
ENRICHING WORD REPRESENTATION LEARNING FOR AFFECT
DETECTION AND AFFECT-AWARE RECOMMENDATIONS

NASTARAN BABANEJAD

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

DECEMBER 2020

c© NASTARAN BABANEJAD, 2020



Abstract

The role of detecting affects from text is to detect affective states such as mood,

sentiment and emotions from textual data like news articles or product reviews. The main

affective tasks, including sentiment analysis, emotion classification and sarcasm detection

have been popular in recent years due to a broad range of relevant applications in various

domains such as healthcare, recommender systems, and hate speech detection. Tradition-

ally, recommender systems deal with applications having only two types of entities, users

and items, and do not put them into a context when providing recommendations. Recently,

a family of recommendation algorithms has emerged to improve recommendations by

adapting the contextual information of users and items. These models provide the promise

of being more accurate as they are tailored to satisfy the continuously changing needs of

users by considering more contextual information. However, little attention has been paid

to the affective context and its relation to recommendations.

In this dissertation, we first investigate the impact of using affective information

on the quality of recommendations, and then seek to improve affect detection in text

ii



by enhancing word representation learning. We enrich word representations in two

ways: one by effective pre-processing of the text corpora for training word embeddings

and the second by incorporating both affective and contextual features deeply into text

representations. We demonstrate the benefits of enriched word representations in both

affect detection and affect-aware recommendation tasks.

This dissertation consists of five contributions. First, we investigate whether, how and

to what extent emotion/sentiment features can improve recommendations. Towards that

end, we derive a large number of emotion and sentiment features that can be attributed to

both items and users in the domain of news and music. Then, we devise state-of-the-art

emotion-aware recommendation models by systematically leveraging these features.

Second, we study the problem of pre-processing in word representation learning for

affective tasks. Most early models of affective tasks employed pre-trained word embed-

dings. While pre-processing in affective systems is well-studied, text pre-processing for

training word embeddings applied to affective systems, is not. To address this limitation,

we conduct a comprehensive analysis of the role of text pre-processing techniques in word

representation learning for affective analysis. Our investigation is the first of its kind and

provides useful insights of the importance of each pre-processing technique when applied

at the embedding training phase, commonly ignored in pre-trained word vector models,

and/or at the downstream task phase.

Third, we investigate the usefulness of customized pre-processing for word represen-

iii



tation learning for affective tasks. In particular, we study the role of each pre-processing

factor in a specific affective task. We argue that using numerous text pre-processing tech-

niques at once as a general combination for all affective tasks decrease the performance

of affect detection. Therefore, we conduct extensive experiments, showing that, appropri-

ate combination of text pre-processing methods for each affective task can significantly

enhance the classifier’s performance.

The fourth contribution of this dissertation seeks to dig deeper and study the role of

affective and contextual embeddings with deep neural network models for affect detection.

Early word embedding methods, such as Word2vec, are non-contextual, meaning that

a word has the same embedding vector independent of its context and sense. Contex-

tual embedding techniques, such as BERT (Bidirectional Encoder Representations from

Transformers), solve this problem, but do not incorporate affect information in their word

representations. We propose two novel deep neural network models that extend BERT to

incorporate both affective and contextual features in text representations. We evaluate the

two models in affect detection tasks and show the superior performance of the proposed

methods for affect detection. Lastly, we show the usefulness of our proposed affective

and contextual embedding models by applying them to affect-aware recommendations.

In particular, we conduct a thorough experimental evaluation on real datasets in news

and music domains to demonstrate the helpfulness of the proposed models in improving

recommendations’ performance.

iv



Dedication

To My Wonderful Parents for Everything,

“ To my mother “ Nasrin ", in loving memory , who was my strongest pillar and constant source of

inspiration."

&

“ To my beloved father “ Ahmad ", a strong and gentle soul who always taught me the best path to

follow."

“ In memory of Prof. Nick Cercone."

v



“ I might only have one match, but I can make an explosion "

- Rachel Platten (My Fight Song)

vi



Acknowledgements

My PhD journey was made possible thanks to many wonderful people. Firstly, I would

like to express my sincere gratitude to my advisor Prof. Aijun An for her dedicated and

continuous support of my Ph.D study and related research, for her patience, motivation,

and immense knowledge. I sincerely thank you for showing faith in me all those years,

and for constantly inspiring, encouraging and supporting me over the years. I could not

have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank my co-advisor Prof. Manos Papagelis for

his insightful comments and encouragement, and for his willingness and enthusiasm to

assist in any way he could throughout the research project.

I would also like to extend my sincere thanks to my committee members, Prof. Natalija

Vlajic and Prof. Jarek Gryz for their valuable advice. Your insightful comments not only

purified my work, but also opened up an avenue for future research.

I thank my labmates for the interesting discussions and the sleepless nights we were

working together before deadlines. In particular, I am grateful to Dr. Heidar Davoudi and

vii



Dr. Ameeta Agrawal for always supporting me in any ways they could. I am also thankful

to the administrative and technical staff of our department at York University.

I would like to thank The Globe and Mail for providing the datasets used in this

work. This work is funded by Natural Sciences and Engineering Research Council

of Canada (NSERC), The Globe and Mail, and the Big Data Research, Analytics and

Information Network (BRAIN) Alliance established by the Ontario Research Fund -

Research Excellence Program (ORF-RE).

And finally, the endless love and precious support of my awesome family and best

friend cannot be appreciated enough in words. To my late mother, who could not witness

my success. Although she is not here to give me strength and support, I always feel her

presence that used to urge me to strive to achieve my goals in life − she inspired me

everyday and taught me how to be strong and face the challenges with faith and humility,

as she used to say − “ where there is a will there’s a way ! ”. To my father, who always

had confidence in me, encouraged me to chase my dreams and supported me in all my

endeavors - now I promise not to staying up all night again!. To my sisters Ghazaleh and

Ghoncheh, who offered invaluable support and humor over the years. Profound thanks to

you all to putting up with my stresses and moans through those years − I would not have

been where I am today without you. Last but by no means least, to my partner and best

friend Majid Taghdimi, who put up with my idiosyncrasies and all the ups and downs for

the past three years! − I am grateful for all your help and support, Hakuna Matata!

viii



Table of Contents

Abstract ii

Dedication v

Acknowledgements vii

Table of Contents ix

List of Tables xviii

List of Figures xxiii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Affect Detection in Text . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Affect-Aware Recommendation Model . . . . . . . . . . . . . 9

1.2 Research Problems and Scope . . . . . . . . . . . . . . . . . . . . . . 12

ix



1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Leveraging Emotion Features in Content Recommendations . . 14

1.3.2 A Comprehensive Analysis of Pre-processing for Word Represen-

tation Learning in Affective Tasks . . . . . . . . . . . . . . . . 15

1.3.3 Customized Pre-processing for Word Representation Learning in

Affective Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.4 Affective and Contextual Embedding for Affect Detection . . . 17

1.3.5 Affect-aware Recommendation . . . . . . . . . . . . . . . . . 18

1.3.6 The Publications . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Literature Review 22

2.1 Leveraging Emotion Features in Recommender Systems . . . . . . . . 22

2.1.1 Emotion in News Recommender Systems . . . . . . . . . . . . 23

2.1.2 Emotion in Music Recommender Systems . . . . . . . . . . . . 24

2.2 Pre-processing for Word Representation Learning in Affective Tasks . . 25

2.2.1 Pre-processing Classification Datasets . . . . . . . . . . . . . . 26

2.2.2 Pre-processing Word Embeddings . . . . . . . . . . . . . . . . 27

2.3 Affective and Contextual Embedding for Affect Detection . . . . . . . 29

2.3.1 Affective Features . . . . . . . . . . . . . . . . . . . . . . . . 29

x



2.3.2 Contextual Features . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Affective-Contextual Features . . . . . . . . . . . . . . . . . . 32

2.3.4 Task-specific Corpora for Sarcasm Detection . . . . . . . . . . 33

3 Leveraging Emotion Features in Social Media Recommendations 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Features for recommendation . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Emotion-based Features . . . . . . . . . . . . . . . . . . . . . 41

3.2.1.1 Item Emotion-based Features . . . . . . . . . . . . . 42

3.2.1.2 User Emotion-based Features . . . . . . . . . . . . . 45

3.2.2 Non-Emotion-based Features . . . . . . . . . . . . . . . . . . 46

3.2.2.1 Item Non-Emotion-based Features . . . . . . . . . . 46

3.2.2.2 User Non-emotion-based Features . . . . . . . . . . 47

3.2.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Emotion-aware Recommendation Model (EmoRec) . . . . . . . . . . . 50

3.3.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.1 Model 1 (Boost Model) . . . . . . . . . . . . . . . . 51

3.3.1.2 Model 2 (Deep Neural Network (DNN)) . . . . . . . 52

3.3.1.3 Model 3 (Deep Matrix Factorization (Deep MF)) . . . 53

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Comparing Recommendation Models with and without Emotion

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Comparison with Other Baselines . . . . . . . . . . . . . . . . 60

3.5.3 Effect of Individual Emotion Features . . . . . . . . . . . . . . 63

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 A Comprehensive Analysis of Pre-processing for Word Representation Learn-

ing in Affective Tasks 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Pre-processing in Affective Systems . . . . . . . . . . . . . . . . . . . 71

4.2.1 Pre-processing Factors . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Order of Pre-processing Factors . . . . . . . . . . . . . . . . . 73

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Training Corpora . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Word Embedding Models . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Classification Setup . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



4.4 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Effect of Pre-processing Factors . . . . . . . . . . . . . . . . . 82

4.4.2 Evaluating Pre-processing Training Corpora vs. Pre-processing

Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.3 Evaluating Proposed Model against State-of-the-art Baselines . 89

4.4.4 Analyzing the Three Affective Tasks . . . . . . . . . . . . . . . 91

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Customized Pre-processing for Word Representation Learning in Affective

Tasks 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Customized Pre-processing in Affective Tasks . . . . . . . . . . . . . . 97

5.2.1 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Sarcasm Detection . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.3 Emotion Detection . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.4 Pre-processing Factors . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Customized Pre-processing Training Corpora . . . . . . . . . . . . . . 104

5.4 Customized Pre-processing Classification Tasks . . . . . . . . . . . . . 104

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Training Corpora and Evaluation Datasets . . . . . . . . . . . . 105

xiii



5.5.2 Word Embedding Models . . . . . . . . . . . . . . . . . . . . 105

5.5.3 Classification Setup . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.1 Effects of General Combination of Pre-processing Factors . . . 108

5.6.2 Analyzing the Three Affective Tasks . . . . . . . . . . . . . . . 113

5.6.3 Effects of Customized Pre-processing Factors for Each Affective

Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.4 Evaluating Pre-processing Training Corpora vs. Pre-processing

Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Affective and Contextual Embedding for Affect Detection 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Proposed Models for Sarcasm Detection . . . . . . . . . . . . . . . . . 126

6.2.1 Affective Feature Embedding (AFE) . . . . . . . . . . . . . . . 127

6.2.1.1 Affective Feature Vector Representation . . . . . . . 128

6.2.1.2 Bi-LSTM Layer . . . . . . . . . . . . . . . . . . . . 130

6.2.1.3 Multi-head Attention Layer . . . . . . . . . . . . . . 131

6.2.2 Contextual Feature Embedding in ACE 1 . . . . . . . . . . . . 132

6.2.2.1 Training BERT . . . . . . . . . . . . . . . . . . . . 132

xiv



6.2.2.2 Training Affective BERT with Affective Feature Em-

beddings . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2.3 Fine-tuning BERT Models . . . . . . . . . . . . . . 135

6.2.3 Contextual Feature Embedding in ACE 2 . . . . . . . . . . . . 135

6.2.3.1 Pre-trained Embeddings . . . . . . . . . . . . . . . . 136

6.2.3.2 Obtaining Sentence Embeddings Using SBERT . . . 136

6.2.3.3 Combining the Two Components . . . . . . . . . . . 137

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Corpora for Training Embeddings . . . . . . . . . . . . . . . . 138

6.3.2 Affective Tasks Datasets . . . . . . . . . . . . . . . . . . . . . 139

6.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.1 Comparing Variations of ACE 1 and ACE 2 . . . . . . . . . . . 142

6.4.2 Evaluating Proposed Models against State-of-the-art Baselines . 146

6.5 Evaluating the Performance of Proposed Models on Other Affective Tasks 156

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Affective and Contextual Embedding Model for Feature Representation Learn-

ing in Affect-Aware Recommendation 162

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xv



7.2 Recommendation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Affective and Contextual Feature Representation in Recommendation

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.3.1 Affect-Aware Recommendation Model (AARec) . . . . . . . . 168

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.2 State-of-the-art Recommendation Algorithms . . . . . . . . . . 173

7.5 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5.1 Evaluating the Effects of Proposed Affect Detection Methods in

Recommendation Algorithms . . . . . . . . . . . . . . . . . . 174

7.5.2 Evaluating the Performance of AARec Against EMoRec . . . . 177

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8 Conclusions and Future Directions 180

8.1 Summary of Approaches and Contributions . . . . . . . . . . . . . . . 181

8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.2.1 Recommendation with Affective Information Through Other Cues 186

8.2.2 Negation Scope and Negation Handling . . . . . . . . . . . . . 187

8.2.3 Multilingual Model . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.4 Learning of Affective Representations Through Graphs . . . . . 188

xvi



8.2.5 Integrating the Proposed Models into One System . . . . . . . . 189

Bibliography 190

xvii



List of Tables

3.1 Emotion Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 List of Emotion Feature Importance . . . . . . . . . . . . . . . . . . . 48

3.3 List of Non-emotion Feature Importance . . . . . . . . . . . . . . . . . 49

3.4 Results of our Models on News Dataset (F-score) . . . . . . . . . . . . 59

3.5 Results of our Models on Music Dataset (F-score) . . . . . . . . . . . . 60

3.6 Comparison of EMOREC with State-of-the-art Baselines on News Dataset

(F-score) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Comparison of EMOREC with State-of-the-art Baselines on Music Dataset

(F-score) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Effect of Individual Emotion Features (F-score) . . . . . . . . . . . . . 64

3.9 Effect of Top Three Emotion Features (Plutchik emotions, User emotions

across categories, and User emotions across items) on State-of-the-art

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Details of News training corpora . . . . . . . . . . . . . . . . . . . . . 75

xviii



4.2 Details of Wikipedia training corpora . . . . . . . . . . . . . . . . . . 76

4.3 Details of evaluation datasets . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Examples of text instances in the evaluation datasets . . . . . . . . . . 79

4.5 F-score results of evaluating the effect of pre-processing factors using

CBOW on News corpus. The overall best results are in bold. The best

result using only any one pre-processing setting is underlined. . . . . . 83

4.6 F-score results of evaluating the effect of pre-processing factors using

Skip-gram on News corpus. The overall best results are in bold. The best

result using only any one pre-processing setting is underlined. . . . . . 84

4.7 F-score results of evaluating the effect of pre-processing factors using

CBOW on Wikipedia corpus. The overall best results are shown in bold. 85

4.8 F-score results of evaluating the effect of pre-processing factors using

Skip-gram on Wikipedia corpus. The overall best results are shown in bold. 86

4.9 F-score results of evaluating the effect of pre-processing factors using

BERT on Wikipedia corpus. The overall best results are shown in bold. 87

4.10 F-score results of evaluating the effect of pre-processing word embeddings

training corpus vs. pre-processing evaluation datasets . . . . . . . . . . 88

4.11 F-score results of comparing against state-of-the-art word embeddings.

The best score is highlighted in bold, and the second best result is

underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xix



5.1 Example of Case Studies of Different Pre-processing in Affective Tasks. 99

5.2 F-score Results of Evaluating the Effect of Different Pre-processing Fac-

tors Using Different Models on Wikipedia Corpus. The Overall Best

Results Are in Bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 F-score Results of Evaluating the Effect of Different Pre-processing Fac-

tors Using Different Models on Wikipedia Corpus. The Overall Best

Results Are in Bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 F-score Results of Evaluating the Effect of Pre-processing Word Embed-

dings Training Corpus vs. Pre-processing Evaluation Datasets . . . . . 112

5.5 F-score Results of Comparing the Effect of Customized Pre-processing

Vs General Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 F-score Results of Evaluating the Effect of Customized Pre-processing

Word Embeddings Training Corpus vs. Customized Pre-processing Eval-

uation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 F-score Results of Evaluating the Effect of Customized Pre-processing

Word Embeddings Training Corpus vs. Customized Pre-processing Eval-

uation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Description of sarcasm detection datasets. . . . . . . . . . . . . . . . . 140

6.2 F1-scores of model ACE 1 with different settings. Best results are in bold

and 2nd best are underlined. . . . . . . . . . . . . . . . . . . . . . . . 143

xx



6.3 F1-scores of model ACE 2 with different settings. Best results are in bold

and 2nd best are underlined. . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 F1-score results of comparing different pre-trained embeddings with dif-

ferent affective embeddings for each model. The best score is highlighted

in bold, and the second best result is underlined. . . . . . . . . . . . . . 146

6.5 F1-scores for comparing our models against state-of-the-art models (Only

Affective). The best scores are in bold, and 2nd best are underlined, while

the 3rd best are double underlined. . . . . . . . . . . . . . . . . . . . . 147

6.6 F1-scores for comparing our models against state-of-the-art models (Only

Contextual with Fine-Tune). The best scores are in bold, and 2nd best are

underlined, while the 3rd best are double underlined. . . . . . . . . . . 148

6.7 F1-scores for comparing our models against state-of-the-art models (Only

Contextual with Pre-trained without Fine-Tune). The best scores are in

bold, and 2nd best are underlined, while the 3rd best are double underlined.149

6.8 F1-scores for comparing our models against state-of-the-art models (Affective-

Contextual). The best scores are in bold, and 2nd best are underlined,

while the 3rd best are double underlined. . . . . . . . . . . . . . . . . . 153

6.9 F1-scores of model ACE 1 with different settings on other affective tasks.

Best results are in bold and 2nd best are underlined. . . . . . . . . . . . 158

xxi



6.10 F1-scores of model ACE 2 with different settings on other affective tasks.

Best results are in bold and 2nd best are underlined. . . . . . . . . . . . 159

6.11 F-score Results of comparing ACE 1 and ACE 2 against the customized

pre-processing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 Comparison of The performance of Different Recommendation Models

Using Different Modes on Music Dataset (F-score) . . . . . . . . . . . 176

7.2 Comparison of The performance of Different Recommendation Models

Using Different Modes on News Dataset (F-score) . . . . . . . . . . . . 176

7.3 F-score Comparison of EMOREC Performance Against AAREC on News

and Music Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xxii



List of Figures

3.1 Illustrative example of emotions expressed in articles read by two different

users, U1 (left) and U2 (right), over a three month period. Can we leverage

the emotional context to improve recommendations? . . . . . . . . . . 36

3.2 Overview of an emotion-aware recommendation system. . . . . . . . . 39

3.3 Example emotions expressed in textual content . . . . . . . . . . . . . 42

3.4 The Structure of Our DNN Model . . . . . . . . . . . . . . . . . . . . 52

3.5 The Structure of Our Deep MF Model . . . . . . . . . . . . . . . . . . 54

4.1 Framework of applying pre-processing in different stages in affective

systems; (a) Pre, (b) Post. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Absolute F-scores vs. relative improvement . . . . . . . . . . . . . . . 91

5.1 Average F-scores vs. relative improvement . . . . . . . . . . . . . . . . 113

6.1 Overview of the proposed model ACE 1 . . . . . . . . . . . . . . . . . 126

6.2 Overview of the proposed model ACE 2 . . . . . . . . . . . . . . . . . 127

xxiii



6.3 Overview of the proposed model ACE 2 . . . . . . . . . . . . . . . . . 129

6.4 BERT Input Representation Vs Affective BERT Input Representation. . 134

7.1 Different Recommendations Based on The Recommendation Model Al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 The Architecture of the Sequential Hybrid Attention-Based Model (SHAN)

Proposed in [200] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xxiv



1 Introduction

1.1 Background and Motivation

In recent years, there has been increasing interest in affect analysis from both academia

and industry. In general, affect analysis involves the related tasks of sentiment analysis,

emotion detection and sarcasm detection, amongst others. This surge of activity is due

to the rapid growth of social networks, product reviews, news media, blogs, forum

posts, and the consequent easy access to a mass of digitally documented subjective and

emotional data. Therefore, a vast amount of affective information can be easily obtained

from forums, blogs, review sites and other websites. However, as helpful as these user-

generated contents are, it is not a straightforward job to find, evaluate, and interpret all

these data manually to get to the heart of the matter. Moreover, emotions are widely

recognized as key factors in decision-making process based on cognitive psychology [68].

Therefore, automatic affect analysis can lend a hand to improve decision-making systems

such as news recommendation systems.

In addition, according to early literature, affect has been recognized as an essen-

1



tial factor that influences users’ behaviour [23, 146]. With affective information about

users/items, recommendation systems will be able to recommend more appropriate items

that match users’ needs [33, 70]. Thus, it would be beneficial to incorporate users’ contex-

tual and affective information in the recommendation process. However, detecting affects

in the text is a challenging task, which is one of the primary reasons for a comparatively

limited number of previous studies on the use of affective information in recommender

systems. Developing a strong relationship between users/items affective context and

recommendation models is not a trivial task in the competitive world of digital media.

Therefore, recommendation models need to build effective strategies to identify, extract

and select the most relevant affect-based features for use in recommendation models. In

order to achieve the aforementioned objectives, recommender systems should gain insight

into users’ needs and behaviour as well as items based on affective detection methods.

This is where natural language processing techniques come to play. In this dissertation,

we focus on affect extraction and detection methods and the use of extracted affect infor-

mation in recommendation models. In particular, our goal is first to investigate the impact

of using manual extraction of affective information on the quality of recommendations

and then seek to improve affect detection from the text by enhancing word representation

learning. To that end, we frame the challenges into different research problems and

propose effective solutions for them accordingly.

2



1.1.1 Affect Detection in Text

In natural language processing, the analysis of affect, feelings, emotions, sentiments,

and opinions includes the tasks of sentiment analysis (usually concerning the binary

or tertiary classification of text into categories of positive and negative sentiments, and

sometimes neutral as well), emotion detection (which entails classifying text into one or

more categories of emotion such as happiness, sadness, anger, etc.) and sarcasm detection

(in which text is classified as being sarcastic or not) [166].

There has been a growing interest in developing computational methods for affect

detection from a text in recent years. This interest can be largely attributed to the

fundamental and straightforward nature of the methods employed, the availability of vast

amounts of user-generated natural language data, and the wide range of useful applications,

spanning from hate speech detection [41] to monitoring the sentiment of financial markets

[67, 178] and recommendation models [13, 91]. While much study has been done in the

field, this task remains far from being solved. The difficulty is mainly due to the fact that

the occurrence of affect is only in a very small portion of cases marked by the presence of

affect-related words.

Word embedding is an effective word representation method that reflects aspects

of word meaning and helps improve the accuracy of the classification in various NLP

tasks [1, 116]. This technique is to study the continuous representations of words in a

3



low-dimensional vector space by leveraging the contextual information from large corpora

[116]. Some recent affect analysis models employed pre-trained word embeddings

obtained under the assumption of the distributional hypothesis in word representation

learning models [45, 115]. The distributional hypothesis suggests that two words that often

occur in similar linguistic contexts appear to be more semantically similar and should be

interpreted in the embedding space closer to each other. However, while such embedding

is useful for many downstream tasks of natural language processing (NLP), it is considered

less suitable, particularly for affective tasks [4, 172]. For example, word2vec [115]

estimates the pair of words ‘happy’ and ‘sad’ to be more similar than the pair of words

‘happy’ and ‘joy’, which is counter-intuitive and might affect the accuracy performance

of the models that depend on it. The main side effect of this issue is that the terms with

opposite sentiment polarity are transformed into near vectors, and it is a challenging issue

in affective tasks such as sentiment analysis and emotion detection. Several techniques

have been proposed to address the limitations of traditional word embeddings, including

task-specific fine-tuning [45], retrofitting [52], and generating affective word embeddings

[53], as well as fine-tuned pre-processing strategies tailored to different NLP tasks, to

name a few. While these strategies have demonstrated evidence of improving the accuracy

performance in tasks such as word similarity, word analogy, and others [106], their effect

in affective tasks has not received considerable attention and remains less explored due to

numerous reasons. One of the most common challenges of affect detection is negation,

4



where in linguistics, negation is a way of reversing the polarity of words, phrases, and

even sentences [211]. For instance, negating words such as “no”, “not”, “shouldn’t” are

very important linguistics because they affect the polarities of other words.

The advantages of emotion analysis in political science [48], psychology, marketing

[16], human-computer interaction [23], and recommender systems [210], gave the field of

emotion detection in NLP life of its own, resulting in a surge of many studies in recent

years. A common approach to emotion analysis and modeling is categorization, e.g.,

according to Ekman’s basic emotions, namely, anger, disgust, fear, happiness, sadness,

and surprise [51]. In particular, emotion analysis is further complicated than binary or

tertiary classifications such as sentiment analysis due to the greater number of categories

(emotions) involved to undertake classification [3]. Categorization into particular emotion

classes is more troublesome not just on the grounds that emotion detection generally

requires in-depth insights but also because of the similar nature of different emotions

such as anger and disgust, which makes the classification a challenge even for human

annotators [9].

Furthermore, emotions from a text can be perceived at different levels, including a

word, a phrase, a sentence, a paragraph, or even an entire document. In general, proposed

models to detect emotions from any level of text (e.g. sentence, document) are instantiated

with word-level analysis to some extent and then expanded to larger units of text.

Early studies in emotion detection used keyword-based and lexicon-based approaches

5



for detecting emotions in text. However, these techniques have limitations, e.g., the

absence of a particular emotion-bearing keyword in text, as well as a single word that can

elicit multiple emotions depending on the context in which they are used. Consider an

example sentence, “He kills dogs”, consisting of an emotion-evoking word, i.e., “kills”,

mostly associated with the emotions of fear and anger. Although a word may evoke

different emotions, it can only be disambiguated in context (e.g., “Your smile kills me”).

Recently, machine learning methods, especially deep neural networks, have been

proposed to overcome the limitations of previous approaches, mainly by adopting word

embedding vectors that represent rich semantic/syntactic information for many affective

tasks. However, as it was mentioned before, those models fail to capture the emotional

similarity information when they are used directly in the classification tasks [4]. Thus,

pre-processing techniques such as punctuation and negation [155] or pos-tagging and

negation [160] make up a common component of many emotion classification models

[95, 140]. Moreover, prior studies also indicated that interjections, which is common in

textual data, can be detected for potential emotions [61, 88, 188].

Hence, the successful achievements of various text pre-processing in affective tasks

raise interesting questions: which pre-processing techniques yield the most benefit in

affective tasks? and what is the effect of integrating pre-processing techniques earlier

into word embedding models instead of post-processing classification tasks? Despite the

importance of this question and potential benefits of pre-processing techniques in affective

6



tasks, there is no comprehensive research on using such techniques in different stages of

word representation learning or downstream tasks on classification datasets. We consider

these components and conduct a comprehensive analysis of the role of pre-processing

techniques in affective tasks (including sentiment analysis, emotion classification and

sarcasm detection), employing different word representation learning models. Moreover,

we perform a comparative analysis of applying these techniques in different stages of

word embeddings rather than downstream tasks while studying the benefits of different

combinations of customized pre-processing for each affective task individually.

Sarcasm detection on social media has attracted much interest in the community of

natural language processing over the past decade with its own challenges. Sarcasm is the

particular form of language that happens when someone conveys implicit information,

usually having the opposite meaning of what is said or written [163]. Because of this

deliberate ambiguity, it is a particularly difficult task to detect sarcasm, especially in

written interactions where usual hints of sarcasm such as body gestures, the tone of voice

or facial expression are not present [86, 163].

Early attempts for sarcasm detection from text mainly relied on looking for a set of

positive verbs and negative/undesirable situations (e.g. “I love [positive verb] the pain

of breakup [negative situation]”) [63, 154] or using lexical features such as n-grams,

capital letters, excessive usage of exclamatory marks, usage of emoticons, punctuation

or syntactic and pattern-based features [108], to name a few. Later attempts for sarcasm

7



detection mostly relied on language models that are based on continuous representation or

embeddings of words, such as Word2vec [116] and GloVe [142]. The use of these general

models can eliminate the need for lots of pre-processing, and manual feature engineering

or dependence on enormous emotion labelled datasets. However, due to the mechanism

with which word vectors are learned and embedded into a space, these models have been

shown to be inadequate for affective tasks [10]. Contextual embedding techniques, such as

BERT (Bidirectional Encoder Representations from Transformers), solve this problem but

do not incorporate affect information in their word representations. As such, an interesting

question is that can we automate sarcasm detection task using a deep neural network

model by incorporating both affective and contextual features of text? While this question

is crucial to any sarcasm detection using deep neural networks, to date, it has not been

investigated if incorporating affective representation with contextual learning models

such as BERT at the training phase to train the model from the ground-up will improve

the performance of the sarcasm detection task. An answer to this question can provide

benefits for many applications, not only for the task of sarcasm detection but also to other

affective tasks. For example, it can be used to identify different types of affect, emotions

and sentiments in documents that can be later used for any recommendation models.

However, predicting sarcasm in the text needs understanding the interplay between the

context and affective representation of a document. We consider these elements and

propose a deep neural network architecture by incorporating both affective and contextual

8



features of text to build a classifier that can determine whether a document is sarcastic or

not. Furthermore, we investigate if the proposed model can improve the performance of

other affective tasks, such as emotion detection and sentiment analysis.

1.1.2 Affect-Aware Recommendation Model

Recommendation systems have become ubiquitous over the last decade, providing users

with personalized recommendations on video streams, news excerpts, and purchasing

hints. In the pursuit of increasing the performance of recommendation systems, re-

searchers started to turn to more customer-driven and context descriptors in recent years.

The advances made in affect detection, especially in automatic emotion detection and

sentiment analysis techniques, paved the way for the utilization of affects and personality

as descriptors that account for a larger part of the variance in user preferences than the

generic descriptors (e.g. history) used so far [82, 89]. Human emotions are generally

considered the primary predictors of actions and preference [102, 103]. They are a key

factor in decision-making [68], but very little has been learned until recently about the

usefulness of using affect information in customizing real-world recommendation systems

[120, 175]. However, these research efforts have been conducted independently, stretched

among the two major research areas, recommender systems and affective analysis. Fur-

thermore, affects are also very difficult to identify, quantify and measure precisely, which

is one of the primary reasons for a relatively small number of previous work on using

9



affective information directly in recommendation systems. However, it can be beneficial

for a recommender system application to detect and make fair use of affective information.

The emotional profile of a user can be determined through explicit or implicit feedback

of users to items. Explicit feedback, such as providing ratings and/or submitting reviews on

items, can represent an accurate reflection of a user’s opinion about the item. However, it is

considered as an intrusive process that disrupts the user-system interaction and negatively

impacts user experience [135]. Moreover, while it might be available for certain domains

(e.g. product recommendations [34], movie recommendations [131], etc.), it is not easily

obtainable in domains such as news, where users typically interact with items at a fast

pace and are less inclined to provide feedback. In the context of recommendation systems,

through extracting and combining the term frequency and inverse document frequency

(tf*idf) from song lyrics, researchers [36] constructed a composite emotion point matrix

for each song, which is then used to further classify songs based on their emotion and make

a recommendation accordingly. In [191], an emotion-aware recommendation approach is

proposed which analyzes emotion based on the song lyrics and user comments via vector

projection. More recently, Mizgajski et al. [120] introduced a recommender system for

recommending news items by leveraging a multi-dimensional model of emotions, where

emotion is derived through user’s self-assessed reactions (i.e., explicit feedback), which

can be considered as an intrusive collection. When the explicit feedback is absent, sparse,

or costly to obtain, incorporating implicit feedback, which is generally abundant and

10



non-intrusive, might be beneficial.

