is a social network of blogers which each edge indi-

cates a social interaction among them. This network consists of 10312 nodes, 333983

edges and 39 different labels.

• Facebook Ego Network [25]: Facebook ego network is the combined ego network of

each node. There is an edge from a node to each of its friends. This network consists

of 4039 nodes, 88234 edges.

• Arxiv HEP-TH [25]: Arxiv HEP-TH (high energy physics theory) network is the
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citation network from e-print Arxiv. If paper i cites paper j, there is a directed edge

from i to j. This network consists of 27770 nodes, 352807 edges.

• Synthetic Networks: We create a set of Watts-Strogatz [31] random networks of dif-

ferent sizes (n= {1000,10000}) and different rewiring probabilities (p= {0,0.5,1.0}).

The rewiring probability is used to create representative Lattice (p = 0), Small-world

(p = 0.5) and Erdos-Reyni (p = 1) networks, respectively.

6.1 Q1 Effect of Network Topology

We evaluate the effect of randomly adding a number of new edges in networks of different

topologies, but same size. For each case, we report the number of the random walks that

need to be updated. Fig. 6.1 shows the results, where it becomes clear that as more new

edges are added, more random walks are affected. The effect is more stressed in the case

of the Small-world and Erdos-Reyni networks. This is to be expected, since these networks

are known to have small diameter, therefore every node is easily accessible from any other

node. As a result, every node has a high chance to appear in any random walk. In contrast,

Lattices are known to have larger diameter, therefore only a small number of nodes (out

of all nodes in the network) can be accessible by any random walk. As a result, nodes are

more equally distributed in all random walks.

43



Figure 6.1: Effect of network topology (the axis of #RW affected is in logarithmic scale).
As more new edges are added, more random walks are affected. The effect is more stressed
in the case of the Small-world and Erdos-Reyni networks, than the Lattice network.

6.2 Q2 Effect of Arriving Edge Importance

By answering Q1, it becomes evident that even a single new edge can have a dramatic

effect in the number of random walks that need to be updated. Eventually, the number

of random walks affected, will have an effect to the time performance of updating these

random walks in our framework. In this set of experiments we perform a systematic anal-

ysis of the effect of the importance of an arriving edge to the time required for the update

to occur. Importance of an incoming edge et+1
i j = (ni,n j) at time t + 1 in a network can
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(a) frequency of the new edge endpoints (b) node degree of the new edge endpoints

(c) node betweenness of the new edge endpoints

Figure 6.2: Dependency of EVONRL running time on importance of added edge as de-
scribed by various metrics on PPI Network.

be defined in different ways. Here, we define three metrics of edge importance, based on

properties of the endpoints ni, n j of the arriving edge:

• Sum of frequencies of edge endpoints in RWt .

• Sum of the node degrees of edge endpoints in Gt .

• Sum of the node-betweenness of edge endpoints in Gt .

45



Results of the different experiments are presented in Fig. 6.2. The first observation

is that important incoming edges are more expensive to update, sometimes up to three or

four times (1.6sec vs 0.4sec). This is expected, as more random walks need to be updated.

However, the majority of the edges are of least importance (lower left dense areas in Fig.

6.2a, Fig. 6.2b and Fig. 6.2c), so fast updates are more common. Finally, the behavior

of sum of node frequencies (Fig. 6.2a) and sum of node degrees (Fig. 6.2b) of the edge

endpoints are correlated. This is because the node degree is known to be directly related

to the number of random walks that traverse it. On the other hand, node-betweenness

demonstrates more unstable behavior since it is mostly related to shortest paths and not just

paths (which are related to random walks).

6.3 Q3 Accuracy Performance of EVONRL

In this set of experiments we evaluate the accuracy performance of EVONRL and show

that it is very accurate. At this point, it is important to note that evidence of our EVONRL

performing well is provided by demonstrating it obtains similar representations to the

ground truth provided by running StaticNRL on different instances of the evolving network.