Inspired by these observations, recent advancement in methods for affect detection and

the success of affective feature extraction in recommendation algorithms, the interesting

questions are whether, how and to what extent affect features can improve the accuracy of

recommendations. We consider these elements and use various affect detection approaches

to identify and extract the most relevant affect-based features for recommendation models.

Furthermore, previous works showed different affect detection approaches that can

help to build an emotional profile of users and content items have different effects on the

performance of content-based recommender algorithms [13, 80]. In [90, 118], authors

showed successful identification of sarcastic utterance in the users’ reviews can enhance

the personalization of content ranking and recommendation systems. At the same time,

others [176] indicated that the automatic detection of emotions and sentiments in a user’s

review could be useful as an indicator of the user’s satisfaction with the content.

In addition, the quality of the affective features in the data directly affects the predictive

model and the results it can be achieved [98, 209]. As such, the first interesting question

is: can we benefit from utilizing the more successful affect detection methods in the

modeling process to make the most relevant recommendations to the users? An answer

to this question can provide benefits not only to affect detection itself but also for many

other applications such as in the news and music recommendations. In fact, answering

this question is challenging since it needs more appropriate techniques to identify and

11



extract these affective features. Thus, it raises other questions as: which affect detection

techniques are more effective in identifying affects in text documents? and after identifying

the potential affective features, how do we incorporate these affective information in

recommendation models to see which affect detection approaches yield the most benefit in

recommendation systems? While these questions are crucial to any recommendation model

using the affective features, to date, it has not been investigated from the natural language

processing perspective. We consider these findings and propose a deep neural network

architecture to utilize them for affect detection. Moreover, we exploit the proposed

approaches in affect detection, which can serve as the criteria in the recommendation

model.

1.2 Research Problems and Scope

Affect detection from text and recommendation systems are quite challenging, and com-

plicated issues. The term of affect detection is broad in natural language processing as it

can be studied from different discipline perspectives (e.g., emotion detection, sentiment

analysis, sarcasm detection). In this research, we consider all three aspects of affect

detection and attempt to improve their performance on real-world datasets. Further-

more, we utilize the proposed approaches for affect detection in the recommendation

models to demonstrate the usefulness and benefits of affect detection in news and music

recommendations.

12



To that end, we investigate the following open research questions, and design cutting-

edge data-driven approaches to solve these problems:

• Problem 1: Can the use of affective information in text improve the performance

of content (e.g., news or music) recommendation systems? If yes, how and to what

extent can affective features improve the accuracy of recommendations?

• Problem 2: What is the effect of integrating text pre-processing techniques earlier

into word embedding models, instead of later on in downstream classification

models, on the accuracy of affect detection? Which pre-processing techniques yield

the most benefit in affective tasks?

• Problem 3: Will incorporating both affective and contextual features deeply into

text representations using a deep neural network architecture improves the perfor-

mance of affect detection?

• Problem 4: Can improving the affect detection approaches in text and enriching

word representation learning improve the performance of affect-aware recommen-

dations?

Our overreaching goal in this dissertation is to demonstrate the effects of affective

information in recommendation models by improving the affect detection techniques

in text and enhancing word representation learning, which is essential for any affect

13



analysis approaches using deep neural networks. We enrich word representations in two

ways: one by effective pre-processing of the text corpora for training word embeddings

and the second by incorporating both affective and contextual features deeply into text

representations.

1.3 Research Contributions

The contributions of this dissertation fall into different categories, which are summarized

in the subsequent sections.

1.3.1 Leveraging Emotion Features in Content Recommendations

In order to evaluate the importance of the emotional context to recommendations, we

have to incorporate various emotion/sentiment features to recommendation algorithms

and evaluate their accuracy performance. The major contributions in this line of research

are as follows:

• We systematically identify, extract and select the most relevant emotion-based

features for use in recommendation models. These features are associated with both

items and users in the domain.

• We devise a number of state-of-the-art models for generating recommendations

that incorporate the additional emotion features. In addition, we use ensembling

14



methods to increase the predictive performance by blending or combining the

predictions of multiple constituent models.

• We propose EMOREC, an emotion-aware recommendation model, which demon-

strates the best accuracy performance in news and music recommendation task.

EMOREC itself is an ensemble model.

• We conduct a thorough experimental evaluation on real datasets coming from diverse

domains (news and music). Our results demonstrate that the emotion-aware rec-

ommendation models consistently outperform state-of-the-art non-emotion-based

recommendation models.

1.3.2 A Comprehensive Analysis of Pre-processing for Word Representation Learn-

ing in Affective Tasks

The overarching goal of this research is to perform an extensive and systematic assessment

of the effect of a range of linguistic pre-processing factors on three affective tasks,

including sentiment analysis, emotion classification and sarcasm detection. Towards

that end, we systematically analyze the effectiveness of applying pre-processing to large

training corpora before learning word embeddings, an approach that has largely been

overlooked by the community. The main contributions of this work are as follows:

• We conduct a comprehensive analysis of the role of pre-processing techniques in

15



affective tasks (including sentiment analysis, emotion classification and sarcasm

detection), employing three word embedding models, over nine datasets;

• We perform a comparative analysis of the accuracy performance of word vector

models when pre-processing is applied at the training phase (training data) and/or

at the downstream task phase (classification dataset). Interestingly, we obtain the

best results when pre-processing is applied only to the training corpus or when it is

applied to both the training corpus and the classification dataset of interest.

• We evaluate the performance of our best pre-processed word vector model against

state-of-the-art pre-trained word embedding models.

1.3.3 Customized Pre-processing for Word Representation Learning in Affective

Tasks

We propose a model using various combinations of different pre-processing methods

for each affective task individually using different word embedding models. Major

contributions of this work are as follows:

• We investigate the usefulness of customized pre-processing for word representation

learning in affective tasks. In particular, we propose different combinations of

pre-processing factors which are most suitable for each affective task, employing

seven embedding models, over nine datasets.

16



• We study the role of each combination of pre-processing factors for a specific

affective task and their major effects on the performance when they are applied in

different stages of word embedding.

• We conduct extensive experiments, showing that the appropriate combination of text

pre-processing methods for each affective task when they are applied in different

stages of word embedding can significantly enhance the classifier’s performance.

• We perform a comparative study comparing the accuracy performance of word

vector models proposed in this work and that of the one presented in the previous

model.

1.3.4 Affective and Contextual Embedding for Affect Detection

We propose two novel models that incorporate contextual and affective features in a deep

neural network architecture for affect detection. The main contributions of this work are

as follows:

• We present two novel deep neural network language models (ACE 1 and ACE 2)

for affect detection. Each model extends the architecture of BERT by incorporating

both affective and contextual features of text to build a classifier to detect affects in

a document.

17



• Integral to our proposed models is a novel model that learns the affective represen-

tation of a document, using a Bi-LSTM architecture with multi-head attention. The

resulting representation takes into account the importance of the affect representa-

tions of the sentences in the document.

• We design and evaluate alternatives that materialize each of the two components (af-

fective feature embedding and contextual feature embedding) of the proposed deep

neural network architecture model. We systematically evaluate the effectiveness of

each alternative architecture.

• We conduct an extensive evaluation of the performance of the proposed models

(ACE 1 and ACE 2), which demonstrates that they significantly outperform current

state-of-the-art models for the affective task of sarcasm detection.

• We investigate whether the proposed affective and contextual model can improve

the performance of other tasks, such as emotion detection and sentiment analysis.

Furthermore, we form a comparative study of the accuracy performance of previous

model using pre-processing with the current proposed model.

1.3.5 Affect-aware Recommendation

We evaluate the performance and usefulness of our proposed affective and contextual

embedding models by applying them on recommendation algorithms and propose an

18



affect-aware recommendation using the attention mechanism. The proposed model

outperforms the state-of-the-art models in the prediction task. The main contributions are

as follows:

• We design an affect-aware recommendation model by adopting a Sequential Hierar-

chical Attention Network (SHAN) for recommending the next items. In particular,

we combine user’s long and short-term preferences to generate a high-level hybrid

representation of users’ and items’ affective information using our proposed models

ACE 1 and ACE 2.

• We present a comparative study measuring the performance of EMoRec proposed

earlier against the affect-aware recommendation (AARec).

• The extensive experiments are conducted to show the effectiveness of the pro-

posed model of affect analysis against the state-of-the-art baseline approaches in

recommendation systems.

All the proposed models for recommendations are evaluated on real datasets from The

Globe and Mail, a major newspaper in Canada, and KKBOX, which is Asia’s leading

music streaming service provider. However, the proposed techniques are not limited to

these two datasets and can be used with other news or music lyrics data. Therefore, the

models are general and can be applied by other applications to improve the accuracy of

the recommendations.

19



1.3.6 The Publications

The outcomes of this study have been published in the proceedings of the top tier con-

ferences in the field of natural language processing such as the 58th Annual Meeting of

the Association for Computational Linguistics (ACL 2020) [12], the 28th International

Conference on Computational Linguistics (COLING 2020) [14], and the 7th International

Workshop on News Recommendation and Analytics (INRA 2019) in conjunction with

13th ACM Conference on Recommender Systems (RecSys 2019) [13].

1.4 Dissertation Organization

This dissertation is organized as follows. In chapter 2, we categorize and discuss the

literature related to the different proposed models. Affect detection serves as an important

component in our framework since our proposed models are built on them. As such, we

introduce the concepts of different types of affect analysis and discuss their potential

in recommendation models by proposing an Emotion-aware Recommendation model

(EmoRec) in chapter 3. In chapter 4, we present a comprehensive analysis of pre-

processing for word representation learning in affective tasks. This model aims to indicate

the role of pre-processing methods when they are applied in different stages of word

representation learning models. The goal of the customized pre-processing model in

affective tasks is to demonstrate the importance of specific combinations of pre-processing

20



techniques which are required for each affective task. We explain this model in detail

with related case studies in chapter 5. Chapter 6 discusses the proposed affective and

contextual embedding model for affect detection. The usefulness of the proposed affect

analysis models in an affect-aware recommendation is discussed in Chapter 7. Finally,

in Chapter 8, we review the contributions, conclude the dissertation, and summarize the

future research directions.

21



2 Literature Review

This dissertation designs a set of novel natural language processing/machine learning

techniques as the algorithmic tools to help music streams and digital newspapers rec-

ommendation systems. A variety of areas in machine learning and natural language

processing ranging from sentiment analysis, emotion detection, sarcasm detection to word

representation learning with neural networks and deep learning have been considered

in designing the proposed approaches. In order to facilitate studying the related work,

we categorize it based on the main components of the dissertation. We study emotion

features in recommender systems used in the literature in §2.1. The pre-processing in

word representation learning for affective tasks are presented in §2.2. We discuss the

related work in affective and contextual sarcasm detection models in §2.3.

2.1 Leveraging Emotion Features in Recommender Systems

According to cognitive psychology, emotion has been recognized as one of the important

elements of human nature that has a significant impact on our behaviour and choices

22



[68, 103]. A number of studies in the area of psychology, neurology, and behavioural

sciences have shown that individuals’ choices are related to their feelings and mental

moods [68, 122]. Gonzalez et al. [62] was one of the earliest works to use emotional

context in recommender systems. They pointed out that emotions are crucial for users’

decision making and that users transmit their decisions together with emotions. Below, we

discuss the role of emotions in recommender systems in two specific domains of interest:

news and music.

2.1.1 Emotion in News Recommender Systems

Prior research has found a range of features to be useful in the context of news rec-

ommender systems, such as user location [57], time of the day [125], demographic

information [100], or article social media profile [212]. However, based on cognitive psy-

chology, emotion, which is one of the essential elements of human nature that significantly

impacts our behaviour and choices [103], has received little attention in recommendations.

A number of studies in the area of psychology, neurology, and behavioural sciences have

shown that individuals’ choices are related to their feelings and mental moods [122].

In the context of recommender systems, one of the earliest works, [62], pointed out

that emotions are crucial for users’ decision making and that users transmit their decisions

together with emotions. [176] introduced a unifying framework for using emotions in user

interactions with a recommender system, and suggested that while an implicit approach

23



of user feedback may be less accurate, it is well suited for user interaction purposes since

the user is not aware of it [176].

While emotions as features have been studied in movie recommendations [127, 131],

music recommendations [71] and restaurant recommendations [181], to name a few, much

less work has explored the role of emotion features in news recommender systems.

Emotion in news articles has been studied for categorizing news stories into eight

emotion categories [7]. Specifically for recommender systems, [138] introduced a model

for Persian news utilizing both the emotion of news as well as user’s preference. More

recently, [120] introduced a recommender system for recommending news items by

leveraging a multi-dimensional model of emotions, where emotion is derived through

user’s self-assessed reactions (i.e., explicit feedback), which can be considered as an

intrusive collection. In contrast to previous studies, our work focuses on studying the role

of emotion features in news recommender systems using implicit user feedback.

2.1.2 Emotion in Music Recommender Systems

Chen and Tang [36] present a classification model for Chinese song recommender system

based on computational analysis of the lingual part of song lyrics. Through extracting

and combining the term frequency and inverse document frequency (tf*idf) from song

lyrics, they construct a composite emotion point matrix for each song, which is then used

to further classify songs based on their emotion and make a recommendation accordingly.

24



Hu et al. [81] proposed a method for detecting the emotions of Chinese song lyrics

based on an affective lexicon and fuzzy clustering. Xie and Tang [191] proposed an

emotion-aware recommendation approach that analyzes emotion based on the song lyrics

and user comments via vector projection. The above-mentioned approaches have been

designed for and evaluated on Chinese text data, which cannot be ported to English

data in a straightforward manner. For English music, Gossi and Gunes [64] consider a

recommendation system based on user-generated tag data representing genre, mood and

gender of vocalist. Zangerle et al. [201] leveraged hashtags indicating sentiment provided

by users for music recommendation. As user-generated data is generally unavailable for

most songs; in this chapter, we enhance lyrical analysis by extensive emotion modeling

for generating user recommendations without any user input.

2.2 Pre-processing for Word Representation Learning in Affective

Tasks

In this section, we present an overview of related work on pre-processing classification

datasets and pre-processing word embeddings, and how our work aims to bridge the gap

between those efforts.

25



2.2.1 Pre-processing Classification Datasets

Pre-processing is a vital step in text mining and therefore, evaluation of pre-processing

techniques has long been a part of many affective systems. Saif et al. [158] indicated

that, despite its popular use in Twitter sentiment analysis, the use of a pre-compiled

stoplist has a negative impact on the classification performance. Angiani et al. [11]

analyzed various pre-processing methods such as stopwords removal, stemming, negation,

emoticons, and so on, and found stemming to be most effective for the task of sentiment

analysis. Similarly, Symeonidis et al. [170] found that lemmatization increases accuracy.

Jianqiang and Xiaolin [85] observed that removing stopwords, numbers, and URLs can

reduce noise but does not affect performance, whereas replacing negation and expanding

acronyms can improve the classification accuracy.

Pre-processing techniques such as punctuation and negation Rose et al. [155] or

pos-tagging and negation [160] make up a common component of many emotion clas-

sification models [95, 140]. One of the earliest works [39] preserved emotion words

and negative verbs during stopwords removal, replaced punctuation with descriptive new

words, replaced negative short forms with long forms, and concatenated negative words

with emotion words to create new words (e.g., not happy → NOThappy ). Although

stemming may remove the emotional meaning from some words, it has been shown

to improve classification accuracy [2, 39]. Negations have also been found beneficial,

26



whereas considering intensifiers and diminishers did not lead to any improvements [168].

Pecar et al. [141] also highlight the importance of pre-processing when using user-

generated content, with emoticons processing being the most effective. Along the same

lines, while Gratian and Haid [65] found pos-tags to be useful, Boiy et al. [20] ignored

pos-tagging because of its effect of reducing the classification accuracy

The aforementioned works describe pre-processing techniques as applied directly to

evaluation datasets in affective systems. In contrast, we examine the effectiveness of

directly incorporating these known effective pre-processing techniques further “upstream”

into the training corpus of word embeddings, which are widely used across a number of

downstream tasks.

2.2.2 Pre-processing Word Embeddings

Through a series of extensive experiments, particularly those related to context window

size and dimensionality, [105] indicate that seemingly minor variations can have a large

impact on the success of word representation methods in similarity and analogy tasks,

stressing the need for more analysis of often ignored pre-processing settings. Lison and

Kutuzov [106] also present a systematic analysis of context windows based on a set of

four hyperparameters, including window position and stopwords removal, where the right

window was found to be better than left for English similarity task, and stopwords removal

substantially benefited analogy task but not similarity.

27



A general space of hyperparameters and pre-processing factors such as context win-

dow size [77, 113], dimensionality [113], syntactic dependencies [104, 184] and their

effect on NLP tasks including word similarity [77], tagging, parsing, relatedness, and

entailment [73] and biomedical [37] has been studied extensively in the literature. The

main conclusion of these studies, however, is that these factors are heavily task-specific.

Therefore, in this work we explore pre-processing factors of generating word embeddings

specifically tailored to affective tasks, which have received little attention.

A recent study investigated the role of tokenizing, lemmatizing, lowercasing and

multiword grouping [26] as applied to sentiment analysis and found simple tokenization

to be generally adequate. In the task of emotion classification, Mulik et al. [129] examined

the role of four pre-processing techniques as applied to a vector space model based on

tf-idf trained on a small corpus of tweets, and found stemming, lemmatization and emoji

tagging to be the most effective factors.

Distinct from prior works, we examine a much larger suite of pre-processing factors

grounded in insights derived from numerous affective systems, trained over two different

corpora, using three different word embedding models. We evaluate the effect of the pre-

processed word embeddings in three distinct affective tasks including sentiment analysis,

emotion classification and sarcasm detection.

28



2.3 Affective and Contextual Embedding for Affect Detection

In this section, we present the related work on sarcasm detection including models that

use affective features, contextual information, or a combination of both affective features

and contextual information. We also explain how our work aims to bridge the gap among

existing efforts.

2.3.1 Affective Features

Identifying sarcasm in text has evolved from simple lexical-based and syntactic pattern

models [40, 63, 177] to complex models that consider refined linguistic features, such as

positive predicates, interjections, gestural cues (emoticons, quotation marks, etc.) [29]

or behaviour modeling [5, 151]. With the advent of deep learning, there has been a

shift in how prediction models are designed and engineered. For example, Ghosh et

al. [59] proposed a conditional LSTM network [79] for detecting sarcasm in twitter

using sentence-level attention mechanisms on hashtags and [76] learned and utilized a

knowledge-based model of affective features based on a wide range of lexical resources.

These models mostly relied on manually engineered patterns and features. However, more

recently, Zhang et al. [204] proposed multiple deep learning models, including a sentiment

augmented/supervised with attention Bi-LSTM model and a sentiment transferred Bi-

LSTM model to identify sarcasm in Twitter datasets.

29



The main drawback of these models is that they are based on self-contained content

(e.g. Twitter hashtags #) and when such content is not available (which is the case for

learning a more general model), the model fails to detect sarcasm. In addition, these

models assume availability of the complete conversational context to detect sarcasm,

which in most cases is not available; as a result they can not generalize properly. Distinct

from this line of work, our proposed models minimize the need for manual feature

engineering by utilizing an architecture with Bi-LSTM and an attention mechanism that

can accurately learn the affective representation of an input, even by utilizing a single

affective feature.

2.3.2 Contextual Features

To address issues of lack of generalization and manual feature engineering, general word

representation learning models have been proposed, such as Word2vec [116] and GloVe

[142]. These models learn embeddings of words that would locate them close to one

another in the embedded space if they share common contexts in the corpus. However,

this means that even words opposite in meaning to another (antonyms), such as happy

and sad that often occur in similar contexts, would be embedded close to each other. As a

result, the use of general models can be inadequate for affective tasks [10]. To this end,

Zhang et al. [202] proposed a bi-directional gated recurrent neural network (GRNN) to

capture syntactic and semantic information locally, and a pooling neural network to extract

30



contextual features automatically for sarcasm detection. While, Ilic̀ et al. [84] proposed a

deep learning model based on character-level word representations obtained from ELMo

[143] using a learned representation that models features derived from morpho-syntactic

cues to solve the issue of dissimilarity in context for sarcasm detection. In [189] a system

based on a densely connected LSTM network with multi-task learning strategy using

POS tag features was proposed. More recently, transformer-based models (i.e., using

encoder and decoder methods), such as BERT [45], RoBERTa [107] and XLNet [198]

have been proposed to advance the state of the art in many NLP tasks by combining word

embeddings with context embedding by using attention mechanisms in a bidirectional

manner. However, little work has considered using these models for sarcasm detection.

A multi-modal sarcasm detection method including text, speech and video features was

proposed, where pre-trained BERT-based model was used for representing the sentences

[30]. Moreover, Potamias et al. [149] proposed RCNN-RoBERTa for sarcasm detection

in social media by leveraging the pre-trained embeddings from RoBERTa combined with

a recurrent convolutional neural network. Babanejad et al. [12] investigated the impact of

data pre-processing on word representation learning for affective tasks.

The main drawback of using advanced pre-trained models is that they do not incor-

porate any affect-specific features during the training phase of the model – therefore

the accuracy of the model on affective tasks can be lessened. Our proposed models

incorporate affective features along with contextual information in one architecture for

31



sarcasm detection.

2.3.3 Affective-Contextual Features

More sophisticated approaches for sarcasm detection have tried to combine the best of the

two worlds by incorporating affective features with general embedding models during

training. For example, Felbo et al. [53] proposed DeepMoji by training a Bi-LSTM model

with emojis to learn representations of emotional context. Through a series of extensive

experiments, particularly those related to incorporating affective features with pre-trained

embeddings for sarcasm detection, the authors demonstrated the need to consider affective

features in word embedding models for sarcasm detection. Poria et al. [148] also

developed pre-trained sentiment, emotion and personality models for identifying sarcastic

text using Convolutional Neural Networks (CNN-SVM). More recently, [174] utilized a

multi-dimension intra-attention mechanism to overcome limitations of sequential neural

network models and capture words’ incongruities for sarcasm detection. Agrawal and

An [3] incorporated affective information into word representations by training a Bi-

LSTM using corpora with weak affect labels and used such representations for sarcasm

detection. Moreover, a model that uses the semantic, sentiment and punctuation based

hand-crafted features for sarcasm detection was proposed using multi-head attention

based Bidirectional Long-Short Term Memory (MHA-BiLSTM) with Glove pre-trained

embeddings [99]. Finally, Hazarika et al. [74] proposed a ContextuAl SarCasm DEtector

32



(CASCADE), by adopting a hybrid approach of both content and context-driven modeling

for sarcasm detection where they utilized a user’s personality features and style of writing

to detect sarcasm.

Our research is mostly related to this line of work. In particular, we advance the

state of the art in sarcasm detection by combining recently proposed transformer-based

language models, such as BERT and SBERT, with affective-specific features.

2.3.4 Task-specific Corpora for Sarcasm Detection

Another important observation for the problem of sarcasm detection is that using task-

specific corpora can be beneficial [152]. Previous studies [86, 206] have employed

datasets related to comedy (movie transcripts, novels, etc.) to improve on the sarcasm

detection task. This is because the utterance of humor/emotion and sarcasm is more

expressed in the comedy genre than in other genres. Comedy is a literary genre and a

type of dramatic work that is often satirical in its tone. For instance, they used corpus of

children’s stories (e.g., Harry Potter Books), transcripts of a MTV show (e.g., Big Bang

Theory) and transcripts of comedy TV series (e.g., Friends) to train models for emotion

and sarcasm detection. In addition, when we are dealing with word embedding models

such as BERT which is pre-trained by the universal language Wikipedia, leaving the usage

of task-specific corpora challenges unresolved [194]. Deu et al., [49] proposed a model to

solve this limitation by injecting the target domain data to BERT and encourage BERT to

33



be domain-aware for the task of sentiment analysis. In particular, the authors conducted

post-training and adversarial training to improve the performance of Bert for sentiment

classification. Following this intuition and to adhere to best practices, our proposed

models leverage task-specific data of two sarcasm-rich corpora for training embeddings

during training to improve the sarcasm detection accuracy.

34



3 Leveraging Emotion Features in Social Media

Recommendations

3.1 Introduction

Recommender systems (RS) have widely and successfully been employed in domains as

diverse as news and media, entertainment, e-commerce and financial services, to name

a few. The main utility of such systems is their ability to suggest items to users that

they might like or find useful. Traditionally, research on recommendation algorithms

has focused on improving the accuracy of predictive models based on a combination

of descriptive features of the items and users themselves (e.g., user behavior, interests

and preferences) and the history of a user’s interactions with the items through ratings,

reviews, clicks and more [92, 136, 137]. However, little attention has been paid to the

emotional context and its relation to recommendations.

While emotions can be manifested in various ways, we focus on emotions expressed

in textual information that is associated with items or users in the system. For example,

35



Figure 3.1: Illustrative example of emotions expressed in articles read by two different users,

U1 (left) and U2 (right), over a three month period. Can we leverage the

emotional context to improve recommendations?

the content of a news article, the content of an online review or the lyrics of a song

are good examples of textual information directly associated with an item’s emotional

context. On the other hand, the emotional profile of a user can be determined through

explicit or implicit feedback of users to items. Explicit feedback, such as providing

ratings and/or submitting reviews to items, can represent an accurate reflection of a

user’s opinion about the item, but it is considered an intrusive process that disrupts the

user-system interaction and negatively impacts user experience [135]. In addition, while

it might be available for certain domains (e.g, product recommendations [34], movie

recommendations [131], etc.), it is not easily obtainable in domains such as news or

music, where users typically interact with items at a fast pace and are less inclined to

provide feedback. In the absence, sparsity or high cost of acquisition of explicit feedback,

incorporating implicit feedback, which is generally abundant and non-intrusive, might

36



be beneficial. Therefore, we focus on indirectly capturing the emotional context of users’

activity by monitoring their interactions with items over time. For instance, one can

monitor the emotions expressed in lyrics of songs users are listening to, or the tone of

the stories in news article users are reading. Effectively, this information can be used to

model a user’s historical or temporal emotional profile.

To further motivate this, consider Figure 3.1 that illustrates the emotional profiles

of two users, U1 and U2, based on eight basic emotions, expressed in articles read by

them over a period of three months. One can notice that emotions of sadness and fear

are mostly expressed in the articles read by U1 while other emotions, such as joy are less

expressed. In addition, one can observe trends such as the expression of anger increasing

over time. On the other hand, for U2, the emotions of joy and trust are mostly expressed

and other emotions, such as disgust are less expressed. Moreover, emotions of fear and

anticipation are increasingly expressed in the articles read by this user. Although, the

emotional tone derived from news articles read by a user cannot justify the personality and

state of mind of the user, it can be considered as the taste or preference of the user, where

it shows the type of articles they are more interested in. Inspired by these observations,

recent advancement in methods for emotion detection and the success of emotion-aware

recommendation algorithms, the main motivation of our research is to investigate whether,

how and to what extent emotion features can improve the accuracy of recommendations.

The Problem. More formally, the recommendation task can be described as follows. Let

37



a set of < users U = {D1, D2, ..., D<} and a set of = items I = {81, 82, ..., 8=}. Let us

also assume that each user D8 has already interacted with a set of items ID8 ⊆ I (e.g.,

consumed news articles). Then, the problem is to accurately predict the probability ?D0 ,8 9

with which a user D0 ∈ U will like item 8 9 ∈ I \ ID0 . The task can also take the form of

recommending a set I: ⊆ I \ ID0 of : items that the user will find most interesting (top-:

recommendations). Depending on the target domain the semantics of the recommendation

task can be instantiated differently. For example, in the news domain, the task is that of

recommending an unread article. While, in music, it can be instantiated as the chance of

re-listening to a song.

Challenges & Approach. In order to evaluate the importance of the emotional context

to recommendations, we had to incorporate emotional features [4, 156, 185] to state-of-

the-art recommendation algorithms and evaluate their accuracy performance. Figure 3.2,

shows a schematic diagram of the emotion-aware recommendation algorithm process we

designed, which consists of three main stages: i) feature engineering, ii) model training,

and iii) blending & ensemble learning. Each of these components, define a number of

challenges that need to be addressed. During feature engineering, we had to generate a

number of features attributed to both users and items. Emphasis was given in capturing

the most important non-emotional and emotional features for the prediction task. Once

features are extracted, off-the-shelf feature selection methods are employed to select a

subset of them that are more relevant for use in model construction. During model training,

38



                                     

                                 

              

                                  

                                

 

  

 

 

                                     

 

 

 

 

user-specific properties 

item-specific properties 

user-item interactions 
users 

items 
Raw Data 

Feature Generation 

 

 

 

 

 

 

Feature Extraction 

 Non-Emotion-based Features 

 item-related 

 user-related 

Feature Selection 

Model Training 

Blending  

&  

Ensemble 

 

 
Item  

Predictions 

Stage 1

 

Stage 2

 

Stage 3

 

focus of  

this paper 

Emotion-based Features 

 item-related 

 user-related 

Figure 3.2: Overview of an emotion-aware recommendation system.

we experiment with a number of state-of-the-art models for generating recommendations.

During blending & ensemble we combine alternative models to obtain better predictive

models than any of the constituent models alone.

Contributions. The major contributions in this chapter are as follows:

• We systematically identify, extract and select the most relevant emotion-based

features for use in recommendation models. These features are associated with

both items and users in the domain. We supplement these features with typical

39



user and item features employed in recommendation tasks. Note that we had to

limit the coverage to ones more suited to the targeted domains (news article, music).

However, we are able to extract sufficient features to demonstrate the effect of

emotions in recommendation accuracy.

• We devise a number of state-of-the-art models for generating recommendations

that incorporate the additional emotion features. These models include variations

of gradient boosting decision trees, deep matrix factorization methods and deep

neural network architectures. In addition, we use ensembling methods to increase

the predictive performance by blending or combining the predictions of multiple

constituent models.

• We propose EMOREC, an emotion-aware recommendation model, which demon-

strates the best accuracy performance in news recommendation task. EMOREC

itself is an ensemble model.

• We conduct a thorough experimental evaluation on real datasets coming from diverse

domains (news and music). Our results demonstrate that the emotion-aware rec-

ommendation models consistently outperform state-of-the-art non-emotion-based

recommendation models. Our study provides evidence of the usefulness of the

emotion features at large, as well as the feasibility of our approach on incorporating

them to existing models to improve recommendations.

40



The remainder of this chapter is organized as follows. Section 3.2 describes the

feature engineering process for selecting emotion and non-emotion features from

item and users. In Section 3.3 we provide details of the proposed models for

generating recommendations. Section 3.4 presents an experimental evaluation of

the models and discusses the findings. Finally, Section 3.5 summarize this chapter.

3.2 Features for recommendation

This section describes the feature extraction procedure which is utilized in our proposed

framework. The features are grouped into two main categories: (i) emotion-based features

for items and users, and (ii) non-emotion-based features for items and users.

3.2.1 Emotion-based Features

The main objective of this chapter is to improve the performance of recommender system

by leveraging the user/item emotion features.

Figure 3.3 shows an example of textual content of items (i.e., lyrics of a song, and news

article) in music and news domains. As it can be observed, there are several words such as

laugh, love and gratifying, expressing the emotion of happiness. Moreover, interjections

such as yay and oh can be indicators of different emotions [61]. In this section, we describe

how we extract such features to improve the recommendation system effectiveness. In

order to maintain consistency, each news article is preprocessed by tokenizing into words,

41



Figure 3.3: Example emotions expressed in textual content

removing the stopwords and POS-tagging to extract nouns, verbs, adverbs and adjectives.

In particular, we focus on two approaches for computing emotion features: sentiment

analysis, which classifies text into neutral, positive and negative sentiments, and emotion

analysis which categorizes text into emotions such as happiness, sadness, anger, disgust,

fear and so on. Note that we extract emotion features for both users and items.

3.2.1.1 Item Emotion-based Features

Number of Emotion Words: This feature represents the number of words in an emotion

lexicon (i.e., WordNet-Affect, see Table 1) that occur in the item (i.e., news article) more

than once.

Ekman’s Emotion Label: We count the number of emotion words occurring in the

text document for each emotion type (Ekman’s six emotion categories [50]) and then the

text is assigned an emotion label with the highest number of emotion words appearing in

the text. If more than one emotion category has the highest count, 0 is assigned to this

42



Resources Size Emotion Taxonomy

WordNet-Affect [167] 4787 words Several

ISEAR [186] 7600 sentences ISEAR

NRC [124] 14,182 words Plutchik

SentiWordNet 3.0 [15] 11,000+ synset Sentiments

Table 3.1: Emotion Resources

feature, leaving the next feature to indicate mixed emotions. A combination of different

lexicons (WordNet-Affect and NRC, see Table 3.1) is used to find the emotion labels. We

use multiple resources to have a bigger set of emotion words for each emotion.

Mixed Emotions: This feature indicates whether an item has more than one document-

level emotion labels based on Ekman’s emotion model (i.e., if two or more emotions have

the highest score, this feature is valued at 1, otherwise 0). Since the initial annotation

effort (previous feature) illustrated that in many cases, a sentence can exhibit more than

one emotion, we have an additional category called mixed emotion to account for all such

instances.

Sentiment Feature: The text is classified into three categories: positive, negative and

neutral. We utilize the approach introduced in [133] and use SentiWordNet [15].

Interjections: This feature counts the number of interjections in a document. A short

43



sound, word or phrase spoken suddenly to express an emotion, e.g., oh, look out!, ah, are

called interjections1. Our preliminary analysis found that interjections were common in

quotes in news articles, which can be detected for potential emotions.

Capitalized Words: This feature counts the number of words in a document with all

uppercase characters. People use capital words to express an emotion [177] and make it

bold to the readers (e.g., I said I am FINE).

Punctuation: Two features are included to model the occurrence of question marks

and exclamation marks repeated more than two times in a document. Using punctuation

can clarify the emotional content of the texts that are sometimes easy to miss [177].

Grammatical Markers and Extended Words: This feature counts the number

of times words with a character repeated more than two times (e.g., haaappy or oh

yeah!!????) [22] as excessive use of letters in a word (e.g., repetition) is one way to

emphasize feelings.

Plutchik Emotion Scores: First, we measure the semantic relatedness score between

a word ,8 in the text and an emotion category � 9 in the NRC lexicon (see Table 1) as

follows [2]:

%"� (,8, � 9 ) = =

√√
=∏

:=1

%"� (,8 , �
:
9
) (3.1)

1List of interjections derived from: i) https://surveyanyplace.com/the-ultimate-interjection-list, ii)

https://7esl.com/interjections-exclamations, and iii) https://www.thoughtco.com/interjections-in-english-

1692798

44



where �:
9

(: = 1 . . . =) is the : th word of emotion category � 9 . %"� is the Pointwise

Mutual Information calculated as follows:

%"� (,8 , �
:
9 ) = log

%(,8 , �
:
9
)

%(,8)%(�:
9
)

(3.2)

where %(,8) and %(�:
9
) are the probabilities that ,8 and �:

9
occur in a text corpus,

respectively, and %(,8, �
:
9
) is the probability that ,8 and �:

9
co-occur within a sliding

window in the corpus. Finally, we calculate the average, maximum and minimum of score

for all words in the text for each emotion category and consider each as an individual

feature.

3.2.1.2 User Emotion-based Features

As we do not have access to users’ explicit emotion towards items, we develop users’

implicit emotional profile based on their historical interactions with items. By computing

the emotion profile of the items with which a user is interacting, we derive the emotional

taste of the user over that period of time over the set of items.

User Emotions Across Items: We determine the emotion score (i.e., Plutchik’s

emotion scores) for the last accessed item before subscription as well as for the last 20

items accessed by the user. Then, we pick the top 3 frequent emotions.

User Emotions Across Categories: We determine the emotion of categories of items

(e.g., sports in news domain or pop in music) accessed by a user by counting the number

45



of items assigned to an emotion in a specific category, with the most frequent emotion

considered as the emotion of the category. The feature is calculated for the whole history

of the user.

3.2.2 Non-Emotion-based Features

Non-emotion-based features can also be classified into item-based and user-based features.

3.2.2.1 Item Non-Emotion-based Features

Item Topic: We extract topics in the article using Latent Dirichlet Allocation (LDA) [19].

In LDA, each topic is a distribution over words, and each document is a mixture of topics.

The number of topics for the news articles are 112 , which were chosen empirically to

minimize the perplexity score of the LDA result. Thus, the item topic is represented by a

vector of length 112.

Topic Label: We use lda2vec [126] to generate and label the topics in an item (i.e.,

document), where each generated topic is labeled by one of its top : words which is most

semantically similar to the other words in the top : word list. We then label the item

(i.e., document) with the label of the most coherent topic among the top < topics of the

document. The word vector of this label word is used as the value for this feature.

TF-IDF: This feature represents items as n-grams (unigram, bigram, trigram) with

the TF-IDF weighting approach [110].

46



Coherence: We first calculate the cosine similarity scores between all pair of words in

an item using word2vec pre-trained word vectors2, and then record average of similarity

scores, standard deviation of similarity scores, the lowest score that is higher than the

standard deviation, and the highest score that is lower than the standard deviation as four

features.

Potential to Trigger Subscription: This feature represents the total number of times

the item was requested right before a paywall was presented to a user who subsequently

made a subscription [42, 43]. In a subscription-based item delivery model a paywall is the

page asking for subscription before allowing an unsubscribed user to continue accessing

items.

3.2.2.2 User Non-emotion-based Features

Visit Count: We calculate the average number of items (articles) accessed by a user per

visit. A visit is terminated if a user is inactive for more than 30 minutes.

User Spent Time: Two features are represented. One is the average time the user

spent per item, and the other is the average time the user spent per visit.

User Interest in Subcategory: This feature represents the empirical probability

of subcategory B given a user D and a category 2 denoted as %(B |D, 2). For example,

%(4;42C8>=|D, ?>;8C82B) can be determined by the total number of articles the user read on

2https://code.google.com/archive/p/word2vec/

47



Emotion Features Gain Score

Plutchik emotion scores 3200.86

User emotions across items 1985.36

User emotions across categories 1850.33

Ekman’s emotion label 1101.38

Punctuation 910.55

Grammatical markers and extended words 860.13

Interjections 773.12

Capitalized words 640.21

Mixed emotions 526.97

Sentiment features 360.68

Table 3.2: List of Emotion Feature Importance

election over the total number of articles that the user read on politics. In our experiments,

the categories and subcategories were provided with the dataset and we consider only the

top 50 most frequently visited subcategories for this feature.

User Latent Vector: We calculate the latent vector for each user based on matrix fac-

torization introduced in [171]. This feature is chosen so that we can compare our method

with the Deep Matrix Factorization model in [197], a state-of-the-art recommendation

48



Non-emotion Features Gain Score

User latent vector 3640.87

Potential to trigger subscription 2974.46

User interest in subcategory 1530.28

Topic labeling 1421.19

User spent time 1110.57

Visit count 920.53

Item topic 867.12

Coherence 685.23

TF-IDF 410.29

Table 3.3: List of Non-emotion Feature Importance

method, which uses this feature as input for a deep neural network.

3.2.3 Feature Selection

One of the critical steps after feature extraction is to select important features for rec-

ommendation. Table 3.2 reports the most important emotion features and Table 3.3

non-emotion features according to gain importance score for the News data set. We

evaluate feature importance by averaging over 10 training runs of a gradient boosting

49



machine learning model XGBoost [35] to reduce variance3. Also, the model is trained

using early stopping with a validation set to prevent over-fitting to the training data. By

using the zero importance function, we find features that have zero importance according

to XGBoost.

3.3 Emotion-aware Recommendation Model (EmoRec)

In this section, we introduce a tailored structure of an Emotion-aware Recommender

System Model (EMOREC) for personalized recommendation. Our final model is an

ensemble model of three models leveraging both emotion/non-emotion-based features.

The final model benefits from the strengths of the base models generalizing well over

different application domains (i.e., news and music). We describe the structure of the

proposed model and the training methods next.

3.3.1 Model Training

In this section we describe the details of each training models.

3Variance refers to the sensitivity of the learning algorithm to the specifics of the training data (e.g., the

noise and specific observations).

50



3.3.1.1 Model 1 (Boost Model)

Gradient Boosting Decision Tree (GBDT) methods are among the most powerful machine

learning approaches which have been effectively used in many domains [54] including

recommendation [207]. The basic idea in GBDT approaches is to learn a set of base/weak

learners (i.e., decision trees) sequentially by using different training splits. More precisely,

at each step, we learn a new base model by fitting it to the error residuals (i.e., difference

between the current model predictions and the actual target values) at that step. The

new model outcome is the previous model outcome plus the (weighted) new base learner

outcome. Eventually, the final model outcome is the weighted average of the outcomes

of all base learners, where the weights are learned jointly with the base learners. We

train two state-of-the-art GBDT models, namely, XGBoost [35] and Catboost [47], on our

training datasets with the features selected in Section 3.2.3 as the input.

XGBoost uses pre-sorted/histogram-based algorithm to compute the best split while

CatBoost uses ordered boosting, a permeation based algorithm, to learn the weak learners

effectively. Moreover, XGBoost uses one-hot encoding before supplying categorical data,

but CatBoost handles categorical features directly. We train both models individually

(three base models for each). The final model output (i.e., probability that a user is

interested in an item) is the combination of all base models outcomes:

6∑
8

U8?8 (3.3)

51



where ?8 is the probability that the user is interested in the item according to base model 8

and U8 is the weight of base model 8 learned by XGboost/Catboost.

3.3.1.2 Model 2 (Deep Neural Network (DNN))

Figure 3.4 shows our proposed Deep Neural Network architecture for leveraging the

emotion features (and other commonly available features) for the recommendation purpose.

The input is divided into four groups[17]: i) user non-emotion based features, ii) item

non-emotion based features, ii) user emotion-based features, and iv) item emotion-based

features. For the categorical inputs, we utilize one-hot encoding (the second layer is look-

up embeddings mapping each categorical feature to a fixed length embedding vector).

Figure 3.4: The Structure of Our DNN Model

52



In the architect “Dense Layer” can be formalized as:

�4=B4(G) = 5 (,G + 180B) (3.4)

where, and 180B are parameters, G is the layer input and 5 is the activation function

(for linear layer 5 is the identity function). We use !2 regularization to prevent over-fitting

in embedding layer and use back-propagation to learn the parameters.

3.3.1.3 Model 3 (Deep Matrix Factorization (Deep MF))

Inspired by the models proposed in [75, 197], we built our Deep MF (Figure 3.5) to

leverage extra user/item features (i.e., emotion and non-emotion features) in the recom-

mendation prediction task. In [197], they construct a user-item matrix with explicit ratings

and implicit preference feedback, then with this matrix as the input, they present a deep

neural architecture to learn a low dimensional space for the representation of both users

and items. In [75], by replacing the inner product with a neural architecture, they learn

an arbitrary function to capture the interactions between user and item latent vectors.

Different from their work, we focused on modeling the user/item with rich extra features,

such as non-emotion and emotion based features, as well as using embedding vectors

learned in our DNN model. The input of our proposed model is the same as the DNN

model where the categorical features are encoded using one hot vectors. The second

53



layer is the look-up embedding. In this layer, we have both MF embedding vectors,

which we estimate through the learning process, and DNN embedding vectors, which are

concatenation of embedding vectors (for each similar input group) learned from DNN

model (they are fixed in this model). Generalized Matrix Factorization (GMF) layer

combines two embeddings using dot product and applies some non-linearity. Similar to

DNN model, the output of the model is the probability that a user is interested in an item.

Figure 3.5: The Structure of Our Deep MF Model

Ensemble/Blending Model: The final model EMOREC was the weighted average of

the three models’ predictions. We use Nelder-Mead Method [134] to find the optimum

weights of each models.

54



3.4 Experimental Evaluation

In this section, we introduce the data, evaluation protocols and the specific configurations

used in our experiments.

3.4.1 Data

Our experiments are conducted on real-world datasets from two domains: news and

music.

News: The Globe and Mail is one of the major newspapers4 in Canada. We use the

data spanning from January to July 2014 (a 6-month period) in our experiments where the

data in the first 4 months were used for training, and the last 2 months for testing. The

dataset contains information for 359,145 articles in total and 88,648 users in total, out of

which 17,009 became subscribers during this period, and 71,639 were non-subscribers.

Every time a user reads an article, watches a video or generally takes an action in the news

portal, the interaction is recorded as a hit. Typically, a hit contains information like date,

time, user id, visited article, special events of interest like subscription, sign in, and so on.

Music: This dataset originates from KKBOX5 provided by Kaggle 6. Our dataset

comprises of 98,746 English songs and 34,403 users. Since the original dataset only

4https://www.theglobeandmail.com/

5https://www.kkbox.com

6https://www.kaggle.com/c/kkbox-music-recommendation-challenge

55



includes a song name, we supplement it by obtaining lyrics from musiXmatch7 and

MetroLyrics8. The dataset has 7,377,418 number of records from 2016-08 to 2017- 01 in

the training set, and 2,556,790 records from 2017-01 to 2017-02 in the testing set which

is time sensitive9, we decided to use the last 20% of the training data for validation, and

when we generated the predictions for the testing set.

3.4.2 Evaluation Metrics

We use F-score to measure the predictive performance of a recommender system. For

each user in the test data set, we use the original set of read articles in the test period as

the ground truth, denoted as )6. Assuming the set of recommended news articles for the

user is )A , precision, recall, and F-measure are defined as follows:

%A428B8>= =
|)6 ∩ )A |
|)A |

, '420;; =
|)6 ∩ )A |
|)6 |

� = 2 × %A428B8>= × '420;;
%A428B8>= + '420;;

The F-score on a test data set is the average over all the users in the test data set.

7https://labrosa.ee.columbia.edu/millionsong/musixmatch

8https://www.programmableweb.com/api/metrolyrics

9Note: Since the data in music dataset is ordered chronologically, we use the index as the timestamp to

help the models for pattern evolution during the long period of time.

56



3.5 Discussion and Analysis

In this section, We analyze the impact of using various emotion features on the perfor-

mance of recommendation models.

3.5.1 Comparing Recommendation Models with and without Emotion Features

Our main objective is to see whether the use of emotion features will boost the perfor-

mance of recommendation models. For such a purpose we run the three state-of-the-art

recommendation models described in the last section and some ensembles formed by

these models with and without emotion features. The models used in our evaluation are

as follows:

• Single Boost Model: We run XGBoost and Catboost separately to make predictions

and collect the average of their F-scores.

• Boost Blend: This is the 6-model ensemble described in Model 1 in Section 3.3.1.

• Deep MF: This is the deep matrix factorization model described in Section 3.3.1.

• Single DNN model: We run the DNN model for 5 times with the same hyperparam-

eters but different random seeds and collect the average result over 5 runs.

• DNN Ensemble: An ensemble of 5 DNN models with different hyperparameters

(e.g., different learning rates, etc.) is run 5 times each with a different random seed.

57



The average result over the 5 runs is collected.

• Boost Blend + Deep MF: This is an ensemble consisting of Boost Blend and Deep

MF.

• Boost Blend + DNN Ensemble: This an ensemble consisting of Boost Blend and

DNN Ensemble.

• Deep MF + DNN Ensemble: This is an ensemble consisting of Deep MF and DNN

Ensemble.

• Boost Blend + Deep MF + DNN Ensemble: an ensemble consisting of Boost Blend,

Deep MF and DNN Ensemble.

We train each of the above models using the training data of our data set and use the

trained model to make recommendations by predicting a user’s interest in an item in the

test data. Tables 3.4 and 3.5 show the results (in F-score) of using these recommendation

methods with and without emotion features on the News and Music datasets accordingly,

where the whole set of emotion features described in Section 3.2.3 is used in the results

for “All”, while none of the emotion features is used in the results for “Non-Emo”. As

can be seen, adding emotion features improves the predictive performance for all the

recommendation methods. Among the single recommendation models (i.e., Single Boost

Model, Deep MF and Single DNN Model), Deep MF performs the best. The results also

show that ensemble methods perform better than single/component models. The best

58



Model Non-Emo All

Single Boost Model 70.19 70.86

Boost Blend 70.69 71.50

Deep MF 72.93 73.29

Single DNN Model 70.88 73.00

DNN Ensemble 73.62 74.30

Boost Blend + Deep MF 73.07 74.98

Boost Blend + DNN Ensemble 74.00 74.23

Deep MF + DNN Ensemble 74.61 75.10

EMOREC (Boost Blend + Deep MF + DNN Ensemble) 78.20 80.30

Table 3.4: Results of our Models on News Dataset (F-score)

performance is produced by the largest ensemble (i.e., Boost Blend + Deep MF + DNN

Ensemble). We refer to this best-performing model as our EMOREC model. To further

investigate whether there is a significant improvement of using "All" features over the use

of no emotional features (“Non-Emo") on both news and music datasets, we conducted

paired t-tests [101] on the results in Tables 3.4 and 3.5. The resulting ?-value for the

News dataset is 0.001874 and that for the Music dataset 0.002975, indicating a significant

improvement on both datasets.

59



Model Non-Emo All

Single Boost Model 67.79 70.13

Boost Blend 71.08 70.61

Deep MF 70.00 71.00

Single DNN Model 71.30 72.29

DNN Ensemble 71.64 74.81

Boost Blend + Deep MF 70.00 70.03

Boost Blend + DNN Ensemble 72.01 74.87

Deep MF + DNN Ensemble 73.18 74.90

EMOREC (Boost Blend + Deep MF + DNN Ensemble) 73.68 76.06

Table 3.5: Results of our Models on Music Dataset (F-score)

3.5.2 Comparison with Other Baselines

We also compare our EMOREC model with the following three state-of-the-art recommen-

dation methods with well-tuned parameters (that is, the parameters are optimally tuned to

ensure the fair comparison). The objective is to investigate whether emotion features can

smarten up these recommender systems. A brief description of these three models is as

follows:

Basic MF: This is the simple matrix factorization model where used for discovering la-

60



tent features between two entities (i.e., user and articles)[171]. Both user preferences and

item characteristics are mapped to latent factor vectors. Each element of the item-specific

factor vector measures the extent to which the item possesses one feature. Accord-

ingly,each element of the user-specific factor vector measures the extent of the user

preferences in that feature.

FDEN and GBDT: an ensemble of different models, including Field-aware Deep

Embedding Networks and Gradient Boosting Decision Trees [17]. The predictions of

FDENs are from a bagging ensemble using the arithmetic mean of many networks, each

of which has slight differences on hyper-parameters, including the forms of the activation.

Truncated SVD-based Feature Engineering: a gradient boosted decision trees model

with truncated SVD-based embedding features [161]. To overcome the cold start problem,

a truncated SVD-based embedding features were created using the embedding features

with four different statistical based features (users, items, artists and time), the final model

was the weighted average of the five models’ predictions.

The results are illustrated in Table 3.6, which shows that emotion features can also

improve the recommendation performance of these three state-of-the-art baselines. In

addition, our EMOREC model performs significantly better than these three baselines in

both cases of using emotion features and not using emotion features.

61



Model Non-Emo All

Basic MF 69.10 71.23

FDEN and GBDT 72.02 73.28

Truncated SVD-based Feature Engineering 73.12 74.01

EMOREC 78.20 80.30

Table 3.6: Comparison of EMOREC with State-of-the-art Baselines on News Dataset

(F-score)

Model Non-Emo All

Basic MF 69.10 71.23

FDEN and GBDT 70.52 71.20

Truncated SVD-based Feature Engineering 71.98 72.54

EMOREC 73.68 76.06

Table 3.7: Comparison of EMOREC with State-of-the-art Baselines on Music Dataset

(F-score)

62



3.5.3 Effect of Individual Emotion Features

Table 3.8 presents the results of a feature ablation study in order to further understand the

effect of individual emotion features used in EMOREC.

In each run of this study, we keep all the features except one type of emotion features.

The results indicate that removing Plutchik emotion scores (item feature), User emotions

across categories and User emotions across items (user features) lead to considerable

decline in the performance. It also shows that our model is able to capture useful implicit

user emotion effectively.

To further validate the effectiveness of the top emotion features as learned from our

experiments, we run a further experiment incorporating only the top three emotion features

(i.e., Plutchik emotions, User emotions across categories, and User emotions across items)

on six state-of-the-art recommendation models. As the results in Table 3.9 show, only

using these three emotion features can also improve the recommender systems, with Basic

MF showing the most gain.

63



Emotion Features News Music

ALL emotion features 80.30 77.03

- Sentiment features 78.15 76.66

- Mixed emotions 76.90 75.49

- Capitalized words 76.21 75.30

- Interjections 75.84 75.00

- Grammatical markers and extended words 75.23 74.94

- Ekman’s emotion label 74.98 72.28

- Punctuation 75.17 73.10

- User emotions across categories 74.15 71.69

- User emotions across items 73.23 71.33

- Plutchik emotion scores 72.10 69.28

Table 3.8: Effect of Individual Emotion Features (F-score)

64



Model No Emotion Top Three Emotion

Basic MF 69.10 70.38

Boost Blend 70.69 71.00

FDEN and GBDT 72.02 72.77

Deep MF 72.93 73.01

Truncated SVD-based 73.12 73.60

DNN Ensemble 73.62 73.98

Table 3.9: Effect of Top Three Emotion Features (Plutchik emotions, User emotions across

categories, and User emotions across items) on State-of-the-art Models

3.6 Summary

Motivated by the recent development in emotion detection methods (in textual informa-

tion), we considered the problem of leveraging emotion features to improve recommen-

dations. Towards that end, we derived a large number of emotion features that can be

attributed to both items and users in news domain and can provide an emotional con-

text. Then, we devised state-of-the-art non-emotion and emotion-aware recommendation

models to investigate whether, how and to what extent emotion features can improve

recommendations. To the best of our knowledge, this is the first attempt to systematically

65



and broadly evaluate the utility of a number of emotion features for the recommenda-

tion task. Our results indicate that emotion-aware recommendation models consistently

outperform state-of-the-art non-emotion-based recommendation models. Furthermore,

our study provided evidence of the usefulness of the emotion features at large, as well

as the feasibility of our approach on incorporating them to existing models to improve

recommendations.

As a more tangible outcome of the study, we proposed EMOREC, an emotion-aware

recommendation model, which demonstrates the best predictive performance in news

recommendation task. EMOREC itself is an ensemble model combining three models

(Boost Blend + Deep MF + DNN Ensemble). It significantly outperforms other state-

of-the-art recommendation methods evaluated in our experiments. We also evaluated

the proposed emotion features individually. Among the emotion features examined, the

Plutchik emotion scores of items (obtained by computing PMI scores between words) and

user emotion profiles (based on the emotion scores of the items that the user accessed) are

the most important.

66



4 A Comprehensive Analysis of Pre-processing for

Word Representation Learning in Affective Tasks

4.1 Introduction

Affective tasks such as sentiment analysis, emotion classification and sarcasm detection

have enjoyed great popularity in recent years. This success can be largely attributed to

the fundamental and straightforward nature of the methods employed, the availability

of vast amounts of user-generated natural language data, and the wide range of useful

applications, spanning from hate speech detection to monitoring the sentiment of financial

markets and news recommendation [13, 46]. Some recent models of affect analysis

employed pre-trained word embeddings that have been obtained under the assumption of

the distributional hypothesis [45, 115]. The distributional hypothesis suggests that two

words occurring frequently in similar linguistic contexts tend to be more semantically

similar, and therefore should be represented closer to one another in the embedding space.

However, while such embeddings are useful for several natural language processing (NLP)

67



downstream tasks, they are known to be less suitable for affective tasks in particular

[4, 172]. Although some authors claim that there is a need for post-processing word

embeddings for affective tasks, others find that off-the-shelf vectors are very powerful

for affective lexicon learning [106]. For example, word2vec [115] estimates the pair

of words ‘happy’ and ‘sad’ to be more similar than the pair of words ‘happy’ and ‘joy’,

which is counterintuitive, and might affect the accuracy performance of the models that

depend on it.

To address the limitations of traditional word embeddings, several techniques have

been proposed, including task-specific fine-tuning [45], retrofitting [52], representing

emotion with vectors using a multi-task training framework [196] and generating affec-

tive word embeddings [53], to name a few. Other attempts to overcome the limitation

of word vectors include optimization of hyperparameters [105], as well as fine-tuned

pre-processing strategies tailored to different NLP tasks. While these strategies have

demonstrated evidence of improving the accuracy performance in tasks such as word

similarity, word analogy, and others [106], their effect in affective tasks has not received

considerable attention and remains less explored.

Our work is motivated by the observation that pre-processing factors such as stemming,

stop-words removal and many others make up an integral part of nearly every improved

text classification model, and affective systems in particular [39, 140]. However, little

work has been done towards understanding the role of pre-processing techniques applied

68



Figure 4.1: Framework of applying pre-processing in different stages in affective systems;

(a) Pre, (b) Post.

to word embeddings in different stages of affective systems. To address this limitation, the

overarching goal of this research, is to perform an extensive and systematic assessment of

the effect of a range of linguistic pre-processing factors pertaining to three affective tasks,

including sentiment analysis, emotion classification and sarcasm detection. Towards

that end, we systematically analyze the effectiveness of applying pre-processing to large

training corpora before learning word embeddings, an approach that has largely been

overlooked by the community. We investigate the following research questions: (i) what

is the effect of integrating pre-processing techniques earlier into word embedding models,

instead of later on in a downstream classification models? (ii) which pre-processing

techniques yield the most benefit in affective tasks? (iii) does pre-processing of word

embeddings provide any improvement over state-of-the-art pre-trained word embeddings?

and if yes, how much?

Figure 4.1 illustrates the difference between a) pre-processing word embeddings

69



pipeline (Pre) vs. b) pre-processing classification dataset pipeline (Post), where pre-

processing techniques in (a) are applied to the training corpus of the model and in (b) only

to the classification dataset. In brief, the main contributions of our work are as follows:

• We conduct a comprehensive analysis of the role of pre-processing techniques in

affective tasks (including sentiment analysis, emotion classification and sarcasm

detection), employing different models, over nine datasets;

• We perform a comparative analysis of the accuracy performance of word vector

models when pre-processing is applied at the training phase (training data) and/or

at the downstream task phase (classification dataset). Interestingly, we obtain best

results when pre-processing is applied only to the training corpus or when it is

applied to both the training corpus and the classification dataset of interest.

• We evaluate the performance of our best pre-processed word vector model against

state-of-the-art pre-trained word embedding models;

• We make source code and data publicly available to encourage reproducibility of

results10

The rest of this chapter is organized as follows: Section 4.2 elaborates on the pre-

processing techniques employed in the evaluation of models. Section 4.3 describes the

10https://github.com/NastaranBa/preprocessing-for-word-

representation.

70



experimental evaluation frame-work. In Section 4.4 a comprehensive analysis of the

results is provided. Section 4.5 concludes the chapter with key insights of the research.

4.2 Pre-processing in Affective Systems

This section describes the pre-processing factors applied to the training corpus that is then

used to generate word representations and the order of the pre-processing factors which

we need to follow when applying on the corpus.

4.2.1 Pre-processing Factors

Basic: A group of common text pre-processing applied at the very beginning, such as

removing html tags, removing numbers, and lower-casing. This step removes all common

punctuation from text, such as “@%*=()/ +” using the NLTK regexptokenizer11.

Spellcheck (spell): A case can be made for either correcting misspellings and typos

or leaving them as is assuming they represent natural language text and its associated

complexities. In this step, we identify words that may have been misspelled and correct

them12. As unambiguous spell corrections are not very common and in most cases we

have multiple options for correction, we built our own custom dictionary to suggest

11https://www.nltk.org/_modules/nltk/tokenize/regexp.html

12https://pypi.org/project/pyspellchecker/

71



a replacement by parsing the ukWac corpora13 to retrieve a word-frequency list. A

misspelled word that has multiple replacements is replaced with the suggested word that

has the maximum frequency in the corpora.

Negation (neg): Negation is a mechanism that transforms a positive argument into its

inverse rejection [18]. Specifically in the task of affective analysis, negation plays a

critical role as negation words can affect the word or sentence polarity causing the polarity

to invert in many cases. Our negation procedure is as follows:

(i) Compilation of an antonym dictionary: The first stage involves compiling an antonym

dictionary using the WordNet corpus [117]. For every synset, there are three possibilities:

finding no antonym, one antonym or multiple antonyms. The first two cases are trivial

(unambiguous replacements). In the case of the third option (ambiguous replacement),

which represents the most common case, amongst the many choices, we consider the

antonym with the maximum frequency in the ukWac corpus, as described in the previous

section and finally the antonym of a word is picked at random from one of its senses in

our antonym dictionary.

(ii) Negation handler: Next, we identify the negation words in tokenized text14. If a

negation word is found, the token following it (i.e., negated word) is extracted and its

antonym looked up in the antonym dictionary. If an antonym is found, the negation word

13https://www.sketchengine.eu/ukwac-british-english-corpus/

14https://pypi.org/project/negspacy/

72



and the negated word are replaced with it.

For example, let the sentence “I am not happy today” in its tokenized form [‘I’, ‘am’,

‘not’, ‘happy’, ‘today’]. First, we identify any negation words (i.e., ‘not’) and their

corresponding negated words (i.e., ‘happy’). Then, we look up the antonym of ‘happy’

in the antonym dictionary (i.e., ‘sad’) and replace the phrase ‘not happy’ with the word

‘sad’, resulting in a new sentence “I am sad today”.

Parts-of-Speech (pos): Four parts-of-speech classes, namely nouns, verbs, adjectives

and adverbs have been shown to be more informative with regards to affect than the other

classes. Thus, using the NLTK pos-tagger, for each sentence in the corpus we retain only

the words belonging to one of these four classes, i.e., NN*, JJ*, VB*, and RB*.

Stop-words (stop): Stop-words are generally the most common words in a language

typically filtered out before classification tasks. Therefore, we remove all the stop-words

using the NLTK library.

Stemming (stem): Stemming, which reduces a word to its root form, is an essential

pre-processing technique in NLP tasks. We use NLTK Snowball stemmer for stemming

our training corpus.