This is because the objective of our method is to resemble as much as possible what the

actual changes in the original network are by incrementally maintaining a set of random

walks and monitoring the changes. In practice, we aim to show that our proposed algorithm

is able to update random walks in a way that they are always representing a valid instance

of random walks that can be obtained by running StaticNRL on the updated network. In
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these experiments, we show the representation learned by EvoNRL and the ground truth

provided by the StaticNRL are similar to each other by using a representational similarity

metric.

6.3.0.1 Similarity of Two Representations

Our goal here is to compare the representations learned by the neural network and show that

EvoNRL results in a similar representations to ground truth provided by StaticNRL meth-

ods. Comparing representations in neural networks is difficult as the representations vary

even across the neural networks trained on the same input data with the same task [39]. In

this paper, representations are weights of the representation learned by either our EvoNRL

method or the StaticNRL method, and they represent the representation learned by a skip-

gram neural network. In order to determine the correspondence between these representa-

tions, we use the recent similarity measures of neural networks studied in [30] and [23].

Dynamics of neural networks call for a similarity metric that is invariant to orthogonal

transformation and invariant to isotropic scaling. Assuming two representations X ∈Rn×d

and Y ∈ Rn×d , we are concerned about a scalar similarity index s(X ,Y ) which can be used

to compare the two neural network representations. There are many methods for comparing

two finite set of vectors and measure the similarity between them. The simplest approach

is to employ a dot-product based similarity. By summing the square dot-product of each

corresponding pair of vectors in X and Y , we can have a similarity index between matrices

X and Y . This approach is not practical as representations of the neural networks can be
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described on two different basis and result in a misleadingly similarity index. Therefore

invariance to linear transforms is crucial in neural network representational similarity met-

rics. Recently, Canonical Correlation Analysis (CCA) [19] is used as a tool to compare

representations across networks. Canonical Correlation Analysis has been widely used to

evaluate the similarity between computing models and brain activity. CCA can find similar-

ity between representations where they are superficially dissimilar. Its invariance to linear

transforms makes CCA a useful tool to quantify the similarity of EvoNRL and StaticNRL

representations [30].

Canonical Correlation Analysis (CCA): Canonical Correlation Analysis [19] is a sta-

tistical technique to measure the linear relationship between two multidimensional set of

vectors. Ordinary Correlation analysis is highly dependent on the basis which the vectors

are described on. The important property of CCA is that it is invariant to affine transforma-

tions of the variables which makes it a proper tool to measure representation’s similarity by.

If we have two sets of matrices X ∈ Rn×d and Y ∈ Rn×d , Canonical Correlation Analysis

will find two bases, one for X and one for Y such that after their projections into these bases,

their correlation will be maximized. for 1≤ i≤ d, the ith, canonical correlation coefficient

is given by:

ρi = max
wi

X ,w
i
Y

corr(Xwi
X ,Y wi

Y )

subject to ∀ j<i Xwi
X⊥Xw j

X

∀ j<i Y wi
Y⊥Y w j

Y

(6.1)

where the vectors wi
X ∈ Rd and wi

Y ∈ Rd transform the original matrices into canonical
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variables Xwi
X and Y wi

Y .

R2
CCA =

Σd
i=1ρ2

i
d

(6.2)

The mean squared CCA correlation [40], R2
CCA reports the sum of the squared canonical

correlations. This sum is a metric that shows the similarity of the two multidimensional

sets of vector.

Experimental scenario: In these experiments, the original network is the initial network

at the beginning. We simulate random walks on this network and learn its representation.

After that, we sequentially make changes (add edges, remove edges, add nodes and remove

nodes) to the initial network and keep the random walks updated using EvoNRL. In certain

points (for example after every 1000 edge addition in the PPI network), we learn the net-

work representation in two ways. One is by simulating new random walks on the updated

network (original network with new edges/nodes or missing edges/nodes) and second is

learning the representation using EvoNRL. Now we have two representations of the same

network and the goal is to compare them to see how similar EvoNRL is to StaticNRL.