4.2.2 Order of Pre-processing Factors

While some pre-processing techniques can be applied independently of each other (e.g.,

removing stop-words and removing punctuation), others need a more careful consideration

73



of the sequence in which they are applied in order to obtain a more stable result. For

instance, pos-tagging should be applied before stemming in order for the tagger to

work well, or negation should be performed prior to removing stop-words. To this

end, we consider the following ordering when combining all the aforementioned pre-

processing factors: spellchecking, negation handling, pos classes, removing stop-words,

and stemming.

4.3 Experimental Evaluation

4.3.1 Training Corpora

Table 4.1 and §4.2 summarize the details of our two training corpora with regards to

their vocabulary and corpus sizes after applying various pre-processing settings. For

some pre-processing such as POS (pos) and stop-words removal (stop), without any

significant loss in vocabulary as indicated by the % ratio of pre-processed to basic, the

corpus size reduces dramatically, in some cases more than 50%, a non-trivial implication

with regards to training time.

74



Processing
Vocab Corpus

size % size %

Basic 155K 100 123.2M 100

spell 149K 96 123.2M 100

stem 137K 88 123.2M 100

punc 147K 95 111.0M 90

neg 152K 98 90.7M 73

stop 150K 97 75.6M 61

pos 154K 99 70.7M 57

Processing
Vocab Corpus

size % size %

All - punc 151K 97 93.7M 76

All - pos 140K 90 90.5M 73

All - stop 150K 97 75.3M 61

All 110K 71 55.2M 49

All - stem 110K 71 58.1M 47

All - spell 110K 71 56.4M 46

All - neg 110K 71 54.3M 44

Table 4.1: Details of News training corpora

News: This corpus consists of 142,546 articles from 15 American publications, spanning

from 2013 to early 201815.

Wikipedia: Comparatively a much larger corpus than the News, this corpus consists of

23,046,187 articles from Wikipedia 16.

15https://www.kaggle.com/ snapcrack/all-the-news

16https://www.kaggle.com/jkkphys/english-wikipedia-articles-20170820-sqlite

75



Processing
Vocab Corpus

size % size %

Basic 5.1M 100 8.1B 100

All - punc 4.9M 96 7.2B 89

All - pos 4.8M 94 7.0B 86

All - stop 4.9M 96 6.8B 84

All - stem 4.3M 84 6.4B 79

All - spell 4.6M 90 6.1B 75

All 4.6M 90 5.6B 69

All - neg 4.6M 90 5.0B 62

Table 4.2: Details of Wikipedia training corpora

4.3.2 Word Embedding Models

We obtain our pre-processed word representations through three models: (i) CBOW

(Continuous Bag-of-Words), (ii) Skip-gram: While CBOW takes the context of each

word as the input and tries to predict the word corresponding to the context, skip-gram

reverses the use of target and context words, where the target word is fed at the input and

the output layer of the neural network is replicated multiple times to accommodate the

chosen number of context words [115]. We train both the models on both the training

corpora using min count of 5 for News and 100 for Wikipedia with window sizes of 5

76



Dataset Genre Task Total

IMDB reviews sentiment 50,000

SemEval tweets sentiment 14,157

Airline tweets sentiment 11,541

ISEAR narratives emotions 5,477

Alm fairy tales emotions 1,206

SSEC tweets emotions 1,017

Onion headlines sarcasm 28,619

IAC response sarcasm 3,260

Reddit comments sarcasm 1,010,826

Table 4.3: Details of evaluation datasets

and 10, respectively, setting dimensionality to 300. (iii) BERT (Bidirectional Encoder

Representations from Transformers): BERT is an unsupervised method of pre-training

contextualized language representations [45]. We train the model using BERT large

uncased architecture (24-layer, 1024-hidden, 16-heads, 340M parameters) with same

setting for parameters as the original paper.

We train each of the three models (CBOW, Skip-gram and BERT) 8 times using

16 TPUs (64 TPU chips), Tensorflow 1.15 with 1TB memory on Google Cloud and

two 32-GPU clusters of V100/RTX 2080 Ti with 1TB memory using Microsoft CNTK

77



parallelization algorithm17 on Amazon server. For a large model such as BERT, it takes

up to 4-5 days for each run of the training.

4.3.3 Evaluation Datasets

We conduct our evaluation on three tasks, namely sentiment analysis, emotion classifica-

tion and sarcasm detection. Table 4.3 presents the details of our evaluation datasets, and

some illustrative examples of text are shown in Table 4.4.

Sentiment Analysis: This popular task involves classifying text as positive or negative,

and we use the following three datasets for evaluation:

(i) IMDB: This dataset18 includes 50,000 movie reviews for sentiment analysis,

consisting of 25,000 negative and 25,000 positive reviews [109].

(ii) Semeval 2016: This sentiment analysis in Twitter dataset19 consists of 14,157

tweets where 10,076 of them are positive and 4,081 negative [130].

(iii) Airlines: This sentiment analysis dataset20 consists of 11,541 tweets about six

U.S. airlines from February 2015, with 9,178 tweets labeled as positive and 2,363 negative.

17https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines

18http://ai.stanford.edu/ amaas/data/sentiment/

19http://alt.qcri.org/semeval2016/task4/index.php

20https://www.kaggle.com/crowdflower/twitter-airline-sentiment

78



Dataset Text Label

IMDB I must admit that this is one of the worst movies I’ve ever seen. I

thought Dennis Hopper had a little more taste than to appear in this

kind of yeeeecchh... [truncated]

negative

Airline · everything was fine until you lost my bag. negative

ISEAR · At work, when an elderly man complained unjustifiably about me

and distrusted me.

anger

Alm · The ladies danced and clapped their hands for joy. happy

SSEC · if this heat is killing me i don’t wanna know what the poor polar

bears are going through

sadness

Onion · ford develops new suv that runs purely on gasoline sarcastic

IAC · Been saying that ever since the first time I heard about creationsism not-sarcastic

Reddit · Remember, it’s never a girl’s fault, it’s always the man’s fault. sarcastic

Table 4.4: Examples of text instances in the evaluation datasets

Emotion Classification: A multiclass classification task, which involves classifying text

into a number of emotion categories such as happy, sad, and so on. The following datasets

are used in our evaluation:

(i) SSEC: The Stance Sentiment Emotion Corpus [159] is the re-annotation of the

SemEval 2016 Twitter stance and sentiment corpus [123] with emotion labels including

79



anger, joy, sadness, fear, surprise. 21.

(ii) ISEAR: This dataset contains narratives of personal experiences evoking emotions

[186]. We use a subset of the data consisting of five categories: sadness, anger, disgust,

fear, joy.

(iii) Alm: This dataset contains sentences from fairy tales marked with one of five

emotion categories: angry-disgusted, fearful, happy, sad and surprised [31].

Sarcasm Detection: Detecting sarcasm from text, a challenging task due to the sophisti-

cated nature of sarcasm, involves labeling text as sarcastic or not. We use the following

three datasets:

(i) Onion: This news headlines dataset 22 collected sarcastic versions of current events

from The Onion and non-sarcastic news headlines from HuffPost [119], resulting in a

total 28,619 records.

(ii) IAC: A subset of the Internet Argument Corpus [132], this dataset contains

response utterances annotated for sarcasm. We extract 3260 instances from the general

sarcasm type.23.

(iii) Reddit: Self-Annotated Reddit Corpus (SARC)24 is a collection of Reddit posts

where sarcasm is labeled by the author in contrast to other datasets where the data is

21SSEC: http://www.romanklinger.de/ssec/

22https://github.com/rishabhmisra/News-Headlines-Dataset-For-Sarcasm-Detection

23https://nlds.soe.ucsc.edu/sarcasm2

24SARC v0.0: https://nlp.cs.princeton.edu/SARC/0.0/

80



typically labeled by independent annotators [93].

4.3.4 Classification Setup

For classification, we employ the LSTM model as it works well with sequential data such

as text. For binary classification, such as sentiment analysis and sarcasm detection, the

loss function used is the binary cross-entropy along with sigmoid activation:

b = − 1

#

#∑
8=1

H8;>6(?(H8)) + (1 − H8);>6(1 − ?(H8)) (4.1)

where H is the binary representation of true label, ?(H) is the predicted probability, and 8

denotes the 8th training sample.

For multiclass emotion classification, the loss function used is categorical cross-

entropy loss over a batch of # instances and : classes, along with softmax activation:

b = − 1

#

#∑
8=1

:∑
9=1

H8 9 ;>6
(
?(H8 9 )

)
(4.2)

where ?(H) is the predicted probability distribution, ?(H8 9 ) ∈ [0, 1].

The optimizer is Adam [96], all loss functions are sample-wise, and we take the mean

of all samples (epoch = 5, 10, batch size = 64, 128). All sentiment and sarcasm datasets

are split into training/testing using 80%/20%, with 10% validation from training. For

the smaller and imbalanced emotion datasets, we use stratified 5-fold cross-validation.

81



We use a dropout layer to prevent overfitting by ignoring randomly selected neurons

during training. We use early stopping when validation loss stops improving with patience

= 3, min-delta = 0.0001. The results are reported in terms of weighted F-score (as

some emotion datasets are highly imbalanced), where F-score = 2 ?.A

?+A , with ? denoting

precision, and A is recall.

4.4 Discussion and Analysis

We analyze the impact of pre-processing techniques in word representation learning on

affect analysis.

4.4.1 Effect of Pre-processing Factors

A primary goal of this work is to identify the most effective pre-processing factors for

training word embeddings for affective tasks. While, Table 4.5 and §4.6 details the results

of our experiments comparing the performance of individual pre-processing factors as

well as those of ablation studies (i.e., including all the factors but one) on News corpus,

Table 4.7, §4.8 and §4.9 demonstrates the results of our experiments on Wikipedia corpus.

Observing the performance of the individual factors on the News corpus, we note that

even a single simple pre-processing technique can bring improvements, thereby validating

our intuition of incorporating pre-processing into training corpora of word representations.

Second, negation (neg) processing appears to be consistently the most effective factor

82



Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Basic 83.99 55.69 60.73 65.74 68.23 59.42 36.81 55.43 51.76

stop 84.43 55.72 61.37 66.03 68.17 59.27 36.81 56.01 52.33

spell 86.20 55.93 61.96 66.00 69.57 60.00 36.88 56.41 52.14

stem 86.92 55.72 61.86 65.89 68.49 59.72 36.94 55.84 51.89

punc 86.99 56.41 62.08 65.93 69.85 60.28 36.94 56.89 52.03

pos 85.66 56.83 62.75 66.32 70.25 60.63 37.02 57.04 53.19

neg 88.98 57.29 63.81 66.87 71.12 60.91 37.22 57.39 54.15

All 89.96 57.82 64.58 67.23 70.90 60.84 37.43 57.72 53.71

All - neg 84.67 55.00 61.58 66.02 69.73 59.94 36.91 55.89 51.94

All - pos 85.69 56.31 64.29 66.97 70.48 60.15 37.19 56.27 52.16

All - punc 86.41 56.88 63.01 66.75 70.01 60.00 37.01 57.19 52.43

All - spell 88.23 56.41 63.87 67.23 70.83 60.27 37.22 57.41 53.41

All - stop 90.01 60.82 66.84 67.20 72.49 62.11 38.96 59.28 55.00

All - stem 88.12 60.82 67.12 69.25 72.13 61.73 38.00 59.00 55.42

Table 4.5: F-score results of evaluating the effect of pre-processing factors using CBOW on

News corpus. The overall best results are in bold. The best result using only any

one pre-processing setting is underlined.

83



Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Basic 83.07 54.23 61.47 65.51 68.01 59.75 35.87 55.64 51.49

stop 83.23 55.47 62.00 65.62 68.00 59.84 35.94 55.76 51.62

spell 85.90 55.48 62.00 65.61 69.76 60.28 36.10 55.93 52.30

stem 86.00 55.33 61.89 65.60 68.72 59.50 36.00 55.69 51.40

punc 86.68 55.79 62.38 65.89 70.00 60.44 36.41 56.81 52.71

pos 85.91 56.28 63.25 66.24 69.81 60.85 36.44 56.23 52.94

neg 87.28 56.89 63.72 66.87 70.59 61.27 36.87 57.34 53.10

All 88.36 57.04 64.91 66.94 70.73 61.12 37.10 57.92 53.58

All - neg 83.26 54.00 61.95 66.00 69.88 60.00 36.94 55.97 51.89

All - pos 86.21 55.22 65.12 66.06 69.88 61.00 37.00 56.42 52.10

All - punc 85.57 55.99 64.29 66.29 70.00 60.98 37.01 57.02 52.53

All - spell 86.00 56.98 65.00 66.25 70.25 0.61 37.04 57.69 52.86

All - stop 88.74 60.93 67.00 68.57 72.20 62.02 38.92 59.18 55.18

All - stem 88.42 60.67 67.39 69.08 72.00 62.36 37.44 59.48 55.23

Table 4.6: F-score results of evaluating the effect of pre-processing factors using Skip-gram

on News corpus. The overall best results are in bold. The best result using only

any one pre-processing setting is underlined.

84



Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

CBOW

Basic 84.91 56.89 68.11 69.15 71.02 63.58 45.22 59.73 55.84

All 88.41 60.25 71.39 71.57 73.61 65.27 48.81 62.48 57.42

All - neg 83.02 56.03 69.28 69.55 70.25 64.18 46.00 60.42 55.93

All - pos 85.69 57.21 71.00 70.08 72.29 64.82 47.53 62.28 56.25

All - punc 84.00 57.36 70.46 70.01 72.02 65.00 47.68 61.84 56.64

All - spell 86.19 58.26 70.98 70.59 72.85 65.00 47.29 61.63 57.00

All - stop 91.10 61.00 73.00 72.31 74.50 68.20 52.39 64.29 58.46

All - stem 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28

Table 4.7: F-score results of evaluating the effect of pre-processing factors using CBOW on

Wikipedia corpus. The overall best results are shown in bold.

across all the 9 datasets, indicating its importance in affective classification, followed by

parts-of-speech (pos) processing where we retained words belonging only to one of four

classes. On the other hand, removing stop-words (stop), spellchecking (spell) and

stemming (stem) yield little improvement and mixed results. Interestingly, applying all

the pre-processing factors is barely better or in some cases even worse (Onion, Reddit and

SSEC) than applying just negation. Finally, the best performance comes from combining

all the pre-processing factors except stemming (All-stem). Moreover, the performance

of ablation studies on Wikipedia corpus for all three models where we note that the best

performance for the CBOW model comes from combining all the pre-processing factors

85



Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Skip-gram

Basic 84.00 55.94 68.36 69.20 71.68 63.74 45.01 59.45 55.62

All 87.00 59.99 71.29 71.25 73.82 65.67 48.51 65.02 57.13

All - neg 84.97 56.11 69.00 70.17 70.04 64.55 46.28 60.54 55.86

All - pos 86.21 57.62 70.25 70.85 73.22 65.47 47.49 63.44 56.00

All - punc 85.00 57.20 70.00 70.77 72.00 65.00 47.10 61.72 56.49

All - spell 85.75 58.49 70.26 70.89 72.63 65.18 47.14 61.25 56.84

All - stop 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14

All - stem 89.66 60.28 73.66 71.98 75.24 68.72 51.39 63.44 59.01

Table 4.8: F-score results of evaluating the effect of pre-processing factors using Skip-gram

on Wikipedia corpus. The overall best results are shown in bold.

except stemming (All-stem), whereas for the Skip-gram and BERT models, the best

results are obtained by applying all the pre-processing factors except stop-words removal

(All-stop). Considering that the Wikipedia corpus is almost 160 times bigger than the

News corpus, it is unsurprising that the word embeddings obtained from the former yield

considerably better results, consistent across all nine datasets.

4.4.2 Evaluating Pre-processing Training Corpora vs. Pre-processing Classifica-

tion Dataset

We investigate the difference between applying pre-processing to the training corpora

for generating word embeddings (Pre) and applying pre-processing to the classification

86



Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

BERT

Basic 90.11 70.82 90.23 71.19 76.30 59.74 57.81 65.70 65.39

All 91.86 71.76 91.73 73.66 78.72 62.60 59.74 67.80 67.49

All - neg 90.33 70.52 91.04 72.00 77.07 61.44 58.14 66.59 66.10

All - pos 91.01 71.20 91.66 73.31 78.45 62.04 59.01 66.25 68.13

All - punc 91.59 71.50 91.60 73.18 78.54 62.27 59.60 67.25 67.27

All - spell 91.78 71.13 91.34 73.02 78.40 62.00 59.44 67.21 67.30

All - stop 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81

All - stem 92.19 71.94 92.03 74.49 77.93 63.74 60.16 68.00 67.05

Table 4.9: F-score results of evaluating the effect of pre-processing factors using BERT on

Wikipedia corpus. The overall best results are shown in bold.

datasets (Post). As an example, during Pre, we first apply the pre-processing techniques

(e.g., all but stemming) to the training corpus (e.g., Wikipedia), then generate word

embeddings, then convert a classification dataset (e.g., IMDB) into word embedding

representation, and finally classify using LSTM. Conversely, for Post, we first generate

word embeddings from a training corpus (e.g., Wikipedia), then apply the pre-processing

techniques (e.g., all but stemming) to the classification dataset (e.g., IMDB), which is

then converted to word vector representation, and finally classified using LSTM 25.

25Note: For settings including stemming, the classification data is also stemmed in order to obtain a

compatible vocabulary.

87



Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

CBOW

Post 87.49 59.33 71.28 69.87 74.20 67.13 47.19 62.00 56.27

Pre 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28

Both 88.10 62.41 73.00 71.86 75.00 70.10 50.39 64.52 58.20

Skip-gram

Post 88.14 60.41 71.85 70.22 75.07 67.00 50.44 62.08 56.00

Pre 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14

Both 89.33 61.25 73.58 71.62 75.48 68.74 51.68 65.29 58.03

BERT

Post 94.58 70.25 92.35 74.69 77.10 63.38 58.40 68.20 67.17

Pre 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81

Both 94.63 72.41 93.00 75.19 78.69 65.17 60.33 69.06 68.43

Table 4.10: F-score results of evaluating the effect of pre-processing word embeddings

training corpus vs. pre-processing evaluation datasets

The results of this experiment are presented in Table 4.10, where we observe that

incorporating pre-processing into the training corpora before generating word vectors

(Pre) outperforms pre-processing classification datasets (Post) across all nine datasets

of the three affective tasks. Interestingly though, pre-processing both the bodies of text

(Both) appears to be of little benefit, suggesting the importance of pre-processing training

corpora used for obtaining word embeddings.

88



Models IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

GloVe 85.64 70.29 70.21 70.19 71.39 63.57 56.21 65.30 58.40

SSWE 80.45 69.27 78.29 64.85 52.74 50.73 51.00 54.71 52.18

FastText 75.26 68.55 70.69 55.74 58.29 59.37 52.28 25.40 53.20

DeepMoji 69.79 62.10 71.03 65.67 70.90 53.08 46.33 58.20 58.90

EWE 71.28 60.27 67.81 67.43 70.06 55.02 58.33 66.09 58.94

Our best results:

CBOW 91.10 62.19 73.25 72.36 75.69 68.53 52.39 65.33 59.28

Skip-gram 89.76 61.74 73.66 72.00 75.69 68.72 52.01 65.02 59.01

BERT 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81

Table 4.11: F-score results of comparing against state-of-the-art word embeddings. The best

score is highlighted in bold, and the second best result is underlined.

4.4.3 Evaluating Proposed Model against State-of-the-art Baselines

While not a primary focus of this work, in this final experiment we compare the per-

formance of our pre-processed word embeddings against those of six state-of-the-art

pre-trained word embeddings26.

(i) GloVe: Global vectors for word representations [142] were trained on aggregated

global word co-occurrences. We use the vectors trained on GloVe6B 6 billion words27,

26These vectors obtained from their original repositories have been used without any modifications.

27https://nlp.stanford.edu/projects/glove/

89



uncased, from Wikipedia and Gigaword.

(ii) SSWE: Sentiment Specific Word Embeddings (unified model)28 were trained

using a corpus of 10 million tweets to encode sentiment information into the continuous

representation of words [172].

(iii) FastText: These pre-trained word vectors29, based on sub-word character n-grams

were trained on Wikipedia using fastText [21], an extension of the word2vec model.

(iv) DeepMoji: These word embeddings30 were trained using BiLSTM on 1.2 billion

tweets with emojis [53].

(v) EWE: Emotion-enriched Word Embeddings31 were learned on 200,000 Amazon

product reviews corpus using an LSTM model [4].

From the results in Table 4.11, we notice that BERT is best on eight out of nine

datasets except one sarcasm dataset (Reddit), while word2vec CBOW is the second best

on four datasets. Overall, our analysis suggests that pre-processing at word embedding

stage (Pre) works well for all the three affective tasks.

28http://ir.hit.edu.cn/d̃ytang/paper/sswe/embedding-results.zip

29https://github.com/facebookresearch/fastText

30https://github.com/bfelbo/DeepMoji

31https://www.dropbox.com/s/wr5ovupf7yl282x/ewe_uni.txt

90



Figure 4.2: Absolute F-scores vs. relative improvement

4.4.4 Analyzing the Three Affective Tasks

Figure 4.2 summarizes the results obtained for all three tasks in terms of (a) absolute

F-scores and (b) relative improvement (best pre-processing over Basic pre-processing).

The IMDB dataset achieves the highest F-score overall, most likely because it consists of

movie reviews which are much longer than the text from other genres. As expected, the

binary classification task of sentiment analysis and sarcasm detection achieve comparable

results, while the multi-class emotion classification typically has much lower F-scores.

The most interesting observation, however, is noticed in Fig. 4.2(b) where the emotion

datasets show the highest relative improvement, indicating that multi-class classification

tasks may benefit the most from applying pre-processing at word embedding stage (Pre).

91



4.5 Summary

We systematically examined the role of pre-processing training corpora used to induce

word representations for affect analysis. While all pre-processing techniques improved

performance to a certain extent, our analysis suggests that the most noticeable increase is

obtained through negation processing (neg). The overall best performance is achieved

by applying all the pre-processing techniques, except stop-words removal (All-stop).

Interestingly, incorporating pre-processing into word representations appears to be far

more beneficial than applying it in a downstream task to classification datasets. Moreover,

while all the three affective tasks (sentiment analysis, sarcasm detection and emotion

classification) benefit from our proposed pre-processing framework, our analysis reveals

that the multi-class emotion classification task benefits the most. Exploring the space of

subsets of our pre-processing factors might yield more interesting combinations; we leave

this for future work.

92



5 Customized Pre-processing for Word Representation

Learning in Affective Tasks

5.1 Introduction

For various natural language processing tasks, word embedding that can capture semantic

and syntactic information from contexts have been widely used. However, studies showed

existing methods for learning context-based word embeddings typically fail to capture

sufficient affective information.

To address the limitations of traditional word embeddings in affective tasks, several

techniques such as representing emotion with vectors using a multi-task training frame-

work [196] and generating affective word embeddings [53] have been proposed. One

such method [12] using pre-processing in word representation learning in an unsupervised

manner was introduced in the previous chapter, with which the results demonstrated that

incorporating pre-processing into word representations appears to be far more beneficial

than applying it at a downstream task to classification datasets. Regardless of the numer-

93



ous benefits of incorporating various pre-processing into word representations in affective

tasks, one limitation of such approaches is when we apply all the same pre-processing

factors on both the bodies of text at training stage and classification datasets appears to be

of little benefit (shown in previous chapter Table 4.10). Hence, we hypothesize that the

application of different combinations of pre-processing methods in different stages can

improve affective tasks results. In particular, our work is motivated by the observation

from the previous chapter that while pre-processing factors such as stemming and stop-

words removal make up an integral part of nearly every improved affective systems, but

they have little effect when they are applied at the training stage on word representation

learning.

In the previous chapter, we indicated that applying various pre-processing on word

embedding models during training on a certain dataset can improve its performance

quality in general and for different affective tasks in particular. Furthermore, not all of the

pre-processing methods are considered effective in all affective tasks. For instance, some

might even harm the classification results such as stemming and stopwords removal [12]

when applied at the embedding-training phase. In addition, others [55, 179] demonstrated

that the contribution of use/non-use of stopwords depends on the corpus they applied

on for a downstream task, while they showed for some corpora, various pre-processing

methods might be even irrelevant. One of the possible explanations for the phenomenon

that stopword removal or stemming at training phase harm the performance results in

94



affective tasks is that not applying these two pre-processing factors may help the word

embedding model to better understand the context while applying them at the downstream

task can help clean the dataset and reduce the noise.

The aforementioned works describe pre-processing techniques as applied either di-

rectly to evaluation datasets in affective systems or examined the effectiveness of directly

incorporating these known effective pre-processing techniques further “upstream” into

the training corpus of word embeddings, which are widely used across a number of

downstream tasks. However, little work has been done towards exploring the influence of

different possible combinations of pre-processing techniques applied to word embeddings

as well as evaluation datasets based on each affective task. To address this limitation, the

overarching goal of this chapter is to perform an extensive and systematic assessment of

the effect of a customized combination of linguistic pre-processing factors pre-training

to three affective tasks, including sentiment analysis, emotion classification and sarcasm

detection.

Towards that end, we systematically analyze the effectiveness of applying customized

pre-processing to large training corpora before learning word embeddings, and different

combination of pre-processing factors when applied on classification datasets which

can be more suitable for each affective tasks. Hence, we investigate the following

research questions: (i) what pre-processing combination(s) is (are) best suited for each

affective task?, (ii) which combination of pre-processing techniques is more suitable when

95



they applied on classification tasks and which are more suited for training phase?, (iii)

does customized pre-processing of word embeddings and downstream tasks provide any

improvement over using numerous text pre-processing techniques at once as a general

combination for all affective tasks? and if yes, how much?

While the main focus of the previous chapter was studying the role of different pre-

processing when they are applied to word embeddings, in this chapter our overreaching

goal is to focus on customized combination of pre-processing factors which are more

suited for each affective tasks when they are applied on classification dataset. Therefore,

We propose a model using various combinations of different pre-processing methods for

each affective task individually using different word embeddings models. In brief, the

major contributions of this work are as follows:

• We investigate the usefulness of customized pre-processing for word representation

learning in affective tasks. In particular, we propose different combination of pre-

processing factors that are mostly suitable for each affective task, employing seven

embedding models, over nine datasets.

• We study the role of each combination of pre-processing factors for a specific

affective task and their major effects on the performance when they are applied in

different stages of word embedding in affective analysis.

• We conduct extensive experimental results, showing that, the appropriate combina-

96



tion of text pre-processing methods for each affective task when applied in different

stages of word embedding can significantly enhance the classifier’s performance.

• We perform a comparative study of the accuracy performance of word vector models

proposed in this work and the one presented in the previous Chapter 4.

The rest of this chapter is organized as follows: Section 5.2 elaborates on the cus-

tomized pre-processing techniques employed in the evaluation of models for both stages

(e.g. training phase and classification datasets) in each affective tasks. Section 5.3 and

5.4 demonstrate the customized pre-processing factors for each affective task. Section

5.5 describes the experimental evaluation framework. In Section 5.6, a comprehensive

analysis of the results is provided. Section 5.7 concludes the chapter with key insights of

the research.

5.2 Customized Pre-processing in Affective Tasks

This section describes various possible combinations of pre-processing factors that can

be applied to the training corpus that is then used to generate word representations and

each downstream tasks based on different case studies. Some illustrative examples of text

pre-processing for each affective tasks based on case studies are shown in Table 5.1.

Results in the previous chapter demonstrated that a general combination of six pre-

processing factors provide an improvement in the performance of three affective tasks

97



while negation and POS-tagging are the most effective pre-processing factors, when

they are applied on the training corpora while training the word embeddings. Moreover,

applying the same combination of pre-processing factors on classification datasets or

even at both appeared to be of little benefit compared to the embedding-training stage on

word embeddings. On the other hand, previous works indicated that using pre-processing

factors such as stopword removal and word stemming on classification datasets improve

the performance. Even though there is no unique combination of pre-processing tasks that

provides successful classification results for every domain, in this chapter our primary

goal is to propose a combination that is more suited for each affective task. Below, we

present a couple of cases from previous works that demonstrated the role of different

combinations of pre-processing factors suited for each affective tasks when they are

applied at downstream task on classification datasets.

5.2.1 Sentiment Analysis

Haddi et al., [69] investigated the role of different combination of text pre-processing

methods (HTML tags removal, non-alphabetic signs removal, white space removal, pos-

tag, abbreviation expansion, stemming, stopwords removal, spell correction, and negation

handling) in sentiment analysis of two online datasets of movie reviews, which indicated

that reducing noise by text pre-processing improve the performance of the classification

task. Jianqiang and Xiaolin [85] indicated that the most effective text pre-processing

98



methods on sentiment classification are using six pre-processing methods (replacing

negative mentions (e.g., “won’t” into “will not”), removing URL links, spell correction,

removing punctuation, removing stop words, and stemming.

Affective Task Pre-Processing Example

Sentiment Analysis

Negation Correction I won’t walk again. → I will not walk again.

Negation I feel not good. → I feel bad.

Intensifiers This work is extremely hard.

Interjections Wow, Is this your house?.

Sarcasm Detection

Emoticons Awesome failure!

Keeping Punctuation Time for your medication or mine ??!!

Intensifiers Sarcasm detection is too easy!

Interjections Oh, I’m nicer in sleep.

Emotion Detection

Emoticons Are you serious now??

Keeping Punctuation We are not friends anymore???!!!

Interjections Yay! We are going out tonight.

Intensifiers This is the best experience I’ve ever had.

Table 5.1: Example of Case Studies of Different Pre-processing in Affective Tasks.

Furthermore, Carrillo et al. [27] proposed a model of negation, intensifiers, and

modality especially conceived for sentiment analysis tasks by handling negation with

99



an antonym dictionary which replaces the to-be-negated word with its antonym (e.g.,

“notgood” replaced with “bad”). Hence, based on the experiment in the previous chapters

and the aforementioned studies, we plan to study a possible combination of pre-processing

factors on classification datasets for the task of sentiment analysis, which includes:

negation, pos-tag, stopwords removal except for intensifiers, punctuation removal, spell

correction and stemming.

5.2.2 Sarcasm Detection

The results in [25, 59] demonstrated the importance of sarcasm indicators. For instance,

Burgers et al. [25] introduced a set of sarcasm indicators that explicitly signal if an

utterance is sarcastic, such as emoticons (i.e., “:p”, “:)”), spelling correction, interjections

(i.e.,“ah”, “hmm”), exclamation marks (e.g., “!”, “?”), quotation marks, and intensifiers

words (e.g., “too”, “greatest”, “best”, “really”) that often occur in sarcastic utterances (e.g.

“Oh! Sarcasm detection is too easy! :P ” ). While the importance of pos-tagging stemming

[6, 154] and lemmatization [22, 111] was indicated in other studies for sarcasm detection.

However, most of these indicators will be removed by applying pre-processing factors

such as punctuation removal, stopwords removal and POS tag (i.e. by retrieving only four

classes which was suggested in the previous chapter) [12]. Thus, we study a possible

combination of pre-processing factors on classification datasets for this task including

negation, pos-tag, spell correction, keeping punctuation, emoticons, no stopwords removal,

100



stemming and lemmatization.

5.2.3 Emotion Detection

In the task of emotion classification, Mulik et al. [129] examined the role of four pre-

processing techniques in which the results showed stemming, lemmatization and emoji

tagging to be the most effective factors. Moreover, Goddar et al. [61] indicated that

interjections such as yay and wow could be indicators of different emotions, which helps

to improve the classification performance. Furthermore, It was observed in [2] that

stemming and pos-tag the text does improve the accuracy of the emotion detection process.