Note that StaticNRL simulates walks on the updated networks while EvoNRL has been

updating the original random walk set. Representations obtained by StaticNRL are results

of simulating random walks on the network. Because of the randomness involved in the

process, it is typical that two differnet StaticNRL representations of the same network are

not identical. We can measure, the similarity of the different representations using CCA. In

our evaluation, we aim to demonstrate that EvoNRL is as similar to StaticNRL and that this

similarity is comparable to the similarity obtained by applying StaticNRL multiple times
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(a) BlogCatalog (b) PPI

(c) Facebook (d) Cit-HepTh

Figure 6.3: Accuracy performance of EVONRL — adding edges.

on the same network. At any stage of the change (edge addition, edge deletion, node addi-

tion, node deletion) in the network, EvoNRL is updating the random walk set in a way that

it is representing the network. First, we run StaticNRL multiple times (x5) on a network.

Each StaticNRL is simulating a random walk set on the evolving network at certain times.

Representations are two finite sets of vectors in d-dimensional space and then we compare

how similar these two sets are.

Adding edges: Given a network G = (V,E), we can add a new edge by randomly picking

two nodes in the network that are not currently connected and connect them. Adding new
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(a) BlogCatalog (b) PPI

(c) Cit-HepTh (d) Facebook

Figure 6.4: Accuracy performance of EVONRL — removing edges.

edges to the network should have an effect on the network embedding. By adding edges, as

the network diverges from its original state, the embedding will diverge from the original

network as well. Fig. 6.3 shows the accuracy results of EvoNRL. We observe that the CCA

similarity index of EVONRL follows the same trend as the StaticNRL in all the networks:

BlogCatalog (Fig. 6.3a) and the PPI (Fig. 6.3b), Facebook (Fig. 6.3c) and Cit-HepTh (Fig.

6.3d) networks. The similarity of the two methods remains consistent as more edges are

added (up to 12% of the number of edges in the original PPI; up to 14% of the number

of edges in the original BlogCatalog, Facebook and Cit-HepTh). In Fig. 6.3, there are
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(a) BlogCatalog (b) PPI

(c) Cit-HepTh (d) Facebook

Figure 6.5: Accuracy performance of EVONRL — removing nodes.

two sorts of comparison. First, The similarity of EvoNRL and the Original Network (The

network before changes occur to it) is measured. The decreasing trend in orange stars in

Fig. 6.3 shows that EvoNRL is updating the set of random walks and the representations of

the updated networks are diverging from the representation of the original network. On the

other hand, we see that EvoNRL is more correlated to the original set of the random walk

(orange stars), compared to StaticNRL (Blue Triangles). Blue Triangles are the average of

canonical correlation of the original network with 4 different runs of StaticNRL. It shows

that the representation of the evolving network is diverging from the original network. So
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(a) BlogCatalog (b) PPI

(c) Cit-HepTh (d) Facebook

Figure 6.6: Accuracy performance of EVONRL — adding nodes.

far we have showed that EvoNRL is consistently updating the original set of random walks

and makes difference in the network’s representation. The question is are these updates

accurate? To answer this question we add edges step by step to the original network. Using

EvoNRL we keep updating a set of random walk and get the representation of the network

in a certain points. On the other hand, we run StaticNRL on the updated network at the

same certain points. Because of the randomness of the random walks we repeat StaticNRL

for 4 times. We compare the StaticNRL representations obtained from the same network

with each other to have a baseline of the similarity metric. The red squares showing as
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’StaticNRL vs StaticNRL’ in Fig. 6.3 are showing the average similarity of representations

of StaticNRL compared to each other 2 by 2. Our goal is to show, EvoNRL keeps updating

the random walk set in an accurate way and the representation obtained by EvoNRL is as

accurate as StaticNRL. To show this, we measure the canonical correlation of EvoNRL

representation and the StaticNRl. We observe that (green circles) EvoNRL representations

is very similar to the StaticNRL representations and can be an instance on StaticNRL.