Whilst, other studies demonstrated the effects of intensifiers, interjections [58, 193],

pos-tagging, negation, punctuation [195], and emoticons [193] in emotion detection.

Therefore, a possible combination of pre-processing factors on classification datasets for

emotion classification includes: negation, pos-tag, spell correction, keeping punctuation,

no stopwords removal, emoticons, stemming and lemmatization.

5.2.4 Pre-processing Factors

This section describes the pre-processing factors that we consider to apply to the training

corpus that is then used to generate word representations and classification datasets. The

details of pre-processing factors including Basic, Spellcheck (spell), Negation (neg),

and Stemming (stem) is the same as what described in the previous Chapter 4 (Section

101



§4.2) with the same order. The details of other pre-processing factors are as follows:

Parts-of-Speech (pos-tag): Five parts-of-speech classes, namely nouns, verbs, adjec-

tives, adverbs and interjections have been shown to be more informative with regards to

affect than the other classes. Thus, using the NLTK pos-tagger, for each sentence in the

corpus we retain only the words belonging to all forms of these five classes, i.e., NN*,

JJ*, VB*, RB*, UH* .

Custom Stopwords (c-stop): Stopwords are generally the most common words in a

language typically filtered out before classification tasks. However, as we explained in the

previous section, there are benefits for keeping stopwords, in particular since removing

them will exclude a number of intensifiers( e.g. too, really) from the text, which literature

showed are effective in affective classification tasks. Therefore, in our experiments, we

either do not remove the stopwords, or when it’s necessary, we use a custom stopwords

list excluding intensifier words 32.

Lemmatization (lemma): The lemmatization phase is basic to reduce the noise due

to the variability or just to have a better understanding of the meaning of a sentence.

Lemmatization is the same as stemming in which it changes the word into its root word

instead of the stem word. The main difference between lemmatization and stemming

is that the lemmatizer considers the morphological analysis of a word (e.g., prefixes,

32List of intensifier words are collected from: https://github.com/wyounas/homer and [24]

102



suffixes and base words). We lemmatize the text using NLTK Wordnet Lemmatizer 33. In

order to find the correct lemma, part-of-speech tagging must be specified. Thus, before

lemmatizing, the part of speech tagging must be performed. For example: working,

worked, works is lemmatized to “work” in a verb form. When a certain word can belong

to more than one grammatical category, depending on its part-of-speech tag within the

sentence (e.g., noun or verb), all the related lemmas are kept.

Keeping Punctuation (k-punc): Punctuation and special characters such as “@%*=()/ +”

are commonly removed from the text. However, studies in [8, 44] indicated the effects of

punctuation in affective tasks. Therefore, we keep all the special characters, exclamation

marks and punctuation. We make sure there are spaces between words and punctuation

during tokenization to keep the punctuation in separate tokens. Moreover, in the case of

consecutive punctuation marks (e.g. !!!, :-) ), we keep all of them in the same token.

Emoticons (emojis): Common habit of using emojis in social media posts and reviews

provide evidence of expressing different emotions, and they have been proven [139, 157]

to be very effective for various affective tasks. Therefore, we convert graphical emoticons

or emojis into text (e.g. converting to “tired face” and to “smirking face”) using the

Demoji module 34. It is used to accurately remove and replace emojis into text strings.

33https://www.nltk.org/_modules/nltk/stem/wordnet.html

34https://pypi.org/project/demoji/

103



5.3 Customized Pre-processing Training Corpora

In the previous chapter, results demonstrated that stemming and stopword removal

have minimal impact while negation and part-of-speech resulted as most effective pre-

processing factors when they are applied to training corpora. Hence, we conduct our

experiments by keeping stopwords and not applying stemming. In contrast with the

previous chapter, in this stage we apply customized pre-processing factors including

customized pre-processing factors as: neg, pos-tag, spell, k-punc, and emojis.

5.4 Customized Pre-processing Classification Tasks

This section describes the customized pre-processing factors, which we explained in detail

in the previous sections applied to each classification dataset for each affective task.

Sentiment Analysis: neg, pos-tag, punc, spell, c-stop, and stem.

Sarcasm Detection: neg, pos-tag, k-punc, spell, emojis lemma, and stem.

Emotion Detection: neg, pos-tag, k-punc, spell, emojis lemma, and stem.

104



5.5 Experimental Evaluation

5.5.1 Training Corpora and Evaluation Datasets

The detail of our training corpora (Wikipedia) is explained in Section §4.3.1 of Chapter

4. In addition, we conduct our evaluation on three tasks, namely sentiment analysis,

emotion classification and sarcasm detection. Our evaluation datasets and some illustrative

examples of text are explained in Table 4.3 and Table 4.4 of Chapter 4.

5.5.2 Word Embedding Models

We obtain our pre-processed word representations through 4 more models other than

the three models (i.e. Word2Vec CBOW, Word2Vec Skip-gram, BERT) we trained in

the previous Chapter 4 as follows: (i) FastText CBOW and (ii) FastText Skip-gram:

FastText is another word embedding method that is an extension of the word2vec model

[21]. Instead of learning vectors for words directly, FastText represents each word based

on sub-word character n-grams. The setting for training this model is also the same as

Word2vec for both CBOW and Skipgram model, where n-gram is set to 3. (iii) Glove:

Global vectors for word representations [142] is a global log-bilinear regression model for

the unsupervised learning of word representations, where it creates a global co-occurrence

matrix by estimating the probability of a given word that will co-occur with other words.

We train the model with the same parameters as the original paper via adaptive gradient

105



descent (AdaGrad), setting dimensionality to 300, number of epochs to 100 and batch

size to 2048. (v) ELMo: ELMo (Embeddings from Language Models) is a contextual

bidirectional language modeling which is character-based, and the embedding for a given

word might vary based on the different contexts in which the word occurs [144]. The

hyperparameters for training this model are the same as the original model [144], with

LSTM dimensionality 4096, 10 epochs and the number of negative samples batch of 8192.

5.5.3 Classification Setup

For classification, we employ the LSTM model as it works well with sequential data such

as text. For binary classification, such as sentiment analysis and sarcasm detection, the

loss function used is the binary cross-entropy along with sigmoid activation:

b = − 1

#

#∑
8=1

H8;>6(?(H8)) + (1 − H8);>6(1 − ?(H8)) (5.1)

where H is the binary representation of the true label, ?(H) is the predicted probability,

and 8 denotes the 8th training sample.

For multiclass emotion classification, the loss function used is categorical cross-

entropy loss over a batch of # instances and : classes, along with softmax activation:

b = − 1

#

#∑
8=1

:∑
9=1

H8 9 ;>6
(
?(H8 9 )

)
(5.2)

106



where ?(H) is the predicted probability distribution, ?(H8 9 ) ∈ [0, 1].

The optimizer is Adam [96], all loss functions are sample-wise, and we take the mean

of all samples (epoch = 5, 10, batch size = 64, 128). All sentiment and sarcasm datasets

are split into training/testing using 80%/20%, with 10% validation from training. For

the smaller and imbalanced emotion datasets, we use stratified 5-fold cross-validation.

We use a dropout layer to prevent overfitting by ignoring randomly selected neurons

during training. We use early stopping when validation loss stops improving with patience

= 3, min-delta = 0.0001. The results are reported in terms of weighted F-score (as

some emotion datasets are highly imbalanced), where F-score = 2 ?.A

?+A , with ? denoting

precision, and A is recall.

5.6 Discussion and Analysis

We analyze the impact of customized pre-processing techniques with different combination

in word representation learning and classification datasets on affect analysis.

107



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

FastText(CBOW)

Basic 74.68 68.20 70.29 57.83 60.50 60.13 48.29 26.07 51.47

All 77.12 69.86 71.69 60.69 63.39 63.07 50.77 28.42 53.89

All - neg 75.01 68.90 70.83 58.81 61.25 61.74 49.21 27.89 52.04

All - pos 78.51 69.17 70.26 60.57 61.94 62.29 49.86 28.06 52.71

All - punc 76.92 69.37 71.14 60.19 62.71 62.78 50.44 28.30 53.65

All - spell 76.85 69.73 71.00 59.90 62.18 62.41 50.04 28.00 53.65

All - stop 80.37 71.08 72.39 62.74 64.79 64.33 53.37 30.24 55.28

All - stem 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74

FastText(Skip-gram)

Basic 75.00 68.41 70.41 58.13 61.12 60.72 49.13 26.68 52.07

All 78.30 69.73 71.65 61.52 64.57 63.61 51.03 28.76 54.21

All - neg 75.86 68.59 70.75 59.33 62.03 61.58 50.00 28.04 52.84

All - pos 79.24 70.33 71.00 60.00 63.08 62.11 50.41 29.47 53.07

All - punc 78.01 69.51 71.10 60.94 64.00 62.84 50.94 28.01 53.67

All - spell 77.90 69.50 71.25 61.11 64.27 63.02 50.79 28.63 53.91

All - stop 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32

All - stem 80.82 70.82 72.61 63.28 65.75 66.24 52.76 30.07 56.15

Table 5.2: F-score Results of Evaluating the Effect of Different Pre-processing Factors Using

Different Models on Wikipedia Corpus. The Overall Best Results Are in Bold.

5.6.1 Effects of General Combination of Pre-processing Factors

Recall that previously in chapter 4, we presented six pre-processing training corpora

used to induce word representations for affect analysis and later, we applied the same

108



pre-processing factors, when applied to classification datasets. In this section, we first

conducted the experiments based on the same pre-processing and the same rules as it was

explained in the previous chapter on four new word embedding models to identify the

most effective pre-processing factors for training word embeddings in affective tasks.

Table 5.2 and 5.3 detail the results of our experiments comparing the performance of

ablation studies (i.e., including all the factors but one) on Wikipedia corpus. Observing

the performance of the pre-processing factors on the corpus, we note that pre-processing

technique can bring improvements on four models when compared to Basic, thereby

validating our intuition of incorporating pre-processing into training corpora of word

representations. Second, negation (neg) processing appears to be consistently the most

effective factor across all the 9 datasets (same effects as shown in the previous chapter),

indicating its importance in affective classification, followed by parts-of-speech (pos)

processing where we retained words belonging only to one of four classes. On the other

hand, removing stopwords (stop) and stemming (stem) yield little improvement and

mixed results, as it was observed in the results of Tables §4.7, §4.8, and §4.9 in the

previous chapter. Interestingly, similar to previous chapter results, applying all the pre-

processing factors is barely better except for the GloVe model. A possible explanation for

these observations can be related to the basic idea behind the GloVe model, which is to

derive the relationship between the words from Global Statistics.

109



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

GloVe

Basic 83.51 69.12 70.01 69.48 70.21 62.76 54.31 64.77 56.33

All 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70

All - neg 84.06 70.09 71.37 71.15 71.39 63.24 55.10 65.31 57.63

All - pos 85.33 72.76 72.19 72.35 72.06 65.07 56.33 62.82 58.12

All - punc 86.72 71.47 72.77 72.62 73.95 65.88 57.90 66.74 59.37

All - spell 86.48 71.28 73.61 72.69 73.70 65.79 58.04 66.70 58.42

All - stop 86.39 72.84 73.64 72.84 73.67 66.19 57.61 67.13 59.10

All - stem 86.25 73.00 73.41 72.33 73.61 66.25 58.93 66.05 59.33

ELMo

Basic 86.34 69.47 82.11 70.18 71.65 65.48 60.24 65.00 66.20

All 88.63 71.80 83.91 72.61 73.30 66.93 63.20 67.58 69.45

All - neg 87.00 70.21 82.79 71.58 72.00 66.10 61.06 66.10 67.24

All - pos 87.64 70.68 83.00 72.00 72.49 66.47 61.70 65.72 67.81

All - punc 88.41 71.67 83.27 72.40 73.17 66.71 62.47 67.00 68.73

All - spell 88.23 71.55 83.16 72.33 73.09 66.50 62.59 67.11 68.10

All - stop 90.27 73.54 85.61 74.04 74.45 68.74 64.17 69.28 71.01

All - stem 89.45 72.30 85.02 73.10 74.20 67.59 64.78 68.52 70.33

Table 5.3: F-score Results of Evaluating the Effect of Different Pre-processing Factors Using

Different Models on Wikipedia Corpus. The Overall Best Results Are in Bold.

The model looks at the co-occurrence matrix that tells us how often a particular pair of

words occur together. Each value in a co-occurrence matrix is a count of a pair of words

occurring together.

Moreover, in Table 5.2, we note that the best performance for the FastText (CBOW)

110



model in majority comes from combining all the pre-processing factors except stemming

(All-stem), whereas for the FastText (Skip-gram) and ELMo models, the best results

are obtained by applying all the pre-processing factors except stopwords removal (All-

stop). In addition, we need to note that FastText works well with rare words. Thus,

even if a word wasn’t seen during training, it can be broken down into n-grams to get its

embeddings. However, ELMo is character-based, which means that the model does not

have a pre-defined vocabulary of words used for training, but it rather extracts the word

embeddings from the constituent characters of the words. These differences can make the

word embedder more robust and generalizable to downstream tasks.

In Table 5.4, we investigate the difference between applying the general combination

of pre-processing to the training corpora for generating word embeddings (Pre) and

applying the same pre-processing to the classification datasets (Post). As an example,

during Pre, we first apply the pre-processing techniques (e.g., all but stemming) to

the training corpus (e.g., Wikipedia), then generate word embeddings, further convert

a classification dataset (e.g., IMDB) into word embedding representation, and finally

classify using LSTM. Conversely, for Post, we first generate word embeddings from a

training corpus (e.g., Wikipedia), then apply the pre-processing techniques (e.g., all but

stemming) to the classification dataset (e.g., IMDB), which is then converted to word

vector representation, and finally classified using LSTM 35.

35Note: For settings including stemming, the classification data is also stemmed in order to obtain a

111



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

FastText(CBOW)

Pre 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74

Post 76.48 69.25 70.15 57.38 62.48 63.71 51.47 29.35 53.84

Both 79.72 70.54 72.26 61.00 65.27 65.20 52.36 30.65 55.49

FastText(Skip-gram)

Pre 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32

Post 80.01 70.16 71.40 58.70 64.22 63.76 51.49 29.74 54.38

Both 80.52 70.40 72.58 63.02 66.57 65.00 53.18 30.24 55.29

GloVe

Pre 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70

Post 86.37 71.20 72.30 72.15 72.47 65.73 57.19 66.31 58.64

Both 87.00 72.48 74.18 73.01 73.61 67.32 58.66 67.29 59.14

ELMo

Pre 90.27 73.54 85.61 74.04 74.45 68.74 64.17 69.28 71.01

Post 88.13 71.76 83.10 72.28 73.55 66.79 63.80 68.20 70.18

Both 90.14 72.57 85.00 73.61 74.20 68.07 64.39 68.79 70.83

Table 5.4: F-score Results of Evaluating the Effect of Pre-processing Word Embeddings

Training Corpus vs. Pre-processing Evaluation Datasets

The results of this experiment are presented in Table 5.4, where similar to previous

chapter results, we observe that incorporating pre-processing into the training corpora

before generating word vectors (Pre) outperforms pre-processing classification datasets

(Post) across all nine datasets of the three affective tasks. Similarly though, we observe

pre-processing both the bodies of text (Both) appears to be of little benefit, thereby

compatible vocabulary.

112



Figure 5.1: Average F-scores vs. relative improvement

validating our intuition of customized combination of pre-processing at downstream task

might result in better performance.

5.6.2 Analyzing the Three Affective Tasks

Figure 5.1 summarizes the results obtained from all the seven word embedding models

(three models from the previous chapter and 4 models from this chapter) for all three tasks

in terms of (a) absolute F-scores and (b) relative improvement (best pre-processing over

Basic pre-processing). The IMDB dataset achieves the highest F-score overall, most

likely because it consists of movie reviews, which are much longer than the text from

other genres. As expected, the binary classification task of sentiment analysis and sarcasm

detection achieve comparable results, while the multi-class emotion classification typically

has much lower F-scores. The most interesting observation, however, is noticed in

Fig. 5.1(b), where the emotion datasets show the highest relative improvement, indicating

that multi-class classification tasks may benefit the most from applying pre-processing at

113



word embedding stage (Pre).

In particular, Figure 5.1 summarizes the results obtained for all three tasks, where we

averaged all three datasets in each task from the best results in Table 5.2 and 5.3 in bold.

The sentiment analysis datasets (blue bar) achieves the highest F-score overall, most likely

because it consists of movie reviews which are much longer than the text from other genres.

As expected, the binary classification task of sentiment analysis and sarcasm detection

achieve comparable results, while the multi-class emotion classification typically has

much lower F-scores. The most interesting observation, however, is noticed in Fig. 5.1(b)

relative improvement of the best results for each model over “Basic” for Wikipedia where

the emotion datasets (red bar) show the highest relative improvement, indicating that

multi-class classification tasks may benefit the most from applying pre-processing at word

embedding stage (Pre).

5.6.3 Effects of Customized Pre-processing Factors for Each Affective Task

A primary goal of this chapter is to identify the effects of customized pre-processing

factors for training word embeddings for affective tasks as well as evaluation datasets.

114



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec(CBOW)
All 88.41 60.25 71.39 71.57 73.61 65.27 48.81 62.48 57.42

All - stem 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28

c-pre 90.67 62.74 74.33 73.08 76.52 69.15 53.18 66.19 60.51

Word2Vec(Skip-gram)
All 87.00 59.99 71.29 71.25 73.82 65.67 48.51 65.02 57.13

All - stop 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14

c-pre 89.91 62.73 73.69 72.85 76.31 69.24 52.84 64.80 59.28

FastText(CBOW)
All 77.12 69.86 71.69 60.69 63.39 63.07 50.77 28.42 53.89

All - stem 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74

c-pre 80.71 71.90 73.70 63.17 66.24 66.71 53.00 33.25 56.49

FastText(Skip-gram)
All 78.30 69.73 71.65 61.52 64.57 63.61 51.03 28.76 54.21

All - stop 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32

c-pre 82.93 72.00 74.15 63.57 66.80 66.79 55.38 32.29 56.63

GloVe
All 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70

c-pre 86.73 73.41 74.00 74.23 74.27 68.40 59.80 66.85 60.11

ELMo
All 88.63 71.80 83.91 72.61 73.30 66.93 63.20 67.58 69.45

All - stop 90.27 73.54 85.61 70.04 74.45 68.74 64.17 69.28 71.01

c-pre 90.40 73.20 85.03 71.19 75.27 69.87 65.38 69.81 71.80

BERT
All 91.86 71.76 91.73 73.66 78.72 62.60 59.74 67.80 67.49

All - stop 94.18 73.81 94.85 78.80 79.10 65.39 60.73 69.33 69.81

c-pre 93.67 74.00 94.88 79.00 79.84 66.00 61.18 70.28 70.33

Table 5.5: F-score Results of Comparing the Effect of Customized Pre-processing Vs General

Pre-processing

115



Table 5.5 details the results of our experiments comparing the performance of applying

all pre-processing (All) on Wikipedia corpus and the best results of ablation studies

(e.g. All-stem from the previous chapter with customized pre-processing (e.g. c-pre

for all the seven models. Observing the performance of the customized pre-processing

factors (c-pre) when we apply it on the training corpus, we note that customized pre-

processing techniques constantly in most word embedding models outperform the general

combination of pre-processing (e.g. All, or All-stem), thereby validating our intuition

of incorporating customized pre-processing into training corpora of word representations

perform better in most cases than those in the previous chapter.

5.6.4 Evaluating Pre-processing Training Corpora vs. Pre-processing Classifica-

tion Dataset

In this section, we compare the performance of customized pre-processing applied to the

training corpora for generating word embeddings (c-pre) against applying them in four

different ways: (i) Post 1: applying the same pre-processing applied to training corpora

at classification datasets, (ii) Both 1: applying the same customized pre-processing at

both stages, (iii) Post 2: applying customized pre-processing based on each affective task

on classification datasets (which was explained in section 5.4), and Both 2: applying

customized pre-processing factors for training corpus and customized pre-processing for

each affective task at classification datasets. As an example, during (c-pre), we first

116



apply the customized pre-processing techniques explained in Section 5.3 to the training

corpus (e.g., Wikipedia), then generate word embeddings, then convert a classification

dataset (e.g., IMDB) into word embedding representation, and finally classify using

LSTM Conversely, for Post 1, we first generate word embeddings (using Basic pre-

processing) from a training corpus (e.g., Wikipedia), then apply the same customized

pre-processing techniques used in c-pre to the classification dataset (e.g., IMDB), which

is then converted to word vector representation, and finally classified using LSTM. While

in Post 2, we apply different variations of customized pre-processing methods for each

affective task, which was described in Section 5.4.

The results of these experiments are presented in Table 5.4, where we observe that

incorporating customized pre-processing into the training corpora before generating word

vectors (c-pre) outperforms pre-processing classification datasets (Post 1) and (Post 2) in

the majority of the cases across all nine datasets of the three affective tasks while applying

at (Both 1) still harm the performance in most cases. Interestingly, this time customized

pre-processing both the bodies of text (Both 2) appears to be more beneficial compared

to apply them at single stage individually, suggesting that an appropriate combination of

customized pre-processing at each stage achieves better results than applying them only

on one stage or using the general pre-processing factors for affective tasks.

117



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec(CBOW)

c-pre 90.67 62.74 74.33 73.08 76.52 69.15 53.18 66.19 60.51

Post 1 87.30 60.04 72.20 68.27 73.61 66.80 48.25 61.29 55.00

Both 1 88.13 61.70 72.69 70.08 74.12 68.48 50.23 65.37 58.00

Post 2 88.52 60.47 73.40 71.25 75.63 68.05 50.44 64.20 59.31

Both 2 90.81 63.30 75.07 74.69 77.80 70.51 54.20 67.48 61.02

Word2Vec(Skip-gram)

c-pre 89.91 62.73 73.69 72.85 76.31 69.24 52.84 64.80 59.28

Post 1 88.01 60.22 70.25 71.13 74.28 67.45 50.62 62.00 55.70

Both 1 88.57 61.85 73.20 71.08 75.00 69.00 50.74 63.12 57.21

Post 2 89.10 62.03 72.45 71.62 75.69 68.14 51.66 62.70 58.00

Both 2 90.40 64.20 75.37 74.28 77.82 71.49 54.09 66.00 60.58

BERT

c-pre 93.67 74.00 94.88 79.00 79.84 66.00 61.18 70.28 70.33

Post 1 91.83 70.12 92.00 74.04 76.81 62.71 58.02 67.90 66.80

Both 1 94.03 72.19 92.20 76.39 77.19 63.77 60.03 68.34 67.61

Post 2 93.10 73.24 92.60 75.00 78.20 64.80 59.34 69.18 69.52

Both 2 94.22 75.20 94.88 80.21 80.34 67.41 63.10 72.66 72.80

Table 5.6: F-score Results of Evaluating the Effect of Customized Pre-processing Word

Embeddings Training Corpus vs. Customized Pre-processing Evaluation Datasets

118



Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

FastText(CBOW)

c-pre 80.71 71.90 73.70 63.17 66.24 66.71 53.00 33.25 56.49

Post 1 77.30 70.10 71.27 56.80 65.30 63.78 52.67 30.27 54.18

Both 1 78.69 71.25 71.69 61.38 65.84 64.37 52.73 32.80 54.80

Post 2 78.29 70.18 71.02 60.39 66.18 65.01 53.00 33.28 55.70

Both 2 81.60 72.50 75.06 65.86 68.21 69.17 55.48 36.45 58.71

FastText(Skip-gram)

c-pre 82.93 72.00 74.15 63.57 66.80 66.79 55.38 32.29 56.63

Post 1 78.20 67.84 70.33 59.67 63.80 61.30 51.27 30.69 54.70

Both 1 79.06 70.60 73.12 62.81 65.30 64.80 54.25 30.39 55.00

Post 2 80.83 69.38 72.65 62.30 65.30 64.27 55.18 31.40 55.80

Both 2 83.60 73.41 75.33 65.39 68.42 68.70 57.04 35.20 58.00

GloVe

c-pre 86.73 73.41 74.00 74.23 74.27 68.40 59.80 66.85 60.11

Post 1 85.12 70.00 71.45 72.64 71.69 65.10 56.48 64.23 57.29

Both 1 87.29 73.00 73.14 73.45 73.59 67.48 58.29 66.70 58.76

Post 2 86.20 72.00 73.10 73.00 73.81 66.80 58.30 65.10 58.26

Both 2 87.23 75.08 75.14 74.40 76.31 70.25 61.40 68.71 62.30

ELMo

c-pre 90.40 73.20 85.03 71.19 75.27 69.87 65.38 69.81 71.80

Post 1 86.25 70.33 82.20 69.48 73.02 66.40 63.14 67.40 69.28

Both 1 90.33 72.60 83.20 72.68 74.11 68.00 64.21 67.62 70.37

Post 2 88.67 72.80 84.61 70.39 74.69 68.80 64.20 68.07 70.30

Both 2 91.20 74.83 86.67 73.30 77.00 71.37 67.49 71.25 72.20

Table 5.7: F-score Results of Evaluating the Effect of Customized Pre-processing Word

Embeddings Training Corpus vs. Customized Pre-processing Evaluation Datasets

119



5.7 Summary

In this chapter, we systematically examined the role of customized pre-processing training

corpora as well as classification datasets for affect analysis. Our analysis reveals that ap-

propriate combination of pre-processing on training corpora and evaluation dataset better

improved the performance rather than the general combination of pre-processing which

was presented in the previous chapter. The overall best performance between all word

embedding models is achieved by BERT by applying all the customized pre-processing

techniques at both stages over nine datasets. Interestingly, this time incorporating cus-

tomized pre-processing at Both 2 training corpora and the downstream task appears to

be far more beneficial than applying them individually or applying the same factors at

both stages. Moreover, while all the three affective tasks (sentiment analysis, sarcasm

detection and emotion classification) benefit from our proposed customized pre-processing

framework, our analysis reveals that the multi-class emotion classification task benefits

the most.

120



6 Affective and Contextual Embedding for Affect

Detection

6.1 Introduction

The most popular affective task is known as sentiment analysis, which is the interpretation

and classification of emotions (positive, negative and neutral) within text data. Whilst,

emotion detection entails classifying the text into fine-grained categories of emotions

such as happiness, sadness, fear, and so on. The task of identifying emotions in text is

especially difficult due to limited resources, lack of linguistic information, and because it

requires a larger number of categories of emotions in which to undertake classification.

Another affect analysis is the recognition of sarcasm, which is a particular case of emotion

analysis where the emphasis is on sarcasm instead of identifying a sentiment across the

continuum. The task of this field is therefore to detect whether or not a given text is

sarcastic. Unlike in the study of sentiments where the types of sentiments (e.g. positive,

negative,..) are very well defined (e.g. "love" has a positive feeling logically, while "hate"

121



has a negative feeling, no matter whom you ask or what language you speak), the borders

of sarcasm are not so well defined. Moreover, it is important to have a notion of what

sarcasm is before beginning to detect it.

Sarcasm is the use of language in which one conveys implicit information/intention

with the opposite meaning of what is said or written. Due to this deliberate ambiguity,

sarcasm detection is a more challenging task than other affective tasks (e.g. sentiment

analysis, emotion detection), especially in written expressions where body gestures, tone

of voice, and facial expression are not known [86, 163]. Sarcasm detection has attracted

growing interest over the past decade as it draws a more accurate picture of users’ intention

on social media [28], and facilitates accurate sentiment analysis in online comments and

reviews [56]. It also has useful applications in areas such as healthcare [32], hate speech

detection [46, 128], disaster management [56].

Early attempts of sarcasm detection from text mainly relied on extracting a set of

positive verbs and negative/undesirable situations (e.g. “I love [positive verb] the pain

of breakup [negative situation]”) [63, 154]. Alternatively, one may use lexical features

(e.g., capital letters and excessive usage of exclamatory marks) [108] in sarcasm detection.

Recently, psychological studies have shown a strong relationship between affect/sentiment

features (e.g., sadness, happiness) and sarcasm [83, 147].

However, relying only on affect/sentiment features for sarcasm detection may not

be effective, especially when there are no sentiment words in a sentence [87, 154]. For

122



instance, in the sentence “Is it time for your medication or mine?”, the speaker’s intention

is to mock the person addressed, but there aren’t any sentiment words used.

Later attempts for sarcasm detection mostly relied on language models that are based

on continuous representation or embeddings of words, such as Word2vec [116] and GloVe

[142]. The use of these general models can eliminate the need for feature engineering or

dependence on enormous emotion labeled datasets. However, due to the mechanism with

which word vectors are learned and embedded into a space, these models have been shown

to be inadequate for affective tasks [10]. For instance, two dissimilar words like “good”

and “bad”, which often occur in a similar context, will be embedded closer to each other

than the words “good” and “happy” that express similar emotions. More recent advances

in neural representation models, such as ELMo [143] and BERT [45] can overcome this

limitation by taking into account both the context a word appears in and its importance

in that context, using a self-attention mechanism [183]. While these models have been

applied successfully to a wide range of Natural Language Processing (NLP) tasks, such

as sentiment analysis [169] and word similarity computation [205], they have not been

fully exploited for the more challenging problem of sarcasm detection. A few studies that

proposed to use these models [30, 128], utilize the already pre-trained embeddings, which

are not optimized for sarcasm detection, and their performance can be further improved

[149].

In this chapter, we propose two novel models for sarcasm detection based on Affective

123



and Contextual Embeddings, namely ACE 1 and ACE 2. Given as input a text passage

(i.e., a sequence of sentences, which we call a document in this chapter for brevity),

the models predict whether it is sarcastic. In addition, we evaluate the performance of

the proposed models on other affective tasks such as emotion detection and sentiment

analysis. The architecture of each model builds upon two components: a) affective

feature embedding, and b) contextual feature embedding. The former utilizes a Bi-LSTM

with multi-head attention neural architecture [183] to obtain representations of affective

features of a document. The latter is achieved by a BERT model. In ACE 1, the two

components are combined by training a new BERT model from scratch by adding affective

feature embeddings into the input sequence of BERT so that task-specific embeddings

can be obtained. In ACE 2, the two components are combined in a fully connected layer

with a softmax to form a classifier that is trained with labeled sarcasm detection data. The

main contributions of this work are as follows:

• We present two novel deep neural network language models (ACE 1 and ACE 2) for

sarcasm detection. Each model extends the architecture of BERT by incorporating

both affective and contextual features of text to build a classifier that can determine

whether a document is sarcastic or not. To the best of our knowledge, this is the

first attempt to directly alter BERT’s architecture (rather than using the already

pre-trained BERT embeddings) and train it from scratch to build a sarcasm classifier.

124



• Integral to our proposed models is a novel model that learns the affective represen-

tation of a document, using a Bi-LSTM architecture with multi-head attention. The

resulting representation takes into account the importance of the affect representa-

tions of the sentences in the document.

• We design and evaluate alternatives that materialize each of the two components (af-

fective feature embedding and contextual feature embedding) of the proposed deep

neural network architecture model. We systematically evaluate the effectiveness of

each alternative architecture.

• We conduct an extensive evaluation of the performance of the proposed models

(ACE 1 and ACE 2), which demonstrates that they significantly outperform current

state-of-the-art models for sarcasm detection.