Removing edges: Given a network G = (V,E), we can remove an edge by randomly choos-

ing an existing edge e ∈ E and remove it from the network. Removing existent edges

should have an effect in the network embedding. Fig. 6.4 show the accuracy results of

edge deletion. Similar to edge addition, We observe that the CCA similarity of EVONRL

follows the same trend as the StaticNRL in all the networks: BlogCatalog (Fig. 6.4a) and

the PPI (Fig. 6.4b), Facebook (Fig. 6.4c) and Cit-HepTh (Fig. 6.4d) networks.

Adding nodes: As we described in Section 5 node addition can be treated as a special case

of edge addition. This is because whenever a node is added in a network, a number of edges

attached to that node need to be added as well. To emulate this process, given a network

G = (V,E), first we create a network G′ = (V ′,E ′), where V ′ ⊆ V,E ′ ⊆ E as follows. We

uniformly at random sample nodes V ′ ⊆ V from G and then remove these nodes and all

their attached edges E ′ ⊆ E from G, forming G′. Following that process, we obtain a new

network for BlogCatalog with V ′ = 8312 and a new network for PPI with V ′ = 3390 nodes,

respectively. Then, we start adding the nodes v ∈V ′′ =V \V ′ that have been removed from

G, one by one. Whenever, a node v ∈ V ′′ is added to G′, any edge between v and nodes
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existing in the current state of network G′ are added as well. Adding nodes to the network

should have an effect in the network embedding. Fig. 6.6 shows the accuracy results of

node addition. CCA compares two sets of vectors with the same cardinality. Because

the number of the nodes and therefore the number of the vectors in the representation are

variant, we can not compare the updated representations with the original network. In these

experiments we show that EvoNRL and StaticNRL on the same network are very similar

to each other and EvoNRL is an accurate instance of StaticNRL.

Removing nodes: As we described in Section 5 node deletion can be treated as a special

case of edge deletion. Given a network G = (V,E), we start removing nodes v ∈ V from

the network, one by one. When a node is removed all the edges connecting this node to the

network are removed as well. The process of removing nodes will result in a new network

G′(V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E. Removing existing nodes from the network effect

in the network embedding. Fig. 6.5 shows the accuracy result of node deletion. In the

evolving network, nodes are removed from the network sequentially and EvoNRL keeps

updating a valid set of random walks. we show that the representations obtained from these

random walks are similar to StaticNRL representations. Same as node addition, because

the number of the nodes are changing, we can not compare the representations with the

original network’s representation. The experiments above provides strong evidence that

our random walk updates are correct and can incrementally maintain a set of random walks

that is their corresponding representations are similar to that of obtained by StaticNRL.
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6.4 Q4 Classification Performance of EVONRL

In this set of experiments we evaluate the accuracy performance of EVONRL and show

that it is very accurate. At this point, it is important to note that evidence of our EVONRL

performing well is provided by demonstrating it has similar accuracy to StaticNRL, for

the various aspects of the evaluation (and not by demonstrating loss/gains in accuracy).

This is because the objective of our method is to resemble as much as possible what the

actual changes in the original network are by incrementally maintaining a set of random

walks and monitoring the changes. In practice, we aim to show that our proposed algorithm

is able to update random walks in a way that they are always representing a valid instance

of random walks that can be obtained by running StaticNRL on the updated network.

Experimental scenario: To evaluate our random walk update algorithm, we resort to accu-

racy experiments performed on a downstream data mining task: multi-label classification.

The network topology of many real-world networks can change over time due to either

adding/removing edges or adding/removing nodes in the network. In our experimental sce-

nario, given a network we simulate and monitor network topology changes. Then, we run

StaticNRL multiple times, one time after each network change and learn multiple network

representations over time. The same process is followed for EVONRL but this time we

only need to update the random walks RWt at each time t and use these for learning mul-

tiple network representations over time. In multi-label classification each node has one or

more labels from a finite set of labels. In our experiments, we see 50% of nodes and their

labels in the training phase and the goal is to predict labels of the rest of the nodes. We
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use node vector representations as input to a one-vs-rest logistic regression classifier with

L2 regularization. Finally, we report the Macro−F1 accuracy of the multi-label classifica-

tion of StaticNRL and EVONRL as a function of the fraction of the network changes. For

StaticNRL, since it is sensitive to the fresh set of random walks obtained every time, we

run multiple times (10x) and report the averages. We experiment with the BlogCatalog and

PPI networks. In the following paragraphs we present and discuss the results for each of

the interesting cases (adding/removing edges, adding/removing nodes).

Adding edges: Given a network G = (V,E), we can add a new edge by randomly picking

two nodes in the network that are not currently connected and connect them. Adding new

edges to the network should have an effect on the network embedding and thus in the

overall accuracy of the classification results. Fig. ?? shows the results. We observe that the

Macro-F1 accuracy of EVONRL follows the same trend as the one of StaticNRL in both

the BlogCatalog (Fig. 6.7a) and the PPI (Fig. 6.7b) networks. The accuracy of the two

methods remains consistent as more edges are added (up to 12% of the number of edges

in the original PPI; up to 14% of the number of edges in the original BlogCatalog). This

provides strong evidence that our random walk updates are correct and can incrementally

maintain a set of random walks that is similar to that obtained by StaticNRL when applied

in an updated network.

Removing edges: Given a network G = (V,E), we can remove an edge by randomly choos-

ing an existing edge e∈E and remove it from the network. Removing existent edges should

have an effect in the network embedding and thus in the overall accuracy of the classifica-
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(a) BlogCatalog (b) PPI

Figure 6.7: Accuracy performance of EVONRL — adding new edges.

(a) BlogCatalog (b) PPI

Figure 6.8: Accuracy performance of EVONRL — removing edges.

tion results. We evaluate the random walk update algorithm for the case of edge deletion

in a way similar to that of adding edges. The only difference is that every time an edge is

deleted at t we update random walks to obtain RWt . Then, the updated RWt can be used for

obtaining a network representation. Same setting is used in multi-label classification. Fig.

6.8 shows the results. Again we observe that the Macro-F1 accuracy of EVONRL follows

the same trend as the one of StaticNRL in both the BlogCatalog (Fig. 6.8a) and the PPI
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(Fig. 6.8b) networks.

Adding nodes: As we described in Section 5 node addition can be treated as a special case

of edge addition. This is because whenever a node is added in a network, a number of edges

attached to that node need to be added as well. To emulate this process, given a network

G = (V,E), first we create a network G′ = (V ′,E ′), where V ′ ⊆ V,E ′ ⊆ E as follows. We

uniformly at random sample nodes V ′ ⊆ V from G and then remove these nodes and all

their attached edges E ′ ⊆ E from G, forming G′. Following that process, we obtain a new

network for BlogCatalog with V ′ = 8312 and a new network for PPI with V ′ = 3390 nodes,

respectively. Then, we start adding the nodes v ∈V ′′ =V \V ′ that have been removed from

G, one by one. Whenever, a node v ∈ V ′′ is added to G′, any edge between v and nodes

existing in the current state of network G′ are added as well. Adding nodes to the network

should have an effect in the network embedding and thus in the overall accuracy of the

classification results. We evaluate the random walk update algorithm for the case of node

addition in a way similar to that of adding edges. The only difference is that every time a

node is added at t we update random walks to obtain RWt , by adding a number of edges.

Then, the updated RWt can be used for obtaining a network representation. Fig. 6.9 shows

the results. Again we observe that the Macro-F1 accuracy of EVONRL follows the same

trend as the one of StaticNRL in both the BlogCatalog (Fig. 6.9a) and the PPI (Fig. 6.9b)

networks.

Removing nodes: As we described in Section 5 node deletion can be treated as a special

case of edge deletion. Given a network G = (V,E), we start removing nodes v ∈ V from
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(a) BlogCatalog (b) PPI

Figure 6.9: Accuracy performance of EVONRL — adding new nodes.