• We investigate whether the proposed affective and contextual model (ACE 1 and

ACE 2), can improve the performance of other tasks, such as emotion detection

and sentiment analysis. Furthermore, we form a comparative study of the accuracy

performance of previous BERT model using pre-processing for affective tasks with

the current proposed models.

• We make source code and data publicly available to encourage result reproducibility

and model re-use36.

36https://github.com/NastaranBa/ACE-for-Sarcasm-Detection

125



Figure 6.1: Overview of the proposed model ACE 1

The chapter is organized as follows. Section 2 presents the proposed models for

sarcasm detection. Section 3 describes the experimental evaluation and Section 4 demon-

strates the results and analysis. We conclude the chapter in Section 6.

6.2 Proposed Models for Sarcasm Detection

We propose two models, ACE 1 and ACE 2, for sarcasm detection, where each model takes

a document (i.e., a sequence of sentences) as input and predicts whether the document is

sarcastic or not. Figure 6.1 and §6.2 depict the architecture of each model that builds upon

126



Figure 6.2: Overview of the proposed model ACE 2

two components: a) affective feature embedding (AFE) (on the right), and b) contextual

feature embedding (CFE) (on the left). The two models are different in (1) the way the two

components are combined and (2) the input to the affective feature embedding component.

6.2.1 Affective Feature Embedding (AFE)

The architecture of the AFE component is the same for ACE 1 and ACE 2. The difference

is that its input in ACE 1 is an unlabeled training corpus in pre-training and a labeled

sarcasm dataset during fine-tuning, while in ACE 2, AFE only takes the labeled sarcasm

127



detection dataset as the input. This component includes three stages: (i) Affective Feature

Vector Representation, (ii) Bi-LSTM and (iii) Multi-Head Attention layers.

6.2.1.1 Affective Feature Vector Representation

In this stage, each input document is first chunked into sentences. Then, the affective

features are extracted using one of the following two approaches.

Emotion Affective Intensity with Sentiment Feature (EAISe): We use the NRC

Emotion Intensity Lexicon [121] to extract the emotion words in a sentence and give

each such word 4 intensity scores, one for each of 4 basic emotions: anger, fear, sadness,

joy. Each score ranges from 0 to 1, where “1” means that the word conveys the highest

degree of the corresponding emotion, and “0” means that the word is not associated with

the emotion. Then, we add 2 more binary scores to represent the sentiment (positive,

negative) of the word based on the NRC Emotion Lexicon [124]. To calculate the

affective feature vector of a sentence, we first average the affective feature vectors of

the affect words in the sentence, then multiply it with a vector E′ that contains the

frequency of words in the sentence in each emotion or the sentiment (See Figure 6.3).

For instance, assume that we have 3 affect words in a sentence, and the affective feature

vectors of 4 emotions and 2 sentiments (anger, fear, sadness, joy, positive, negative)

for these words are: FCA0643H = (0, 0.73, 0.61, 0, 0, 1), FCℎ0=:B68E8=6 = (0, 0, 0, 0.64, 1, 0),

Fℎ0??H = (0, 0, 0, 0.82, 1, 0). The element-wise multiplication of the average of these

128



Figure 6.3: Overview of the proposed model ACE 2

3 vectors (0, 0.24, 0.20, 0.48, 0.66, 0.33) and the frequency vector E′ = (0, 1, 1, 2, 2, 1) is

(0, 0.24, 0.20, 0.96, 1.32, 0.33).

Emotion Similarity Feature (EMoSi): In this approach, for each word in a sentence,

we measure the average semantic similarity score between the words in the sentence and

all seed words (20 words) of an emotion in the NRC Emotion Lexicon [124] that has 8

emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust). The semantic

similarity score is based on the cosine similarity of pre-trained Word2vec vectors [115] of

the corresponding words. For instance, in a sentence “I love jogging.”, we calculate the

cosine similarity between word “I” with a seed word “happy” in emotion “joy”. We do

this for all the seed words in each emotion, resulting in an emotion intensity vector of 8

129



scores for each word in the sentence. By averaging the vectors for all the words in the

sentence, we obtain an affective feature representation of the sentence.

Given a document � with = sentences (G1, G2, · · · , G=), G8 is converted into its affective

vector representation (8 using one of the above two approaches. Thus, document � can

be represented as ((1, (2, .., (=).

6.2.1.2 Bi-LSTM Layer

Given a document � = ((1, (2, .., (=), we use a Bi-LSTM model [66] to capture/encode

the affect-changing information of the sentence sequence from both left and right direc-

tions37. The result is a sequence of hidden state vectors ℎC for the sentence sequence.

More precisely, the bidirectional LSTM is a concatenation of the forward and backward

LSTM as:

−→
ℎ C =

−−−−−→
!()" ((C ,

−→
ℎ C−1) (6.1)

←−
ℎ C =

←−−−−−
!()" ((C ,

←−
ℎ C+1) (6.2)

ℎC = �>=20C (
−→
ℎ C ,
←−
ℎ C) (6.3)

The sequence of hidden state vectors ℎC (C = 1, 2, . . . =) forms a matrix and serves as

the input for the next layer (Multi-head Attention Layer).

37We use post-zero-padding , and using attention masking to distinguish the padding[183]

130



6.2.1.3 Multi-head Attention Layer

In a given document, a specific part could play a more important role in detecting sarcasm

[99]. Therefore, we use a multiple heads attention mechanism [183] to capture the

importance of hidden affective feature vectors ℎC , which have already been learned by

the Bi-LSTM layer. This helps us capture long-distance dependencies and form a global

representation of the sequence. As shown in Figure6.1, the output vectors of Bi-LSTM

layer (ℎ1, ℎ2, . . . ℎ=) are combined to form a matrix � = [ℎ1, ℎ2, ..ℎ=] which serves as

the input matrix for each attention head in the self-attention mechanism. In particular,

the three matrices Q(query), K(key), and V(value) are created by multiplying � with the

weight matrices (,& ,, ,,+ ) that are trained jointly in the self-attention mechanism

[183] as such: & = � ×,& ,  = � ×, , and + = � ×,+ . Then, this mechanism

calculates the context vectors for each self-attention head as:

/ = (�%�(&,  ,+) = B> 5 C<0G
(
& )
√
3 

)
+ (6.4)

This is called Scaled Dot-Product Attention (SDPA) in [183] and
√
3 is a scaling

factor where 3 is the dimension of queries and keys. Assuming there are # heads, we

have # such sets of weight matrices and we compute the output for the 8′Cℎ head as:

/ (ℎ403
8
) = (�%�(&,&

8
,  , 8

 , +,+
8 ) (6.5)

The Multi-Head Attention mechanism (MHA) runs through SDPA multiple times in paral-

lel and concatenates the resulting vectors of all the heads and multiply it by an additional

131



weight matrix,$ that was trained jointly with the model as the final representation of

the document � as:

�′ = "��(&,  ,+) = �>=20C (/1(ℎ4031), ..., /= (ℎ403# ),$ (6.6)

6.2.2 Contextual Feature Embedding in ACE 1

We explain how our first model, ACE 1, incorporates the affective feature embedding

discussed in Section 6.2.1 into the BERT model for sarcasm detection. The architecture

of the ACE 1 is illustrated in Figure 6.1, which includes three stages: i) Training BERT,

ii) Training Affective BERT and iii) Fine-Tuning.

6.2.2.1 Training BERT

In this stage, we train a BERT model using the BERT-Large-uncased architecture with

the same setting for hyper-parameters as in [45], where more details on used parameters

can be found in section §6.3.3. The model is trained on an unlabeled text corpus over two

unsupervised tasks: i) Masked Language Model (MLM), in which, some of the tokens in

the input sequences are masked and the model is trained to predict these masked tokens,

and ii) Next sentence Prediction (NSP), where the model receives pairs of sentences as

input and learns to predict if the second sentence in a pair is the subsequent sentence of

the first one in the training corpus. The two tasks are trained together, with the goal of

minimizing the combined loss function to generate the final embedding vectors.

132



More specifically, the training corpus is tokenized with the WordPiece method [190])

and then input sequences are generated, where 50% are a pair in which the second sentence

is the subsequent sentence in the corpus, and the other 50% contains a random sentence

from the corpus as the second sentence. Each input sequence has a [CLS] token at the

beginning and a [SEP] token at the end of each sentence. The middle part of Figure 6.4

illustrates the BERT input representation. BERT has three embedding layers: (i) Token

Embedding: it transforms tokens into vector representations of fixed dimension from the

WordPiece token vocabulary (ii) Segment Embedding: it discerns between the first and

second sequence to indicate whether the token belongs to the first or the second sentence

in the input sequence, and (iii) Position Embedding: it remembers the position of each

token in a sequence. These three embeddings are summed up (element-wise) and make

up the input to the BERT bidirectional transformer which is a multi-layer bidirectional

transformer encoder [45, 183].

6.2.2.2 Training Affective BERT with Affective Feature Embeddings

The purpose of this stage is to incorporate the affective features into the BERT model

so that task-specific embeddings can be obtained. As illustrated in Figure 6.1, we train

a new model (called Affective BERT) from scratch using BERT by adding affective

feature embeddings obtained from the AFE component into the input sequence of BERT.

Again, we use the BERT-Large-uncased architecture. The unlabeled training corpus is

133



Figure 6.4: BERT Input Representation Vs Affective BERT Input Representation.

first tokenized using the WordPiece method. The difference between this BERT model

and the one trained in the first stage is in the input sequence. The bottom part of Figure 6.4

illustrates an input sequence in this stage. An input sequence contains two subsequences.

The first one (between [CLS] and the first [SEP]) is a document (i.e., a sequence of

tokens) and the second subsequence (purpule cells between two [SEP] tokens) is the

affective feature embedding of the document, which is the �′ vector generated by the

AFE component trained earlier using the training corpus. The BERT model is trained

using two tasks as usual: Masked Language Model (MLM) and Next Sentence Prediction

(NSP). Since our input sequence contains a document and its affective feature embedding,

the NSP task is actually to predict the affective features of a document.

Now, we have two contextual pre-trained embeddings for each token: � from the first

stage (Training BERT) and � from the second stage (Training Affective BERT), both with

134



the same dimension. While there are different ways to combine these two embeddings to

achieve a meta-embedding [38, 94, 145], we combine these two contextual embeddings

by a simple concatenation to obtain the final embedding � = � ⊕ � for a token.

6.2.2.3 Fine-tuning BERT Models

In this stage, the two trained BERT models and the trained AFE component are further

combined by adding a fully-connected output layer with a softmax on top of the two

BERT models. The [CLS] token representations from the two BERT models are fed into

the output layer. This whole ACE 1 model is then fine-tuned with a labeled data set for

sarcasm detection, in which all parameters are adjusted. After fine tuning, the two BERT

models can be used to perform sarcasm detection given a new document.

6.2.3 Contextual Feature Embedding in ACE 2

Figure 6.2 illustrates the architecture of our second model (i.e., ACE 2). This model

also contains 2 components: a) affective feature embedding (AFE), which is the same

as the one in ACE 1 except that the input data are different, and b) contextual feature

embedding (CFE), to be described in detail below. The purpose of ACE 2 is to avoid the

time-consuming embedding-training with very large corpora. For this purpose, we use

pre-trained BERT to obtain contextual embeddings, which is called the feature-based

approach to using BERT [45]. For this purpose, we train the AFE component using the

135



texts in the downstream task (i.e., sarcasm detection) dataset, which is much smaller than

the usual embedding-training corpus. Below we describe how the CFE component works

and how the two components are combined.

6.2.3.1 Pre-trained Embeddings

In this stage, we use pre-trained BERT contextual embeddings (e.g., the output of the

first BERT model in ACE 1, or any other pre-trained contextual embedding model) in the

feature-based approach [45] to represent each input token/sentence generated from the

hidden layers of the pre-trained model.

6.2.3.2 Obtaining Sentence Embeddings Using SBERT

The purpose of this stage is to obtain a sentence embedding given an input sentence. The

most common approaches to derive a sentence embedding from a pre-trained BERT model

is to i) average the outputs of the hidden layers or ii) using the output of the first special

token [CLS] [112, 205, 208]. However, it has been shown that these methods produce poor

sentence representations that are not semantically meaningful [153, 187]. This is because

no independent sentence embeddings are computed in the BERT model, which makes it

difficult to derive sentence embeddings from pre-trained BERT. Because of this, SBERT

(a Sentence Transformer) [153] was proposed that uses a Siamese or triplet network

structure to derive a sentence embedding using a pooling operation by i) computing the

136



mean of all output vectors (MEAN-strategy), or ii) computing a max-over-time of the

output vectors (MAX-strategy) from the output of pre-trained BERT.

Given an input sentence, we first use the pre-trained BERT-large-uncased model to

obtain the token embeddings, which are then passed to SBERT. SBERT computes a

sentence embedding using the MEAN-strategy for the pooling operation to compute

a sentence embedding, which is the default mode and was also suggested in [153] for

classification tasks. For an input document, we concatenate the embeddings of all the

sentences in the document to form a document representation.

6.2.3.3 Combining the Two Components

In this stage, a fully connected layer with a softmax is added on top of the CFE and AFE

components. The input to the fully connected layer is the concatenation of the document

embeddings from both CFE and AFE models (that is, the contextual embedding of a

document from CFE and its affective feature embedding from AFE). The fully connected

layer is trained as a classifier with the labeled dataset for sarcasm detection.

137



6.3 Experimental Evaluation

6.3.1 Corpora for Training Embeddings

The original BERT-Large-uncased was trained on 2.5 billion Wikipedia and 800 million

BookCorpus words. Since BookCorpus is no longer publicly available, we used a news

corpus along with Wikipedia to train BERT from scratch. For simplicity, through this

chapter we called it Wiki38, in which the news corpus consists of 142,546 articles from

15 American publications and Wikipedia consists of 23,046,187 articles from Wikipedia.

To test our models with text of less formal writing styles and more sarcasm occurrences,

we also created another corpus and call it WikiSarc that contains Wiki and the following

two datasets:

IMSDB: an Internet Movie Script Database39, for which a scraper was used to retrieve

comedy movie transcripts, resulting in 11.2 million movie transcripts, and Riloff: a

dataset consisting of automatically extracted tweets: 60k containing the sarcasm hashtag

and 100k random tweets using the method from [154].

38News:https://www.kaggle.com/snapcrack/all-the-news,Wikipedia:https://www.kaggle.com/jkkphys/english-

wikipedia-articles-20170820-sqlite.

39IMSDB:https://www.imsdb.com/, Scraper:https://github.com/JoeKarlsson/movie-script-scraper

138



6.3.2 Affective Tasks Datasets

We evaluate our models on three datasets for sentiment analysis, three datasets for emotion

detection in witch the details of the datasets are described in Section 4.3.3, and five labeled

sarcasm detection datasets described in Table 6.1 as follows:

• Onion: This news headlines dataset40 collected sarcastic versions of current events

from The Onion41 and non-sarcastic news headlines from HuffPost [119]. The

dataset contains 28,619 headlines, with 13,634 labeled as sarcastic, and 14,985 as

non-sarcastic.

• IAC: This is a subset of the Internet Argument Corpus [132]. The dataset contains

response utterances annotated for the sarcasm detection task. We extract 3260

instances from the general sarcasm type, with 1630 as sarcastic and 1630 as non-

sarcastic42.

• Reddit: Self-Annotated Reddit Corpus (SARC)43 is a collection of Reddit posts

where sarcasm instances are labeled by authors (in contrast to other datasets where

the data is typically labeled by independent annotators) [93]. This results in

1,010,826 posts, with 505,413 as sarcastic and 505,413 as non-sarcastic.

40https://github.com/rishabhmisra/News-Headlines-Dataset-For-Sarcasm-Detection

41https://www.theonion.com

42https://nlds.soe.ucsc.edu/sarcasm2

43https://nlp.cs.princeton.edu/SARC/2.0/pol/

139



Dataset Genre # Sarcastic # Non-Sarcastic Total Max # of Sentences

Onion News Headlines 13,634 14,985 28,619 5

Reddit Reddit Forum 505,413 505,413 1,010,826 6

Pt′acek Tweets 7,000 7,000 14,000 8

SemEval-2018 Tweets 2,396 2,396 4,791 7

IAC Politic Debates 1630 1630 3,260 14

Table 6.1: Description of sarcasm detection datasets.

• Pt′acek: The dataset consists of manually annotated sarcastic tweets. Authors

annotated 7k tweets as sarcastic and 7k ones as non-sarcastic [150].

• SemEval-2018: the dataset was provided in SemEval-2018 Task 3 (Irony detection

in English tweets), with total of 4,792 tweets including 2,396 ironic and 2,396

non-ironic[180].

6.3.3 Experimental Setup

Both ACE 1 and ACE 2 models use a softmax at the output layer and cross-entropy is used

as the loss function. The optimizer is Adam [96]. Parameter settings in the experiments

are as follows:

Training: We train BERT-Large-uncased architecture for both stages of ACE 1 from

scratch (24-layer, 1024-hidden, 16-heads, 340M parameters) , where the dimension is 768

140



and the max length for each sequence is 512. We experimented with different learning

rates of (14 − 4, V1 = 0.9, V2 = 0.999), L2 weight decay of 0.01, and dropout probability

of 0.1 for all layers as suggested for BERT-Large-Uncased [45].

Fine-Tune: It takes much less time to fine-tune our model than training it from scratch.

In fact, the authors [45] recommend only 2-4 epochs of training for BERT fine-tuning on

a specific NLP task with the learning rate Adam Optimizer: 5e-5, 3e-5, 2e-5, and batch

size of 16, 32. Note that, all datasets are split into training/testing using 80%/20%. The

results on test data are reported in F1-score, defined as 2 ?.A

?+A , where ? and A are precision

and recall, respectively.

We train BERT from scratch on our datasets using Microsoft Azure ML44 cluster of

8xND40-v2 nodes (64 NVidia V100 GPUs total) using the Microsoft CNTK paralleliza-

tion algorithm45, 16 TPUs (64 TPU chips), Tensorflow 1.15 with 1TB memory on Google

Cloud and two 32-GPU clusters of V100/RTX 2080 Ti with 1TB memory. The training

took up to 5 days.

44https://github.com/microsoft/AzureML-BERT

45https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines

141



6.4 Discussion and Analysis

6.4.1 Comparing Variations of ACE 1 and ACE 2

In this section, we compare ACE 1 and ACE 2 to see which way of fusing the CFE and

AFE components is more effective, investigate the performance of the models with and

without considering affective features, and also investigate which training corpus (Wiki or

WikiSarc) is more effective to train embeddings for sarcasm detection. Tables 6.2, §6.3

and §6.4 show the results of ACE 1 and ACE 2 on the 5 sarcasm datasets for different

combinations of embedding-training corpus and affective feature representation methods.

For example, in ACE 1 (Wiki) we train ACE 1 on Wiki followed by fine-tuning without

incorporating affective features, while ACE 1 (Wiki)+(EAISe) means we train ACE 1

on Wiki and also incorporate the affective features of EAISe. For model ACE 2, the

comparison is also among different pre-trained embeddings. For instance, ACE 2 (Wiki-

BERT) + (EAISe) means the token embeddings inputted into SBERT in ACE 2 were from

a BERT model pre-trained on our Wiki corpus and the affective feature representation

in the AFE component is EAISe, while in ACE 2 (BERT) the embeddings inputted into

SBERT are from the original pre-trained BERT (Large) model and the affective features

are not used.

142



Corpus+Affective Feature Onion Reddit Pt′acek SemEval-2018 IAC

(Wiki) 83.88 80.25 71.06 77.38 85.10

(Wiki) + (EAISe) 89.40 85.11 75.38 78.10 87.20

(Wiki) + (EMoSi) 90.07 86.20 75.18 77.91 88.40

(WikiSarc) 90.61 86.59 75.15 80.45 89.20

(WikiSarc) + (EAISe) 90.70 87.19 77.82 84.25 89.74

(WikiSarc) + (EMoSi) 92.21 89.22 80.71 84.57 93.14

Table 6.2: F1-scores of model ACE 1 with different settings. Best results are in bold and 2nd

best are underlined.

Results of 18 variations of the methods are shown in Table 6.2 and §6.3 .

As shown in Table 6.2 and §6.3, overall ACE 1 outperforms ACE 2, which suggests

that incorporating affective features deeply in the embedding phase is more effective than

combining the pre-trained contextual embeddings with affective feature embeddings later

in the classification model. Also, including affective feature embeddings works better in

both models than not including them. Furthermore, using WikiSarc (which contains more

sarcastic texts) as embedding-training corpus leads to better results than using Wiki. The

best performance of model ACE 1 is achieved by training it on WikiSarc with affective

feature EMoSi. We call the resulting BERT model WikiSarcA-BERT (Sarcastic Affective

143



BERT). It is used as one of the pre-trained embedding models for ACE 2. Interestingly,

when the models are trained on Wiki or the original BERT training corpus, there is no

obvious winner between EAISe and EMoSi affective feature representation methods

across the sarcasm datasets. But when WikiSarc is used as the training corpus, EMoSi is

a clear winner for ACE 1 and EAISe is a clear winner on ACE 2. Our conjecture is that

since WikiSarc has more sarcastic and emotional utterances than the general corpus such

as Wikipedia, Book Corpus or News dataset, the affective feature representation method

can make a difference in this case.

Results of 7 more variations are shown in Table 6.4. For example, in ACE 1

(Wiki)+(EAISe) we train ACE 1 on Wiki and also incorporate the affective feature

of EAISe (only stage 2 of the model ACE 1) followed by fine-tuning. Note that, only

stage 2 of the model ACE 1 means without concatenation the two pre-trained embeddings

and CFE component of model ACE 1 starts from stage 2 in this experiment. Another

example, for model ACE 2 (WikiSarcA-BERT) means the token embeddings inputted

into SBERT in ACE 2 were from a BERT model pre-trained on our WikiSarc corpus in

model ACE 1 (where the CFE component of the model ACE 1 starts from stage 2 and

incorporate the affective feature of EMoSi) without incorporating affective features.

144



Corpus+Affective Feature Onion Reddit Pt′acek SemEval-2018 IAC

(BERT) 82.45 70.20 70.49 72.19 78.19

(BERT) + (EAISe) 84.11 78.79 72.24 76.19 80.36

(BERT) + (EMoSi) 84.19 77.45 71.85 79.00 80.00

(Wiki-BERT) 82.31 70.20 70.04 72.10 77.48

(Wiki-BERT) + (EAISe) 84.33 79.22 71.44 79.61 80.25

(Wiki-BERT) + (EMoSi) 84.00 77.04 72.10 79.15 79.88

(WikiSarc-BERT) 84.19 79.41 75.29 75.41 80.07

(WikiSarc-BERT) + (EAISe) 87.46 82.28 79.09 80.46 85.29

(WikiSarc-BERT) + (EMoSi) 86.17 83.37 78.19 80.11 85.10

(WikiSarcA-BERT) 87.09 82.25 76.84 78.18 84.79

(WikiSarcA-BERT) + (EAISe) 90.31 86.50 80.39 84.33 88.19

(WikiSarcA-BERT) + (EMoSi) 88.25 86.11 79.00 83.60 86.47

Table 6.3: F1-scores of model ACE 2 with different settings. Best results are in bold and 2nd

best are underlined.

145



Models Combos Onion Reddit Pt′acek SemEval-2018 IAC

ACE 1

(Wiki) + (EAISe) 89.41 85.61 75.16 78.21 87.00

(Wiki) + (EMoSi) 89.84 85.70 74.34 77.92 88.15

(WikiSarc) + (EAISe) 90.33 86.71 77.00 84.63 89.21

(WikiSarc) + (EMoSi) 92.00 89.01 80.54 84.31 93.37

ACE 2

(WikiSarcA-BERT) 86.73 82.17 76.90 78.29 84.00

(WikiSarcA-BERT) + (EAISe) 90.00 85.88 81.11 84.15 87.27

(WikiSarcA-BERT) + (EMoSi) 88.02 85.47 79.30 83.19 86.73

Table 6.4: F1-score results of comparing different pre-trained embeddings with different

affective embeddings for each model. The best score is highlighted in bold, and

the second best result is underlined.

6.4.2 Evaluating Proposed Models against State-of-the-art Baselines

In this section we compare the performance of our proposed models against those of

various state-of-the-art models in four different categories: (i) Only Affective, (ii) Only

Contextual with Fine-Tune, (iv) Only Contextual with Pre-trained, and (iv) Affective

Contextual. Some of the baseline results were taken from their original publication when

the data split is the same as ours. In case we cannot find the result of a baseline for a

data set that we use, the baseline was properly re-implemented using the available codes

146



Models Onion Reddit Pt′acek SemEval-2018 IAC

Rajadesingan et al., 2015 [151] 67.25 64.21 75.13 70.12 68.33

Ghosh et al., 2017 [59] 69.23 68.41 74.11 72.45 64.38

Hernandez farias et al., 2018 [76] 68.00 69.34 75.10 71.70 70.39

Zhang et al., 2019 (a) [204] - - 69.15 64.28 -

Zhang et al., 2019 (b) [204] - - 72.39 65.33 -

Zhang et al., 2019 (c) [204] - - 72.47 67.55 -

AFE with EAISe 70.49 71.87 76.90 72.51 72.40

AFE with EMoSi 74.20 74.04 76.40 72.60 73.01

Table 6.5: F1-scores for comparing our models against state-of-the-art models (Only

Affective). The best scores are in bold, and 2nd best are underlined, while the 3rd

best are double underlined.

and guidelines. The model in [204] in the “Only Affective” category was only designed

for tweets with hashtags. Thus, its results are reported only on two datasets that were

from Twitter. Also, the model in [74] in the “Affective Contextual” category was not

possible to be re-implemented for two of our datasets because the user history information

embedding used in their models was not available in these datasets.

(i) Only Affective: We compare the AFE component of our models with those that

only used hand-crafted or automatic features for sarcasm detection. To make a fair

147



Models Onion Reddit Pt′acek SemEval-2018 IAC

Potamias et al., 2019 [149] 84.39 78.00 71.01 70.00 85.21

RoBERTa 80.23 76.04 67.25 68.00 82.44

XLNet-Large 79.66 76.48 69.33 68.25 70.06

BERT-Base 80.04 76.14 67.13 69.03 82.27

BERT-Large 83.49 78.21 70.33 76.19 84.25

ACE 1 (WikiSarc) 90.61 86.59 75.15 80.45 89.20

Table 6.6: F1-scores for comparing our models against state-of-the-art models (Only

Contextual with Fine-Tune). The best scores are in bold, and 2nd best are

underlined, while the 3rd best are double underlined.

comparison, our AFE component is trained on the sarcasm dataset (not the Wiki or

WikiSarc corpus which would produce better results), to be the same as the baseline

methods. The details of each baseline is as follows:

• Rajadesingan et al., 2015 [151]: Authors proposed a behavioral modeling frame-

work for sarcasm detection. They discussed different forms of sarcasm: i) a contrast

of sentiments, ii) a complex form of expression, iii) a means of conveying emotion,

iv) a possible function of familiarity, and v) a form of written expression. They

constructed relevant features to detect these forms on the Twitter dataset.

148



Models Onion Reddit Pt′acek SemEval-2018 IAC

Zhang et al., 2016 [202] 67.08 69.20 70.49 70.66 69.38

Ilic̀ et al., 2018 [84] 70.12 76.05 75.46 68.90 72.00

RoBERTa 76.51 66.00 62.51 66.37 75.10

XLNet-Large 79.23 70.25 60.13 66.45 72.41

BERT-Base 78.13 66.27 63.12 68.14 74.90

BERT-Large 79.11 65.27 62.39 69.47 75.48

ACE 2 (WikiSarcA-BERT) 87.09 82.25 76.84 78.18 84.79

Table 6.7: F1-scores for comparing our models against state-of-the-art models (Only

Contextual with Pre-trained without Fine-Tune). The best scores are in bold, and

2nd best are underlined, while the 3rd best are double underlined.

• Ghosh et al., 2017 [59]: They investigated several Long Short-Term Memory

(LSTM) networks variations that can model both the conversation context and the

sarcastic response. They showed that the conditional LSTM and LSTM networks,

with sentence-level attention on context and response, outperform the LSTM model

that only reads the response.

• Hernandez farias et al., 2018 [76]: They proposed a model exploring the utility of

affective features based on a wide range of lexical resources (available for English)

149



in the sarcasm detection task.

• Zhang et al., 2019 (a) [204]: In their 1’st model, authors proposed a Sentiment-

Augmented Attention Bi-LSTM model employing an attention-based neural net-

work to identify context incongruity in the irony detection task. They used sentiment

word corpora as external features, and designed a soft attention mechanism focusing

on context incongruity of tweets.

• Zhang et al., 2019 (b) [204]: In their 2’nd model, authors improved the attention

mechanism in a supervised manner to capture the context of incongruity in Twitter

data. In particular, they incorporated two different types of sentiment resources

(sentiment word lexicon and sentiment tweets copra) into the irony detection task.

• Zhang et al., 2019 (c) [204]: In their 3’rd model, authors proposed a model to

transfer deep features from sentiment analysis into the irony detection task for

learning both explicit and implicit context incongruity in Twitter data. Their model

consists of two Bi-LSTMs: one Bi-LSTM model serves as the sentiment feature

extractor while the other one acts as the irony detector.

Table 6.5 shows AFE with EMoSi performs the best on 4 of 5 datasets, while the

second best is AFE with EAISe. Note that the AFE results in this experiment are not as

good as the ACE 2 results in Table 6.3, indicating combining contextual and affective

features is better than using the affective features alone.

150



(ii) Only Contextual with Fine-Tune: We compare the CFE component of ACE 1

without using affective features (i.e., the stage 1 model) with those that initialize the

model by pre-trained embeddings followed by fine-tuning. Among the baselines, [149]

is a transformer-based model for sarcasm detection. The other baselines are benchmark

models used for a wide range of NLP tasks. The details of each baseline is as follows:

• Potamiad et al., 2019 [149]: They proposed a model (i.e., RCNN-RoBERTa)

leveraging the pre-trained RoBERTa model and a recurrent convolutional neural

network to tackle figurative language in sarcasm/irony detection in social media

[149].

• RoBERTa: A Robustly Optimized BERT Pre-training approach proposed by [107].

The model uses dynamic masking instead of static masking (that was used in BERT),

and are optimized to improve the accuracy of different NLP tasks (e.g., question

answering) on GLUE, RACE and SQuAD detests.

• XLNet-Large: A generalized auto-regressive pre-training method that uses a per-

mutation language modeling objective to combine the advantages of AR (Auto-

Regressive) and AE (Auto-Encoding) methods. The model fixes BERT’s negligence

on dependency between the masked positions, causing a pre-train/fine-tune discrep-

ancy [198].

• BERT-Base/Large: A Bidirectional Encoder Representations from Transformers.

151



The model is trained on an unlabeled text corpus over two unsupervised tasks:

i) Masked Language Model (MLM), in which, some of the tokens in the input

sequences are masked and the model is trained to predict these masked tokens, and

ii) Next sentence Prediction (NSP), where the model receives pairs of sentences as

input and learns to predict if the second sentence in a pair is the subsequent sentence

of the first one in the training corpus [45].

Table 6.6 shows that ACE 1 trained on WikiSarc significantly outperforms all baselines

on all five datasets, indicating that training embeddings with a corpus that contains more

emotional or sarsastic untarrences is better for sarcasm detection.