(a) BlogCatalog (b) PPI

Figure 6.10: Accuracy performance of EVONRL — removing new nodes.

the network, one by one. When a node is removed all the edges connecting this node to

the network are removed as well. The process of removing nodes will result in a new

network G′(V ′,E ′), where V ′ ⊆V and E ′ ⊆ E. Removing existing nodes from the network

should have an effect in the network embedding and thus in the overall accuracy of the

classification results. We evaluate the random walk update algorithm for the case of node

deletion in a way similar to that of deleting edges. The only difference is that every time

a node is deleted at t we update random walks to obtain RWt , by removing a number of
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Figure 6.11: Accuracy values obtained by running StaticNRL multiple times on the same
network. The values are significantly fluctuating due to sensitivity to the set of random
walks obtained. Similarly, EVONRL is sensitive to the initial set of random walks obtained.
Two instances of EVONRL are shown, each of which operates on a different initial set of
random walks.

edges. Then, the updated RWt can be used for obtaining a network representation. Fig.

6.10 shows the results. Again we observe that the Macro-F1 accuracy of EVONRL follows

the same trend as the one of StaticNRL in both the BlogCatalog (Fig. 6.10a) and the PPI

(Fig. 6.10b) networks.

Discussion about accuracy value fluctuations: While we have demonstrated that EVONRL

is able to resemble the accuracy performance obtained by StaticNRL, one can observe that

61



in some cases the accuracy values of the methods can substantially fluctuate. This be-

havior can be explained by the sensitivity of the StaticNRL methods to the set of random

walks obtained from the network, as discussed in the motivating example of Section 3.1.

EVONRL would also inherit this problem, as it depends on an initially obtained set of ran-

dom walks that is subsequently updated at every network topology change. To demonstrate

this sensitivity effect, we run control experiments on the PPI network for the case of adding

new nodes in the network G, similar to the experiment in Fig. 6.9b. However, this time,

instead of reporting the average over a number of runs for the StaticNRL method, we re-

port all its instances. In particular, as we add more nodes (the number of nodes increases

from 3390 to 3990) a new network is obtained. We report the accuracy values obtained by

running StaticNRL multiple times (40x) on the same network. We also depict the values

of two different runs for EVONRL. Each run obtains an initial set of random walks that is

incrementally updated in subsequent network topology changes. It becomes evident that

the StaticNRL values can significantly fluctuate due to the sensitivity to the set of random

walks obtained. It is important to note that EVONRL manages to fall within the range of

these fluctuations.

6.5 Q5 Time Performance of EVONRL

In this set of experiments we evaluate the time performance of our method and show that

EVONRL is very fast. We run experiments on two Small-world networks (Watts-Strogatz

(p = 0.5)), with two different number of nodes (|V |= 1000 and |V |= 10000). We evaluate
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Figure 6.12: EVONRL scalability (running time axis is in logarithmic scale). StaticNRL
scales linearly to the number of new edges added in the network, since it has to run again
and again for every new edge. At the same time, EVONRL is able to accommodate the
changes more than 100 times faster than StaticNRL. This behavior is even more stressed in
the larger network (where the number of nodes is larger).

EVONRL against a standard StaticNRL method from the literature [14]. Both algorithms

start with the same set of random walks RW . As new edges are arriving, StaticNRL needs

to learn a new network representation by resimulating a new set of walks every time. On

the other hand, EVONRL has the overhead of first indexing the set of initial random walks

RW . Then, for every new edge that is arriving it just needs to perform the necessary updates

as described earlier. Fig. 6.12 shows the results. It can be seen that the performance
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of StaticNRL is linear to the number of new edges, since it has to run again and again

for every new edge. At the same time, EVONRL is able to accommodate the changes

more than 100 times faster than StaticNRL. This behavior is even more stressed in the

larger network (where the number of nodes is larger). By increasing the number of nodes,

running StaticNRL becomes significantly slower, because by design it needs to simulate

larger amount of random walks. On the other hand, EVONRL has a larger initialization

overhead, but after that it can easily accommodate new edges. This is because every update

is only related to the number of random walks affected and not the size of the network. This

is an important observation, as it means that the benefit of EVONRL will be more stressed

in larger networks.

6.6 Q6 Decision-Making Performance of EVONRL

In this experiment, we compare the two different strategies for deciding when to obtain

a network representation, PERIODIC and ADAPTIVE. The experiment is performed using

the BlogCatalog network and the changes in the network are related to edge addition. For

presentation purposes, we limit the experiment to 1000 edges. The evaluation of this ex-

periment is based on the number of random walk changes RW t
told

between a random walk

set obtained at time t (one edge is added at each time) and a previously obtained net-

work representation as defined by each strategy. Results are shown in Figure 6.13. The

PERIODIC strategy represents a “blind” strategy where new embeddings are obtained peri-

odically (every 50 times steps or every 100 time steps). On the other hand, the ADAPTIVE
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Figure 6.13: Comparative analysis of different strategies for determining when to obtain a
network representation. The PERIODIC methods will obtain a new representation every 50
or 100 time steps (i.e., network changes). Our proposed method, ADAPTIVE, is combining
a peak detection method and a cumulative changes cut-off method to determine the time to
obtain a new network representation. As a result it is able to make more informed decisions
and perform better. This is depicted by smaller (on average) changes of the RW t

told
, which

implies that a more accurate network representation is available for down-stream network
mining tasks.

method is able to make informed decisions as it monitors the importance of every edge

added in the network. The ADAPTIVE method is basing its decisions on the a peak de-

tection method (τ = 3.5) and a method that monitors cumulative effects due to a number

of changes (cuto f f = 4000). As a result, ADAPTIVE is able to perform much better, as

depicted by many very low values in the RW t
told

.
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7 Conclusions

Our focus in this work is on learning representations of evolving networks. To extend static

random walk based network representation methods to evolving networks, we proposed a

general framework for updating random walks as new edges are arriving in the network.

The updated random walks leverage time and space efficiency of inverted indexing meth-

ods. By indexing an initial random walk in the network and keep updating it based on the

upcoming changes, we manage to always keep a valid set of random walks with minimum

possible divergence from the initial random walk set. Our proposed method, EVONRL,

utilizes the continuously valid set of random walks to obtain new network representations

that respect the changes that occurred in the network. We demonstrated that our proposed

method, EVONRL is both accurate and fast. We also discussed the interesting trade-off be-

tween time performance and accuracy when obtaining concurrent network representations.

Determining the right time for obtaining a network embedding is a challenging problem.

We demonstrated that simple strategies for monitoring the changes that occur in the net-

work can provide support in decision making. Overall, the methods presented are easy to

understand and simple to implement. They can also be easily adopted in diverse domains

and applications of network mining.
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7.1 Limitations

EvoNRL inherits the short-comings of static random walk-based network representation

learning methods. Although random walk-based methods have a superior performance in

a number of settings, the skip-gram direct encoding leads to a number of drawbacks [16]:

• There is no parameter sharing in skip-gram, which means the number of parameters

necessarily grows as O(|V |).

• They fail to leverage node attributes during the embedding. Nodes can have attributes

in large graphs and it can be informative of the node’s position and role in the graph.

7.2 Future Work

We proposed a general framework to update random walks in an evolving network. We aim

to continue our work in the following directions:

• EvoNRL uses random walks as a sampling strategy of the network. Random walks

represent each snapshot of the network regardless of time. One aspect of integration

of time into EvoNRL is generalizing time-invariant random walks to temporal ran-

dom walks [43], which are able to traverse links over time. Moreover, there are many

studies on random walks on time-series such as [38]. These 1-dimensional random

walks can be used as a sampling strategy of a time-series of arriving edges where two

consecutive traverses may not necessarily refer to primary links of the network.
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• We aim to slightly modify the skip-gram objective function to leverage the frequency

of the network’s events and integrate the time dimension of the network into our

representation learning methodology.

7.3 Reproducibility

We make source code and data sets used in the experiments publicly available5 to encourage

reproducibility of results.

5https://github.com/farzana0/EvoNRL
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