(iii) Only Contextual with Pre-trained without Fine-Tune: We compare the CFE

component of ACE 2 without incorporating affective features with those that used either

contextual pre-traind embeddings (i.e., transformer-based models) or other pre-trained

embeddings (e.g. GloVe used in [202]) without fine-tuning the embeddings. The details

of baseline models are as follows:

• Zhang et al., 2016 [202] : Authors proposed a deep neural network using a gated

recurrent neural network (GRNN) to induce semantic features for sarcasm detection.

In particular, they modeled the tweet content with a GRNN, and used a gated

pooling function to extract features, then predicted sarcastic tweets.

152



Models Onion Reddit Pt′acek SemEval-2018 IAC

Poria et al., 2016 [148] 70.00 64.27 67.00 69.45 60.25

Amir et al., 2016 [10] 67.79 65.14 69.25 71.59 68.51

Yang et al., 2016 [199] 63.25 64.83 71.16 67.45 70.14

DeepMoji, 2017 [53] 69.47 53.08 63.51 69.27 71.00

Wu et al., 2018 [189] 70.00 69.20 68.50 71.20 65.23

Tay el al., 2018 (a) [174] 70.68 67.25 71.52 70.01 72.00

Tay el al., 2018 (b) [174] 70.13 68.23 70.13 69.46 71.85

Hazarika et al., 2018 [74] 70.90 75.16 70.24 - -

Kumar et al., 2020 [99] 68.36 77.01 70.27 75.44 69.33

ACE 1 (WikiSarc) + (EMoSi) 92.21 89.22 80.71 84.57 93.14

ACE 2 (WikiSarcA-BERT) + (EAISe) 90.31 86.50 80.39 84.33 88.19

Table 6.8: F1-scores for comparing our models against state-of-the-art models

(Affective-Contextual). The best scores are in bold, and 2nd best are underlined,

while the 3rd best are double underlined.

• Ilic̀ et al., 2018 [84]: They proposed a deep learning model based on character-

level word representations obtained from ELMo [143]. The model used a learned

representation features derived from morpho-syntactic cues.

Table 6.7 shows that ACE 2 with the pre-trained embedding model WikiSarcA-

153



BERT consistently outperforms all the baselines. This finding supports our intuition that

incorporating the affective feature information into the contextual word embeddings in

the training phase (ACE 1) improves the performance in sarcasm detection, as WikiSarcA-

BERT was trained in stage 2 of ACE 1.

(iv) Affective-Contextual: We compare our ACE 1 and ACE 2 models that combine

the AFE and CFE components with those that used both affective features and pre-trained

embeddings in a single architecture for sarcasm detection. The details of baselines are as

follows:

• Poria et al. 2016 [148]: They developed pre-trained sentiment, emotion and per-

sonality models for identifying sarcastic text using Convolutional Neural Networks

(CNN-SVM).

• Amir et al., 2016 [10]: Authors proposed a deep neural network model (called

CUE-CNN) that learns embeddings of content with lexical signals to recognize

sarcasm in text documents.

• Yang et al., 2016 [199]: They proposed an attention-based neural model that learns

an intra-attentive representation of the sentence, enabling it to identify contrasting

sentiment, situations and incongruity for sarcasm detection.

• DeepMoji: These word embeddings were trained using BiLSTM on 1.2 billion

tweets with emojis [53]. The model learns representations of emotional content in

154



texts.

• Wu et al., 2018 [189]: Authors proposed a system based on a densely connected

LSTM network (every LSTM layer will take all outputs of previous layers as inputs)

with a multi-task learning strategy to combine the information in different tasks.

The model improves the performance using POS tags and sentiment features.

• Hazarika et al., 2018 [74]: They proposed a ContextuAl SarCasm DEtector (CAS-

CADE) by adapting a hybrid approach of both content-based and context-driven

modeling for sarcasm detection. They used user profiling along with discourse

modeling from comments in discussion threads. Then, the information is used

jointly to learn a CNN-based model.

• Tay el al., 2018 (a) [174]: Authors proposed a model called “MIARN” that utilizes

a multi-dimension intra-attention mechanism to overcome limitations of sequential

neural networks in capturing words’ incongruities in sarcasm detection.

• Tay el al., 2018 (b) [174]: In another model, they proposed a model called “SIARN”

which employs a single-dimension intra-attention network for irony detection.

• Kumar et al., 2020 [99]: Authors proposed a model that uses the semantic, sen-

timent and punctuation based hand-crafted features for sarcasm detection. They

utilized multi-head attention based Bidirectional Long-Short Term Memory (MHA-

BiLSTM) combined with Glove Pre-trained embeddings for this purpose.

155



The results in Table 6.8 showed that ACE 1 with WikiSarc and the EMoSi affective

feature representation outperforms all the baselines, while the second best is our ACE 2

(WikiSarcA-BERT)+(EAISe) on all 5 datasets. Note that none of the existing baselines in

this category uses contextual embeddings. Thus, the results suggest that using transformer-

based models to generate contextual embeddings leads to better performance.

6.5 Evaluating the Performance of Proposed Models on Other Af-

fective Tasks

In this section, we plan to investigate the performance of the proposed affective and

contextual models (ACE 1 and ACE 2), on other tasks, such as emotion detection and

sentiment analysis. The details of the datasets are described in Section 4.3.3. Furthermore,

we form a comparative study of the accuracy performance of previous model using

pre-processing for affective tasks with the current proposed models.

Table 6.9 and Table 6.10 show the results of ACE 1 and ACE 2 on three datasets

for sentiment analysis and another three datasets for emotion detection with different

combinations of embedding-training corpus and affective feature representation methods.

For example, in ACE 1 (Wiki) we train ACE 1 on Wiki followed by fine-tuning without

incorporating affective features, while ACE 1 (Wiki) + (EAISe) means we train ACE

1 on Wiki and also incorporate the affective features of EAISe. For model ACE 2,

156



the comparison is also among different pre-trained embeddings. For instance, ACE 2

(WikiSarc-BERT) + (EAISe) means the token embeddings inputted into SBERT in ACE

2 were from a BERT model pre-trained on our WikiSarc corpus and the affective feature

representation in the AFE component is EAISe.

As shown in Table 6.9 and Table 6.10, overall ACE 1 outperforms ACE 2 for the

task of sentiment analysis, which suggests that incorporating affective features deeply

in the embedding phase is more effective than combining the pre-trained contextual

embeddings with affective feature embeddings later in the classification model. These

findings are consistent with the findings in Tables §6.2 and §6.3 on sarcasm detection

datasets. However, in the case of emotion detection we observe that overall ACE 2

outperforms ACE 1, which suggests that in multi-class classification, incorporating

affective features in training phase and fine-tuning have less effects in the performance.

We also need to mention that our emotion detection datasets are relatively smaller than

the other two tasks datasets.

Moreover, as it’s observed in both Tables 6.9 and 6.10, including affective feature

embeddings works better in both models than not including them. Furthermore, using

WikiSarc as embedding-training corpus in most cases leads to better results than using

Wiki. The best performance of model ACE 1 is achieved by training it on WikiSarc with

affective feature EMoSi for both datasets. We call the resulting BERT model WikiSarcA-

BERT (Sarcastic Affective BERT). It is used as one of the pre-trained embedding models

157



for ACE 2.

Interestingly, as it was observed in sarcasm detasets when the models are trained on

Wiki, there is no obvious winner between EAISe and EMoSi affective feature representa-

tion methods across the sentiment analysis datasets, while for emotion detection datasets

best results achieved training wiki with affective feature of EAISe in two datasets out of

three. In addition, as the training corpus, EMoSi is a clear winner for both models on both

datasets.

Corpus+Affective Feature
Sentiment Analysis Emotion Detection

IMDB Semeval Airline Alm ISEAR SSEC

(Wiki) 93.00 75.60 90.33 63.40 70.00 69.88

(Wiki) + (EAISe) 93.76 78.70 91.69 65.06 71.80 70.08

(Wiki) + (EMoSi) 95.28 77.30 93.80 64.61 70.73 71.14

(WikiSarc) 95.00 78.80 94.87 65.70 70.29 70.16

(WikiSarc) + (EAISe) 96.19 78.17 94.10 67.29 73.80 74.05

(WikiSarc) + (EMoSi) 97.13 80.67 96.25 66.29 72.20 73.15

Table 6.9: F1-scores of model ACE 1 with different settings on other affective tasks. Best

results are in bold and 2nd best are underlined.

158



Corpus+Affective Feature
Sentiment Analysis Emotion Detection

IMDB Semeval Airline Alm ISEAR SSEC

(WikiSarc-BERT) 85.61 73.68 88.70 64.30 70.15 69.27

(WikiSarc-BERT) + (EAISe) 87.20 74.60 91.22 65.49 72.80 70.63

(WikiSarc-BERT) + (EMoSi) 88.10 75.00 90.37 66.07 71.68 72.29

(WikiSarcA-BERT) 89.37 75.86 91.50 67.40 73.40 74.00

(WikiSarcA-BERT) + (EAISe) 91.60 76.00 93.15 68.12 74.06 76.60

(WikiSarcA-BERT) + (EMoSi) 94.30 78.25 95.02 70.31 75.60 75.39

Table 6.10: F1-scores of model ACE 2 with different settings on other affective tasks. Best

results are in bold and 2nd best are underlined.

Table 6.11 demonstrates the results of comparing the proposed models ACE 1 and

ACE 2 against the customized pre-processing model that was proposed in the previous

chapter 5. As can be seen, overall ACE 1 outperforms the ACE 2 and pre-processing

model on all 6 datasets for sentiment analysis and sarcasm detection. While, for emotion

detection dataset ACE 2 performers better than ACE 1 and pre-processing method.

159



Models IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Pre-processing 94.22 75.20 94.88 80.21 80.34 67.41 63.10 72.66 72.80

ACE 2 94.30 78.25 95.02 88.19 90.31 86.50 70.31 75.60 75.39

ACE 1 97.13 80.67 96.25 93.14 92.21 89.22 67.29 73.80 74.05

Table 6.11: F-score Results of comparing ACE 1 and ACE 2 against the customized

pre-processing model.

6.6 Summary

We proposed two novel models (ACE 1 and ACE 2) that incorporate contextual and

affective features in a deep neural network architecture for sarcasm detection. Each model

extends BERT’s architecture by incorporating into it affective features. ACE 1 uses them

to adjust the contextual embeddings and also fine-tune the model, while ACE 2 uses

them along with SBERT for performing the final classification. Our evaluation results

showed that combining the two types of features greatly improves the sarcasm detection

accuracy. In particular, deeply incorporating the affective features in the embedding

training process (as in ACE 1) is more beneficial than simply concatenating the two

types of features (as in ACE 2). We also observed that training embeddings with corpora

containing rich sarcastic or emotional utterances greatly benefits the sarcasm detection

tasks. Our findings suggest that transformer-based models like BERT can be trained to

160



incorporate task-specific features to improve downstream task performance. Our results

demonstrated that the proposed models can improve the performance of other tasks, such

as emotion detection and sentiment analysis. However, in the case of emotion detection,

overall ACE 2 outperforms ACE 1, which suggested that the proposed model ACE 1 with

fine-tuning with BERT are more successful in binary classification such as sentiment

analysis and sarcasm detection than in multi-class classification.

161



7 Affective and Contextual Embedding Model for

Feature Representation Learning in Affect-Aware

Recommendation

7.1 Introduction

Affects greatly influence the human behaviours and choices [68, 162] according to cog-

nitive psychology and are widely recognized as main factors in decision-making [103],

particularly when spontaneous decisions are taken as in news portals or music streams

where users typically interact with items at a fast pace. However, affects are also very

difficult to detect, quantify and measure precisely, which is one of the primary reasons

for a relatively small number of previous work on using affects in recommender systems.

In this chapter, we are filling the gap by presenting the Affect-Aware Recommendation

(AARec) model, a recommendation system capable of incorporating affects into personal-

ized recommendations of news and music items. In particular, the AARec recommender

engine can incorporate the affective information into its algorithm in order to serve more

162



relevant and engaging recommendations for further reading/listening. In other words,

incorporating affective information of news articles and music lyrics into the system

allows the recommendation engine to better estimate the similarity between users/items,

items/items, and to provide more targeted recommendations as a result. However, incor-

poration of implicit affective information from items into the recommendation workflow

is not a trivial task and at least two questions arise, which we investigate in this chapter

as follows: (i) which affect detection approaches are more beneficial to extract affective

information for recommender systems (RS)?, and (ii) how do we incorporate the affective

information into the recommendation algorithm?

Leading up to this chapter, we have introduced and analyzed numerous models for

enhancing affect analysis in text, particularly through the lens of sentiment analysis,

emotion detection and sarcasm detection. Although usable as stand-alone affect detection

systems, various application systems can be further enhanced by these affective models,

such as recommender systems. In this chapter, we first describe the general recommen-

dation algorithms, then we discuss the affective and contextual feature representation in

recommendation models. Further, we present an affect-aware recommendation model

describing the application of our affect detection models in a non-affective framework of

recommendation system to demonstrate the usefulness of the proposed models in tasks

beyond affect detection. Specifically, we leverage affective and contextual embedding

models (described earlier in chapter 6) as well as pre-processing factors (described earlier

163



in chapters 4 and 5) in an affect-aware recommendation to demonstrate the usefulness of

our proposed affective models in recommender systems. Further, we present a comparative

study measuring the performance of EmoRec (proposed model from chapter 3) in which

we used various affect detection models for affective feature extraction against Affect-

Aware Recommendation (AARec). Interestingly our results demonstrate that improved

affect detection models proposed in previous chapters could improve the performance of

recommendation models.

The chapter is structured as follows. In section 7.2, a general discussion on recom-

mendation algorithms is presented. Then, affective and contextual feature representation

is presented in section 7.3 for recommendation models as well as the framework of the

affect-aware recommendation model. Experimental evaluation is described in section 7.4,

and we demonstrate the results in section 7.5. Section 7.6 concludes the chapter with key

insights of the research.

7.2 Recommendation Algorithms

Predicting future behaviours of users using their historical information is the foundation

of many recommendation systems. Past behaviour sequences usually represent the indi-

vidual’s next action, which is both intuitive and reliable [203]. Also, substantial history of

users’ activity (e.g. click and search history) represent users’ rich consumption patterns.

As illustrated in Figure 7.1, user interaction behaviours inherently form a sequence over

164



Figure 7.1: Different Recommendations Based on The Recommendation Model Algorithm.

time that increasingly exposes the long-term historical desires of users and short-term

customers’ motives, which is a typical online shopping behaviour of a user. As it is

observed in Figure 7.1, traditional recommendations (green box) such as Matrix Factoriza-

tion (MF) [171] or collaborative filtering models mostly consider the overall long history

of users when recommending items. While, if only current user behaviour (short-term

interests) sequences are considered, session-based models such as Recurrent Neural Net-

works (RNN) [78] are used to suggest items (blue box). However, with attention-based

recommendations (red box), the attention can be focused on both interaction behaviour

165



by considering user’s long-term preferences as well as current consumption preferences.

For instance, the user behaviour illustrated in Figure 7.1 demonstrates that the user is

a fan of “Cinderella” and “Disney Princess”. Considering the long-term interests of

the user using a traditional recommendation will result in recommending a “Cinderella

Doll” or a “Cinderella Crystal Light”, while consideration of the short-term interests of

colorful or cartoon phone-cases will result in suggesting the “Hello Kitty” phone-case

using session-based recommendations. However, if we would like to consider both users’

long and short term interests using attention-based recommendation, we can suggest a

phone-case with “Disney Princess” characters.

Users’ interests in real life change over time and how to appropriately combine

historical preferences with current consumption preferences is not a trivial task. In

addition, most existing recommendation models ignore the mining and representation

of affective features while suggesting items to the users and instead they use various

affect detection approaches for affect feature extraction, which is a time-consuming task.

Thus, we are presenting an Affect-Aware Recommendation (AARec) model with an

attention-based algorithm that incorporates affective and contextual features of items

using the affective contextual embedding models as well as pre-processing models for

affect detection presented in the previous chapters for news and music recommendations.

166



7.3 Affective and Contextual Feature Representation in Recommen-

dation Models

In recent years, deep neural network–based algorithms have been extensively studied, and

many deep learning models have been proposed. The main advantage of these models

over traditional models is that they do not require lots of manual feature engineering,

which is the most challenging part of designing machine learning systems. In addition,

they improve the ability of the model to leverage the context information. Initially, word

embedding models [116] are proposed as a method to represent the word in a continuous

way to better support neural network structure. Distributed word representations are an

effective and compact way to represent text and are commonly used for various NLP tasks.

The research community has also studied them in the context of many other machine

learning models, such as recommender systems, where they are typically used as features

[97]. Then several new neural network structures, including recurrent neural networks

(RNNs) [78] such as long short-term memory (LSTM) [66], have been introduced to better

represent sequence-based inputs and overcome long-term dependency issues. Recently,

contextual word representations generated from pre-trained bidirectional language models

(e.g. BERT, RoBERTa) have been shown to significantly improve the performance of

state-of-the-art systems [45, 107].

For learning vector-space representations of items for a recommendation system, we

167



first order all the clickstream events (e.g. all the items that are accessed by a user) per

user sorted by its timestamp into a sequence of items. Then, we map the content of each

item (e.g. news articles or lyrics of the songs) into their vector representation using our

proposed models affective and contextual embedding ACE 1 and ACE 2 from chapter 6

as following:

• Each input document is first chunked into sentences.

• Given an input sentence, we first use the pre-trained BERT model that was trained

with ACE 1 to obtain the token embeddings, which are then passed to SBERT from

Model ACE 2. SBERT computes a sentence embedding using the MEAN-strategy

for the pooling operation to compute a sentence embedding.

• We concatenate the embeddings of all the sentences in the document to form a

document representation of each item that was accessed by a user.

7.3.1 Affect-Aware Recommendation Model (AARec)

In order to utilize affective information from our proposed models ACE 1 and ACE 2 in

recommendation algorithms, we first embed sparse user and item interaction information

into vector representation (which was explained in the previous section), which assign each

user or item an affective contextual representation using ACE 1 and ACE 2 model instead

168



of the basic index or one-hot encoding 46. As such, by having the vector representation of

each item that was accessed by a user in a sequence, we can efficiently utilize different

recommendation algorithms to make the prediction. Therefore, let * denote a set of

users and � denote a set of items, in which |* | and |� | are representing the total number

of users, and items respectively. For each user D ∈ *, his/her sequential transactions

(clickstream data) or sessions are denoted as !D =
{
(D1, (

D
2, ..., (

D
)

}
, where ) is the total

number of time steps and (DC ⊆ � (C ∈ [1, )]) demonstrates the item set corresponding to

the transaction of user D at time-step C. In addition, for a fixed time-step C, the item set (DC

indicates user D’s short-term interest at time C, while the set of items which were accessed

before the time-step C demonstrates the user’s long-term interest, which is denoted as

!D
C−1 = (

D
1 ∪ (

D
2 ∪ ... ∪ (

D
C−1. Hence, given users and their sequential transactions in vector

representation as !, we aim to predict the next items that the users will access based on

learned preferences from !.

46One hot encoding is a technique that converts categorical variables to numerical in an interpretable

format to quantify categorical data. In particular, this method produces a vector with a length equal to the

number of categories in the dataset.

169



Figure 7.2: The Architecture of the Sequential Hybrid Attention-Based Model (SHAN)

Proposed in [200]

Inspired by the model proposed in [200], we design an affect-aware recommendation

(AARec) model by adopting this attention-based model. This model is a sequential

hierarchical attention network (SHAN) for next item prediction that employs two attention

networks to mine long and short term preferences of users [200], as is demonstrated

in Figure 7.2. The model considers not only dynamic properties in user’s long and

short term preferences, but also high-level complex interactions between user and item

factors as well as item and item factors. In contrast with SHAN, which obtains the vector

representation of user/items by one-hot encoding, we represent each item accessed by

a user using our affective and contextual feature representation that was explained in

section 7.2. Then the hybrid representation for each user is generated through jointly

170



learning long and short term preferences. Further, to capture the long-term preference

before time step C, the model learns a long-term user representation, that is a weighted

sum over the embeddings of items in the long-term item set !D
C−1, while the weights are

calculated by an attention-based pooling layer driven from the user embedding [200].

Further, the final hybrid user representation combines the long-term user representation

with the embedding of the items in the short-term item set to better integrate the short-term

preference, where the weights are learned by another attention-based pooling layer. The

model simultaneously incorporates the dynamic long and short term user preferences,

since they can have different effects on the next item to be accessed by the user when they

are using different learned weights by attention mechanism [183]. Moreover, since the

user ’s long-term item set typically changes over time, obtaining a static representation of

long-term preference for each user may not completely express the dynamic of long-term

user preference [200]. Therefore, it can be more beneficial to reconstruct the long term

user representation from the up-to-date long term item set. The attention mechanism

[183] computes the importance of each item in the long-term item set for a given user,

then it aggregates the embeddings of these items to form the long term user preference

representation. Further, by assigning weights to long-term representations and embeddings

of items in the short-term item set, we can capture the high-level representation of users

in the long and short term attention-based pooling layer.

171



7.4 Experimental Evaluation

We conduct our experiments considering the findings of overall experiments up to this

chapter. In particular, the best proposed models from the previous chapters will build

up the variations of our current experiments. To have an affective and contextual vector

representation of an item’s content (e.g. News articles and lyrics from the songs) using

ACE 1 and ACE 2, which are accessed by a user, we consider the following modes:

Mode 1: We utilize the embeddings generated from model ACE 1 WikiSarc-BERT

without incorporating any affective features during training. Then, we obtain a document

embedding of each item using the ACE 2 model by using the pre-trained WikiSarc-BERT

model to obtain the token embeddings, which are then passed to SBERT. SBERT computes

a sentence embedding, and by concatenating the embeddings of all the sentences in the

document, we will get the document representation of each item.

Mode 2: Similar to Mode 1, a document representation will be obtained from ACE 2 as

it was described in the previous Mode, except this time we use pre-trained embeddings

WikiSarcA-BERT by training ACE 1 and incorporating affective feature of EMoSi deeply

in the embedding phase.

Mode 3: We obtain a document representation from model ACE 2 using pre-trained

embeddings WikiSarcA-BERT (incorporating affective feature of EMoSi) from ACE 1

similar to Mode 2, but then we concatenate the document embeddings with its affective

172



feature embedding from AFE incorporating (e.g. the first component of model ACE 2)

using the affective feature of EMoSi.

Mode 4: In this mode, we consider the customized pre-processing factors (c-pre),

which was proposed in training word embeddings for BERT model in Chapter 5 to train

the model ACE 1 (WikiSarcA-BERT) incorporating affective feature of EMoSi. Further,

a document representation will be obtained from ACE 2 with the concatenation of the

affective feature EMoSi.

7.4.1 Datasets

Our experiments are conducted on real-world datasets from two domains: news and music

which are explained in detail in Section 3.4.1.

7.4.2 State-of-the-art Recommendation Algorithms

We devise state-of-the-art recommendation models to investigate whether, how and to

what extent affective and contextual feature embeddings generated from ACE 1 and ACE 2

can improve recommendations and compare their results with AARec. A brief description

of these three models is as follows:

• GRU4Rec: This is a session-based recommendation proposed in [78] based on

Gated Recurrent Unit (GRU) with Recurrent Neural Networks (RNN). The model

uses RNN to capture sequential dependencies to make predictions.

173



• Caser: Convolutional Sequence Embedding Recommendation (Caser) model that

is a sequential recommendation method based on a Convolutional Neural Network

(CNN) to learn users’ sequential patterns for sequential recommendation [173].

This model incorporates the convolutional neural network with a latent factor model

focusing on long term user preferences.

• RCNN: A recurrent convolutional neural network model proposed in [192], which

not only utilizes the recurrent architecture of RNN to capture the long-term de-

pendencies, but also leverages the convolutional function of Convolutional Neural

Network (CNN) model to extract the short-term sequential patterns among recurrent

hidden states.

7.5 Discussion and Analysis

7.5.1 Evaluating the Effects of Proposed Affect Detection Methods in Recommen-

dation Algorithms

The performance of the various modes in recommendation algorithms, summarized in

Table 7.1 and Table 7.2, is reported in terms of F-score on two datasets. In this section,

we investigate whether the application of proposed affect detection models on 4 different

recommendation algorithms may result in better performance by considering different

combinations of embedding-training corpus and affective and contextual feature represen-

174



tation methods along with pre-processing factors on News and Music recommendations.

We also evaluate the performance of the models with and without considering affective

features. For example, in Mode 1, we do not consider any affective features either during

training ACE 1 to generate the embeddings or getting the document representation using

ACE 2. Results of 4 variations of the methods in 4 modes are shown in Table 7.1 and

Table 7.2 for two recommendation datasets as Music and News.

As shown in Table 7.1 and Table 7.2, overall Attention-Based model (AARec) outper-

forms the other three models over 4 modes for both Music and News recommendations,

which suggests that considering both long and short term interests of users utilizing atten-

tion mechanism yields better results than only considering either of them. In addition, our

findings are consistent with what was also mentioned in [200] that since user preference

is dynamic at different time steps, different items have different effects on the next item

that will be accessed by users. Also, for different users, same items may have different

influences on the next item prediction, and hence a hierarchical attention network could

be beneficial to improve the performance. We called the resulting attention-based model

in Mode 4 as Affective-Aware Recommendation (AARec) Model.

175



Models Mode 1 Mode 2 Mode 3 Mode 4

GRU4Rec 70.23 72.08 76.04 80.30

Caser 70.18 71.81 75.33 79.25

RCNN 73.49 74.20 73.68 81.29

AARec 78.49 79.74 80.20 83.62

Table 7.1: Comparison of The performance of Different Recommendation Models Using

Different Modes on Music Dataset (F-score)

Models Mode 1 Mode 2 Mode 3 Mode 4

GRU4Rec 73.68 74.02 76.60 80.46

Caser 72.29 73.07 75.00 76.59

RCNN 76.15 78.37 79.60 83.70

AARec 80.19 81.47 84.20 86.09

Table 7.2: Comparison of The performance of Different Recommendation Models Using

Different Modes on News Dataset (F-score)

Interestingly, as it’s demonstrated in Tables 7.1 and 7.2, considering affective features

either by incorporating affective features deeply in the embedding phase (Mode 2) or com-

bining the affective pre-trained contextual embeddings (WikiSarcA-BERT) with affective

176



feature embeddings later (Mode 3 and Mode 4) is more beneficial than not considering any

affective features (Mode 1). Moreover, our analysis also reveals that applying customized

pre-processing for training ACE 1 (Mode 4) improves all recommendation methods’

predictive performance.

7.5.2 Evaluating the Performance of AARec Against EMoRec

In this section, we compare the performance of using various affective feature extraction

methods in a recommendation model EMoRec that was proposed in Chapter 3 against the

proposed affective contextual feature extraction in a recommendation model AARec on

both Music and News datasets. Also, we investigate whether the use of affective features

in both models will boost the performance of recommendation.

As illustrated in Table 7.3, AAREC significantly outperforms EMOREC on both

datasets, which suggests that not only using proposed affect detection models yields

better results than using various affective feature extraction methods, but also considering

affective features in both models is more beneficial than not including them, emphasizing

the importance of improved affect detection models in general for recommendation tasks.

.

177



Dataset Model Non-Affect Affective

Music
EMOREC 73.68 76.06

AAREC 78.49 83.62

News
EMOREC 78.20 80.30

AAREC 80.19 86.09

Table 7.3: F-score Comparison of EMOREC Performance Against AAREC on News and

Music Dataset

7.6 Summary

This chapter demonstrates the usefulness of affective information in the form of affective

and contextual representation utilizing our proposed affect detection models on four dif-

ferent recommendation algorithms. The proposed application of affective and contextual

embedding along with pre-processing factors outperforms several baselines demonstrating

that the proposed affect detection approaches can be effectively applied to solve problems

beyond affect detection such as in recommendations. Our analysis revealed that including

affective features in recommendations improved the predictive performance for all the

recommendation methods in general, while the best performance was achieved by using

attention-based model in Mode 4 (AARec). Moreover, comparing the results of the

178



AARec model against EMoRec indicated the importance of improved affect detection

models over various affect feature extraction techniques that was proposed in chapter 3

for model EMoRec.

179



8 Conclusions and Future Directions

The analysis of affect, feelings, emotions, sentiments, and opinions in text data such

as reviews, news articles, tweets, including sentiment analysis, emotion detection and

sarcasm detection, is considered affect detection. There has been a growing interest in

developing the computational methods for affect detection from text in recent years. Al-

though affective analysis is quite challenging for all the tasks, there are great opportunities

from the natural language processing point of view to address these problems. In addition,

recommendation systems have become pervasive over the last decade, providing users

with personalized search results, music suggestions, news articles to read, and shopping

hints. On the other hand, human affects are widely regarded as important predictors of

behaviour and preference, which are crucial factors in decision making based on cognitive

psychology[103]. Despite the impressive achievements in affect detection approaches

and recommendation models solely in many domains, there is a significant gap between

considering different affect information in recommendation systems and affective analy-

sis techniques. Throughout this dissertation, we enriched word representation learning

180



centred around two particular modules - affect detection and recommendation systems. In

a nutshell, we took the first steps towards bridging the gap between needs in personalized

recommendation systems and capacities of affective analysis approaches to address these

demands through four tasks. In particular, we attempted to indicate that improving the

affect detection approaches can improve the recommendation process.

8.1 Summary of Approaches and Contributions

In this dissertation, we framed the main challenges of affect detection in natural language

processing into feasible problems in recommendation systems. First, we argued that

affective information plays a crucial role in decision making and predictive models of

recommendation systems. As such, it is of paramount importance to understand the

potential of different affective factors in the user/item context, which makes the prediction

more accurate. Given this fact, we designed a framework to evaluate the importance of

various emotion-based features in recommendation models. The summary of contributions

are as follows:

• We extracted the most relevant emotion-based features associated with both items

and users using various affect detection approaches for use in recommendation

models in the Music and News domains.

• We devised a number of state-of-the-art models for generating recommendations to

181



incorporate the additional affect features and proposed an ensemble model EMoRec

by combining three models (Boost Blend + Deep MF + DNN Ensemble), which

significantly outperformed other state-of-the-art recommendation methods.

Moreover, inspired by the latest advances in enriching word representation learning

approaches for affective tasks, we considered studying the role of applying various pre-

processing factors applied to word representation learning in different stages for affect

detection. The key contributions are:

• We conducted a comprehensive analysis of the role of various pre-processing tech-

niques in affective tasks (including sentiment analysis, emotion classification and

sarcasm detection), employing different word embedding models, which indicated

that negation handling and part-of-speech tagging to be more beneficial factors in

affective analysis tasks.

• We performed a comparative analysis of the accuracy performance of word vector

models when pre-processing is applied to large training corpora before learning

word embeddings at the training phase (training data) and/or later at the downstream

task phase (classification dataset). Interestingly, we obtained the best results when

pre-processing factors are applied only to the training corpus or when it is applied

to both the training corpus and the classification dataset of interest.

Motivated by the observation that various pre-processing factors applied to word

182



embeddings can significantly improve the performance of different affective tasks, we

investigated whether customized combinations of pre-processing factors at different

stages of word representation learning in affective tasks can improve the performance.

The contributions are summarized as follows:

• We proposed different combinations of pre-processing factors that are most suitable

for each affective task, employing seven embedding models which demonstrated

appropriate combination of pre-processing techniques on the embedding-training

corpora and on classification datasets better improved the performance rather than

the general combination of pre-processing techniques.

• We conducted experiments to study the role of each combination of pre-processing

factors for a specific affective task and indicated that applying different sets of pre-

processing factors which are more suitable for each downstream task has significant

effects on the performance when it is applied to both the embedding-training corpus

and the classification dataset of interest.

In line with our research goals, we designed two novel deep neural network language

models for affect detection while each model extends the architecture of BERT, which to

the best of our knowledge, was the first attempt to directly extend BERT’s architecture

(rather than using the already pre-trained BERT embeddings). The proposed models

effectively incorporated both affective and contextual features of text to build a classifier.

183



The summary of contributions is as follows:

• We proposed two novel deep neural network language models (ACE 1 and ACE

2) by incorporating affective and contextual features for affect detection, which

demonstrated that they significantly outperform current state-of-the-art models.

The proposed models learned the affective representation of a document, using a

Bi-LSTM architecture with the multi-head attention mechanism.

• We presented the effects of the proposed affective and contextual model on three af-

fective tasks, including sarcasm detection, emotion detection and sentiment analysis.

The results indicated that binary classifications (e.g. sarcasm detection and senti-

ment analysis) could benefit more from the models than multi-class classification

(e.g. emotion detection).

Finally, we evaluated the usefulness of our proposed affect detection approaches in

recommendation systems, which indicated that improved affective detection techniques

are far more beneficial than using various affective feature extraction techniques in

recommendation models. The summary of the key contributions is as follows:

• We applied the proposed customized pre-processing factors to the word represen-

tation learning stage of ACE 1, and then the generated embeddings from ACE 1

was used in ACE 2 for the affective feature extraction in different recommendation

184



algorithms. Our analysis revealed that adding affective features from ACE 1 and

ACE 2 improved the predictive performance for all the recommendation methods.

• We designed an Affect-Aware Recommendation (AARec) model by extending

the state-of-the-art attention-based recommendation algorithm by considering the

affective and contextual embedding representation in the recommendation process.

The results demonstrated that affective and contextual feature embeddings produced

by ACE 1 and ACE 2 along with pre-processing techniques can significantly

improve the prediction task in comparison to affective feature extraction proposed

in EMoRec.

Last but not least, the outcomes of this study have been published in the top tier

conference proceedings in the field of natural language processing, such as the proceed-

ings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL

2020) [12], proceedings of the 28th International Conference on Computational Linguis-

tics (COLING 2020) [14] as well as proceedings of the 7th International Workshop on

News Recommendation and Analytics (INRA 2019) in conjunction with the 13th ACM

Conference on Recommender Systems (RecSys 2019) [13] .

185



8.2 Future Directions

As this work is among the early stages towards considering implicit affect information

in recommendations by improving the affect detection techniques, there are a lot of

interesting directions for future work.

8.2.1 Recommendation with Affective Information Through Other Cues

Employing affective context in recommendations appears to be a promising direction

of research. While the scope of our current study was limited to affects extracted either

using various affect detection approaches (Chapter 3) or improving the affect detection

by enriching word representation learning (Chapter 7) from textual information, there is

evidence that different affects can be extracted through other means of communication,

such as audio and video, or other cues [165]. Hence, an interesting direction of affect-

aware recommendations can be to explore in-session recommendations using affects

information in other cues. It is becoming evident from our data analysis that a user’s

mood can fluctuate over time (e.g. Figure 3.1). However, while these fluctuations can be

significant over time, they are probably more stable within a limited time, such as a single

session (i.e., a session of continuously listening to songs, or a session of continuously

navigating and reading articles). Therefore, it seems reasonable to design affect-aware

recommendation algorithms that weight more (i.e., promote) items that match the affective

186



context of a user’s current session and weight less or filter out (i.e., demote) items that

conflict with it from cues other than text such as audio or video.

8.2.2 Negation Scope and Negation Handling

In Chapters 4 and 5, we described the importance of different pre-processing factors for

word representation learning in affective tasks while indicating negation handling (neg)

as the most effective pre-processing in affective tasks. However, negation identification

and detecting its scope within a sentence in biomedical abstracts or clinical notes can be

beneficial for other domains such as health and medical systems. There is a wealth of

clinical information in digital health records that can theoretically be used for a number of

clinical tasks 47. This information includes the absence or existence of medical conditions.

For example, the sentence “ Patient had not eaten for the past three days, felt nausea, and

then collapsed” contains three medically relevant “event” that might be used as an input

to a clinical decision support system such as eating behaviour, feeling nausea and loss of

consciousness, while only one of them (e.g. normal eating behaviour) is negated. Hence,

it is crucial to distinguish between the two since the negated events and the non-negated

events often have very different prognostic value. Moreover, the majority of state-of-the-

art negation scope detection systems rely on the availability of the cue information such as

no, not, and should not, which limits the applicability of the model to non-cue annotated

47http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

187



data. Therefore, designing a model to detect negation scope by utilizing the syntactic

structure of a sentence (e.g. parse trees) [27, 164], which is not directly dependent on the

negation cues, can be an interesting future work.

8.2.3 Multilingual Model

The proposed models in this dissertation were evaluated only on English datasets. How-

ever, most of the available models, such as BERT and ELMo are language-agnostic

and designed for other languages and domains. For example, the affective and contex-

tual model (ACE 1 from Chapter 6) could be generated from source corpus originating

in another language. With recent easy availability of numerous multilingual datasets

[60, 72, 114], as future work, it would be interesting to experiment with data from

languages other than English.

8.2.4 Learning of Affective Representations Through Graphs

Several ways of further enhancing the word representation learning, specifically word

embeddings in affective tasks, were proposed in this dissertation (Chapter 4 and 5). The

proposed models mostly focused on learning affective and contextual representations at the

word or document level (Chapter 6 and Chapter 7). However, affect in text can be conveyed

at the phrase level too (e.g. little sadness, amazingly beautiful). Furthermore, with the

surge of approaches that seek to learn representations that encode structural information

188



in graphs [182], some interesting lines of future work could include considering these

alternate models for learning affective representations through the graph structure. One

interesting future work can be incorporating affective, semantic and syntactic information

in word representation learning at the phrase level using graph neural networks.

8.2.5 Integrating the Proposed Models into One System

We argued that relevant affective information does matter in recommendation systems

and that it is important to take this contextual information into account when providing

recommendations (Chapter 3 and 7). We also explained that the affective information

can be extracted in different ways, such as various techniques that were explained in

Chapter 3 for a recommendation process. We have also shown various affective detection

approaches, including pre-processing/customized pre-processing techniques and affective-

contextual models (ACE 1 and ACE 2) to detect different types of affects in text. An

interesting future work could be building a model that combines these proposed models

into a single recommendation system, which can be more cost and time efficient than the

current AARec model presented in Chapter 7 that has to exploit each proposed models’

results solely and then combine them later.

189



Bibliography

[1] B. Agarwal, N. Mittal, P. Bansal, and S. Garg. Sentiment analysis using common-

sense and context information. Computational Intelligence and Neuroscience,

2015.

[2] A. Agrawal and A. An. Unsupervised Emotion Detection from Text Using Semantic

and Syntactic Relations. In 2012 IEEE/WIC/ACM International Conferences on

Web Intelligence and Intelligent Agent Technology, volume 1, pages 346–353, Dec.

2012.

[3] A. Agrawal and A. An. Affective Representations for Sarcasm Detection. In

The 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval, pages 1029–1032, Ann Arbor MI USA, June 2018. ACM.

[4] A. Agrawal, A. An, and M. Papagelis. Learning emotion-enriched word represen-

tations. In Proceedings of the 27th International Conference on Computational

190



Linguistics, pages 950–961, Santa Fe, New Mexico, USA, Aug. 2018. Association

for Computational Linguistics.

[5] A. Agrawal, A. An, and M. Papagelis. Leveraging transitions of emotions for

sarcasm detection. In Proceedings of the 43rd International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 1505–1508, 2020.

[6] D. Al-Ghadhban, E. Alnkhilan, L. Tatwany, and M. Al-Razgan. Arabic sarcasm

detection in twitter. 2017 International Conference on Engineering and MIS

(ICEMIS), pages 1–7, 2017.

[7] M. Al Masum Shaikh, H. Prendinger, and M. Ishizuka. Emotion sensitive news

agent (esna): A system for user centric emotion sensing from the news. Web

Intelligence and Agent Systems, 8(4):377–396, 2010.

[8] C. O. Alm, D. Roth, and R. Sproat. Emotions from text: Machine learning for

text-based emotion prediction. In Proceedings of Human Language Technology

Conference and Conference on Empirical Methods in Natural Language Processing,

pages 579–586, Vancouver, British Columbia, Canada, Oct. 2005. Association for

Computational Linguistics.

[9] S. Aman and S. Szpakowicz. Identifying expressions of emotion in text. In Text,

speech and dialogue, pages 196–205. Springer, 2007.

191



[10] S. Amir, B. C. Wallace, H. Lyu, P. Carvalho, and M. J. Silva. Modelling context

with user embeddings for sarcasm detection in social media. In Proceedings of The

20th SIGNLL Conference on Computational Natural Language Learning, pages

167–177, Berlin, Germany, Aug. 2016. Association for Computational Linguistics.

[11] G. Angiani, L. Ferrari, T. Fontanini, P. Fornacciari, E. Iotti, F. Magliani, and

S. Manicardi. A comparison between preprocessing techniques for sentiment

analysis in twitter. In Proceedings of the 2nd International Workshop on Knowledge

Discovery on the WEB, KDWeb, 2016.

[12] N. Babanejad, A. Agrawal, A. An, and M. Papagelis. A comprehensive analysis of

preprocessing for word representation learning in affective tasks. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

5799–5810, Online, July 2020. Association for Computational Linguistics.

[13] N. Babanejad, A. Agrawal, H. Davoudi, A. An, and M. Papagelis. Leveraging

emotion features in news recommendations. In Proceedings of the 7’th International

Workshop on News Recommendation and Analytics (INRA’19) in conjunction with

RecSys’19, Copenhagen, Denmark, September 16 - 20, 2019., 2019.

[14] N. Babanejad, H. Davoudi, A. An, and M. Papagelis. Affective and contextual

embedding for sarcasm detection. In Proceedings of the 28th International Con-

192



ference on Computational Linguistics, pages 225–243, Barcelona, Spain (Online),

Dec. 2020. International Committee on Computational Linguistics.

[15] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced lexical

resource for sentiment analysis and opinion mining. In Lrec, volume 10, pages

2200–2204, 2010.

[16] R. Bagozzi, M. Gopinath, and P. Nyer. The role of emotions in marketing. Journal

of the Academy of Marketing Science, 27:184–206, 04 1999.

[17] B. Bai and Y. Fan. Incorporating Field-aware Deep Embedding Networks and

Gradient Boosting Decision Trees for Music Recommendation. In The 11th ACM

International Conference on Web Search and Data Mining(WSDM), page 7, Lon-

don, England, 2017. ACM.

[18] F. Benamara, B. Chardon, Y. Mathieu, V. Popescu, and N. Asher. How do nega-

tion and modality impact on opinions? In Proceedings of the Workshop on

Extra-Propositional Aspects of Meaning in Computational Linguistics, ExProM

’12, pages 10–18, Stroudsburg, PA, USA, 2012. Association for Computational

Linguistics.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022, Mar. 2003.

193



[20] E. Boiy, P. Hens, K. Deschacht, and M.-F. Moens. Automatic sentiment analysis in

on-line text. In Proceedings of the 11th International Conference on Electronic

Publishing ELPUB2007, 2007.

[21] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors

with subword information. Transactions of the Association for Computational

Linguistics, 5:135–146, Dec 2017.

[22] M. Bouazizi and T. O. Ohtsuki. A Pattern-Based Approach for Sarcasm Detection

on Twitter. IEEE Access, 4:5477–5488, 2016.

[23] S. Brave and C. Nass. Emotion in human–computer interaction. The Human-

Computer Interaction Handbook: Fundamentals, Evolving Technologies and

Emerging Applications, 01 2002.

[24] J. Brooke. A semantic approach to automated text sentiment analysis. Master’s

thesis, SIMON FRASER UNIVERSITY, British Columbia, BC, Canada, 2009.

[25] C. Burgers, M. v. Mulken, and P. J. Schellens. Verbal Irony: Differences in Usage

Across Written Genres. Journal of Language and Social Psychology, 31(3):290–

310, 2012. _eprint: https://doi.org/10.1177/0261927X12446596.

[26] J. Camacho-Collados and M. T. Pilehvar. On the role of text preprocessing in neural

network architectures: An evaluation study on text categorization and sentiment

194



analysis. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyz-

ing and Interpreting Neural Networks for NLP. Association for Computational

Linguistics, 2018.

[27] J. Carrillo-de Albornoz and L. Plaza. An emotion-based model of negation, intensi-

fiers, and modality for polarity and intensity classification. Journal of the American

Society for Information Science and Technology, 64:1618–1633, 08 2013.

[28] P. Carvalho, L. Sarmento, M. J. Silva, and E. de Oliveira. Clues for detecting irony

in user-generated contents: Oh...!! it’s “so easy”FIX ME!!!!;-). In Proceedings

of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass

Opinion, TSA ’09, page 53–56, New York, NY, USA, 2009. Association for

Computing Machinery.

[29] P. Carvalho, L. Sarmento, J. Teixeira, and M. J. Silva. Liars and saviors in a

sentiment annotated corpus of comments to political debates. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, pages 564–568, Portland, Oregon, USA, June

2011. Association for Computational Linguistics.

[30] S. Castro, D. Hazarika, V. Pérez-Rosas, R. Zimmermann, R. Mihalcea, and S. Poria.

Towards multimodal sarcasm detection (an-obviously-perfect paper). Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

195



[31] E. Cecilia and A. Ovesdotter. Affect in text and speech. ProQuest, Citeseer, 2008.

[32] S. Channon, A. Pellijeff, and A. Rule. Social cognition after head injury: Sarcasm

and theory of mind. Brain and Language, 93(2):123–134, May 2005.

[33] C.-M. Chen, M.-F. Tsai, J.-Y. Liu, and Y.-H. Yang. Using emotional context from

article for contextual music recommendation. In Proceedings of the 21st ACM

International Conference on Multimedia, MM ’13, page 649–652, New York, NY,

USA, 2013. Association for Computing Machinery.

[34] L. Chen, G. Chen, and F. Wang. Recommender systems based on user reviews:

The state of the art. User Modeling and User-Adapted Interaction, 25(2):99–154,

June 2015.

[35] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016.

ACM. event-place: San Francisco, California, USA.

[36] X. V. Chen and T. Y. Tang. Combining content and sentiment analysis on lyrics for

a lightweight emotion-aware chinese song recommendation system. In Proceedings

of the 2018 10th International Conference on Machine Learning and Computing,

pages 85–89. ACM, 2018.

196



[37] B. Chiu, G. Crichton, A. Korhonen, and S. Pyysalo. How to train good word

embeddings for biomedical nlp. In Proceedings of the 15th workshop on biomedical

natural language processing, pages 166–174, 2016.

[38] J. Coates and D. Bollegala. Frustratingly easy meta-embedding – computing

meta-embeddings by averaging source word embeddings. Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018.

[39] T. Danisman and A. Alpkocak. Feeler: Emotion classification of text using vector

space model. In Proceedings of the AISB 2008 Symposium on Affective Language

in Human and Machine, AISB 2008 Convention Communication, Interaction and

Social Intelligence, volume 1, page 53, 2008.

[40] D. Davidov, O. Tsur, and A. Rappoport. Semi-supervised recognition of sarcasm

in twitter and Amazon. In Proceedings of the Fourteenth Conference on Computa-

tional Natural Language Learning, pages 107–116, Uppsala, Sweden, July 2010.

Association for Computational Linguistics.

[41] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech

detection and the problem of offensive language. In Proceedings of the 11th

International AAAI Conference on Web and Social Media, ICWSM ’17, pages

512–515, 2017.

197



[42] H. Davoudi, A. An, M. Zihayat, and G. Edall. Adaptive paywall mechanism

for digital news media. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery &#38; Data Mining, KDD ’18, pages 205–

214, New York, NY, USA, 2018. ACM.

[43] H. Davoudi, M. Zihayat, and A. An. Time-Aware Subscription Prediction Model

for User Acquisition in Digital News Media. In Proceedings of the 2017 SIAM

International Conference on Data Mining, Proceedings, pages 135–143. Society

for Industrial and Applied Mathematics, June 2017.

[44] L. De Bruyne, O. De Clercq, and V. Hoste. LT3 at SemEval-2018 task 1: A classifier

chain to detect emotions in tweets. In Proceedings of The 12th International

Workshop on Semantic Evaluation, pages 123–127, New Orleans, Louisiana, June

2018. Association for Computational Linguistics.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[46] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidipati.

Hate speech detection with comment embeddings. In Proceedings of the 24th

International Conference on World Wide Web, WWW ’15 Companion, page 29–30,

New York, NY, USA, 2015. Association for Computing Machinery.

198



[47] A. V. Dorogush, V. Ershov, and A. Gulin. CatBoost: gradient boosting with

categorical features support. Mathematics, Computer Science, Oct. 2018.

[48] J. Druckman and R. McDermott. Emotion and the framing of risky choice. Political

Behavior, 30(3):297–321, Sept. 2008.

[49] C. Du, H. Sun, J. Wang, Q. Qi, and J. Liao. Adversarial and domain-aware BERT

for cross-domain sentiment analysis. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 4019–4028, Online, July

2020. Association for Computational Linguistics.

[50] P. Ekman. Expression and the nature of emotion. Approaches to emotion, 3:19–344,

1984.

[51] P. Ekman. An Argument For Basic Emotions. Cognition & Emotion, 6:169–200,

May 1992.

[52] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith. Retrofitting

word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166, 2014.

[53] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. Using millions

of emoji occurrences to learn any-domain representations for detecting sentiment,

emotion and sarcasm. In Proceedings of the 2017 International Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2017.

199



[54] J. Feng, Y. Yu, and Z.-H. Zhou. Multi-Layered Gradient Boosting Decision Trees.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages

3551–3561. Curran Associates, Inc., 2018.

[55] G. Forman. An extensive empirical study of feature selection metrics for text

classification [j]. Journal of Machine Learning Research - JMLR, 3, 03 2003.

[56] E. Forslid and N. Wikén. Automatic irony-and sarcasm detection in Social media.

PhD thesis, UPPSALA UNIVERSITET, 2015.

[57] B. Fortuna, C. Fortuna, and D. Mladenić. Real-time news recommender system.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 583–586. Springer, 2010.

[58] D. Ghazi, D. Inkpen, and S. Szpakowicz. Prior and contextual emotion of words in

sentential context. Computer Speech & Language, 28(1):76–92, Jan. 2014.

[59] D. Ghosh, A. Richard Fabbri, and S. Muresan. The Role of Conversation Con-

text for Sarcasm Detection in Online Interactions. In Proceedings of the 18th

Annual SIGdial Meeting on Discourse and Dialogue, pages 186–196, Saarbrücken,

Germany, 2017. Association for Computational Linguistics.

[60] M. Giatsoglou, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and

200



K. C. Chatzisavvas. Sentiment analysis leveraging emotions and word embeddings.

Expert Systems with Applications, 69:214 – 224, 2017.

[61] C. Goddard. Interjections and emotion (with special reference to ”surprise” and

”disgust”). Emotion Review, 6:53 – 63, 2014.

[62] G. Gonzalez, J. L. de la Rosa, M. Montaner, and S. Delfin. Embedding emotional

context in recommender systems. In Proceedings of the 2007 IEEE 23rd Interna-

tional Conference on Data Engineering Workshop, ICDEW ’07, pages 845–852,

Washington, DC, USA, 2007. IEEE Computer Society.

[63] R. González-Ibáñez, S. Muresan, and N. Wacholder. Identifying sarcasm in twitter:

A closer look. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies, pages 581–586,

Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[64] D. Gossi and M. H. Gunes. Lyric-based music recommendation. In Complex

Networks VII, pages 301–310. Springer, 2016.

[65] V. Gratian and M. Haid. Braint at iest 2018: Fine-tuning multiclass perceptron for

implicit emotion classification. In Proceedings of the 9th Workshop on Compu-

tational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages

243–247, 2018.

201



[66] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures. NEURAL NETWORKS, pages

5–6, 2005.

[67] X. Guo and J. Li. A novel twitter sentiment analysis model with baseline correlation

for financial market prediction with improved efficiency. In 2019 Sixth International

Conference on Social Networks Analysis, Management and Security (SNAMS),

pages 472–477, 2019.

[68] L. A. Gutnik, A. F. Hakimzada, N. A. Yoskowitz, and V. L. Patel. The role

of emotion in decision-making: A cognitive neuroeconomic approach towards

understanding sexual risk behavior. Journal of Biomedical Informatics, 39(6):720 –

736, 2006.

[69] E. Haddi, X. Liu, and Y. Shi. The role of text pre-processing in sentiment analysis.

Procedia Computer Science, 17:26–32, 12 2013.

[70] B. Han, S. Rho, S. Jun, and E. Hwang. Music emotion classification and context-

based music recommendation. Multimedia Tools and Applications, 47(3):433–460,

May 2010.

[71] B.-J. Han, S. Rho, S. Jun, and E. Hwang. Music emotion classification and context-

based music recommendation. Multimedia Tools and Applications, 47(3):433–460,

2010.

202



[72] K. Hashimoto, R. Buschiazzo, J. Bradbury, T. Marshall, R. Socher, and C. Xiong.

A high-quality multilingual dataset for structured documentation translation. In

Proceedings of the Fourth Conference on Machine Translation (Volume 1: Research

Papers), pages 116–127, Florence, Italy, Aug. 2019. Association for Computational

Linguistics.

[73] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task model:

Growing a neural network for multiple NLP tasks. In Proceedings of the 2017 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

1923–1933, Copenhagen, Denmark, Sept. 2017. Association for Computational

Linguistics.

[74] D. Hazarika, S. Poria, S. Gorantla, E. Cambria, R. Zimmermann, and R. Mi-

halcea. CASCADE: Contextual sarcasm detection in online discussion forums.

In Proceedings of the 27th International Conference on Computational Linguis-

tics, pages 1837–1848, Santa Fe, New Mexico, USA, Aug. 2018. Association for

Computational Linguistics.

[75] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural Collaborative

Filtering. In Proceedings of the 26th International Conference on World Wide Web

- WWW ’17, pages 173–182, Perth, Australia, 2017. ACM Press.

[76] D. I. Hernández Farías, M. Montes-y Gómez, H. J. Escalante, P. Rosso, and

203



V. Patti. A knowledge-based weighted KNN for detecting Irony in Twitter. In

Proceedings17th Mexican International Conference on Artificial Intelligence, MI-

CAI 2018, volume 11289, pages 194–206. Springer Verlag, 2018. Accepted:

2019-04-14T18:17:25Z.

[77] D. Hershcovich, A. Toledo, A. Halfon, and N. Slonim. Syntactic interchangeability

in word embedding models. arXiv preprint arXiv:1904.00669, 2019.

[78] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recom-

mendations with recurrent neural networks. In Proceedings of the International

Conference on Learning Representations., volume abs/1511.06939, 2016.

[79] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

[80] Y. Hu. A Model-Based Music Recommendation System for Individual Users and

Implicit User Groups. PhD thesis, University of Miami, 2014.

[81] Y. Hu, X. Chen, and D. Yang. Lyric-based song emotion detection with affective

lexicon and fuzzy clustering method. In Proceedings of ISMIR 2009, pages 123–

128, 2009.

[82] Y. Hu, D. Li, and O. Mitsunori. EVALUATION ON FEATURE IMPORTANCE

204



FOR FAVORITE SONG DETECTION. In 14th International Society for Music

Information Retrieval Conference(ISMIR), page 6, Brazil, 2013. (ISMIR).

[83] L. Huang, F. Gino, and A. D. Galinsky. The highest form of intelligence: Sarcasm

increases creativity for both expressers and recipients. Organizational Behavior

and Human Decision Processes, 131(C):162–177, 2015.

[84] S. Ilić, E. Marrese-Taylor, J. Balazs, and Y. Matsuo. Deep contextualized word

representations for detecting sarcasm and irony. In Proceedings of the 9th Work-

shop on Computational Approaches to Subjectivity, Sentiment and Social Media

Analysis, pages 2–7, Brussels, Belgium, Oct. 2018. Association for Computational

Linguistics.

[85] Z. Jianqiang and G. Xiaolin. Comparison research on text pre-processing methods

on twitter sentiment analysis. IEEE Access, 5:2870–2879, 2017.

[86] A. Joshi, V. Sharma, and P. Bhattacharyya. Harnessing context incongruity for

sarcasm detection. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), pages 757–762, Beijing, China,

July 2015. Association for Computational Linguistics.

[87] A. Joshi, V. Tripathi, P. Bhattacharyya, and M. J. Carman. Harnessing sequence

labeling for sarcasm detection in dialogue from TV series ‘Friends’. In Proceedings

205



of The 20th SIGNLL Conference on Computational Natural Language Learning,

pages 146–155, Berlin, Germany, Aug. 2016. Association for Computational

Linguistics.

[88] V. Jovanović. The form, position and meaning of interjections in english. Facta

Universitatis: Series Linguistics and Litearture, 06 2004.

[89] M. Karimi, D. Jannach, and M. Jugovac. News recommender systems – Survey

and roads ahead. Information Processing & Management, 54(6):1203–1227, Nov.

2018.

[90] A. Khade, A. Prof, and D. M. Modeling customer behavior for efficient recommen-

dation systems. SSRN Electronic Journal, 7, 01 2020.

[91] G. Khanvilkar and D. Vora. Sentiment analysis for product recommendation

using random forest. International Journal of Engineering and Technology(UAE),

7:87–89, 06 2018.

[92] D. Khattar, V. Kumar, M. Gupta, and V. Varma. Neural Content-Collaborative

Filtering for News Recommendation. In NewsIR’18 Workshop, page 6, Grenoble,

France, Mar. 2018.

[93] M. Khodak, N. Saunshi, and K. Vodrahalli. A large self-annotated corpus for

sarcasm. arXiv preprint arXiv:1704.05579, 2017.

206



[94] D. Kiela, C. Wang, and K. Cho. Dynamic meta-embeddings for improved sentence

representations. Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, 2018.

[95] Y. Kim, H. Lee, and K. Jung. AttnConvnet at SemEval-2018 task 1: Attention-

based convolutional neural networks for multi-label emotion classification. In

Proceedings of The 12th International Workshop on Semantic Evaluation, pages

141–145, New Orleans, Louisiana, June 2018. Association for Computational

Linguistics.

[96] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[97] B. Krishnamurthy, N. Puri, and R. Goel. Learning vector-space representations of

items for recommendations using word embedding models. Procedia Computer

Science, 80:2205 – 2210, 2016. International Conference on Computational Science

2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.

[98] M. Kuhn and K. Johnson. Feature Engineering and Selection: A Practical Ap-

proach for Predictive Models. Chapman & Hall/CRC Data Science Series. CRC

Press, 2019.

[99] A. Kumar, V. T. Narapareddy, V. Aditya Srikanth, A. Malapati, and L. B. M. Neti.

207



Sarcasm Detection Using Multi-Head Attention Based Bidirectional LSTM. IEEE

Access, 8:6388–6397, 2020. Conference Name: IEEE Access.

[100] H. J. Lee and S. J. Park. Moners: A news recommender for the mobile web. Expert

Systems with Applications, 32(1):143–150, 2007.

[101] E. L. Lehmann. Introduction to Neyman and Pearson (1933) On the Problem of the

Most Efficient Tests of Statistical Hypotheses, pages 67–72. Springer New York,

New York, NY, 1992.

[102] J. S. Lerner, Y. Li, P. Valdesolo, and K. S. Kassam. Emotion and decision making.

Annual Review of Psychology, 66(1):799–823, 2015. PMID: 25251484.

[103] J. S. Lerner, Y. Li, P. Valdesolo, and K. S. Kassam. Emotion and decision making.

Annual Review of Psychology, 66(1):799–823, 2015. PMID: 25251484.

[104] O. Levy and Y. Goldberg. Dependency-based word embeddings. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics,

volume 2, pages 302–308, 2014.

[105] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons

learned from word embeddings. Transactions of the Association for Computational

Linguistics, 3:211–225, 2015.

[106] P. Lison and A. Kutuzov. Redefining context windows for word embedding models:

208



An experimental study. In Proceedings of the 21st Nordic Conference on Computa-

tional Linguistics (NoDaLiDa), pages 284–288, Gothenburg, Sweden, May 2017.

Association for Computational Linguistics.

[107] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach,

2019.

[108] E. Lunando and A. Purwarianti. Indonesian social media sentiment analysis with

sarcasm detection. 2013 International Conference on Advanced Computer Science

and Information Systems (ICACSIS), September 2013.

[109] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning

word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies,

pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational

Linguistics.

[110] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, New York, NY, United States, 2009.

[111] M. Y. Manohar and P. Kulkarni. Improvement sarcasm analysis using nlp and

corpus based approach. In 2017 International Conference on Intelligent Computing

and Control Systems (ICICCS), pages 618–622, 2017.

209



[112] C. May, A. Wang, S. Bordia, S. R. Bowman, and R. Rudinger. On measuring social

biases in sentence encoders. Proceedings of the 2019 Conference of the North,

2019.

[113] O. Melamud, D. McClosky, S. Patwardhan, and M. Bansal. The role of context

types and dimensionality in learning word embeddings. In Proceedings of the

2016 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, pages 1030–1040, San Diego,

California, June 2016. Association for Computational Linguistics.

[114] P. Michel and G. Neubig. MTNT: A testbed for machine translation of noisy text.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 543–553, Brussels, Belgium, Oct.-Nov. 2018. Association for

Computational Linguistics.

[115] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

[116] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Repre-

sentations of Words and Phrases and their Compositionality. arXiv:1310.4546 [cs,

stat], Oct. 2013. arXiv: 1310.4546.

[117] G. A. Miller. Wordnet: A lexical database for english. Association for Computing

Machinery, Commun. ACM, 38(11):39–41, Nov. 1995.

210



[118] A. Mishra, D. Kanojia, S. Nagar, K. Dey, and P. Bhattacharyya. Harnessing

cognitive features for sarcasm detection. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1095–1104, Berlin, Germany, Aug. 2016. Association for Computational

Linguistics.

[119] R. Misra and P. Arora. Sarcasm detection using hybrid neural network. arXiv

preprint arXiv:1908.07414, 2019.

[120] J. Mizgajski and M. Morzy. Affective recommender systems in online news

industry: how emotions influence reading choices. User Modeling and User-

Adapted Interaction, 29:345–379, 2018.

[121] S. M. Mohammad. Word affect intensities. ArXiv, abs/1704.08798, 2017.

[122] S. M. Mohammad and F. Bravo-Marquez. WASSA-2017 Shared Task on Emotion

Intensity. In EMNLP 2017 Workshop on Computational Approaches to Subjectivity,

Sentiment, and Social Media (WASSA), Proceedings, Copenhagen, Denmark, Aug.

2017. EMNLP.

[123] S. M. Mohammad, P. Sobhani, and S. Kiritchenko. Stance and sentiment in tweets.

ACM Transactions on Internet Technology (TOIT), 17(3):26, 2017.

211



[124] S. M. Mohammad and P. D. Turney. Crowdsourcing a Word–Emotion Association

Lexicon. Computational Intelligence, 29(3):436–465, Aug. 2013.

[125] A. Montes-García, J. M. Álvarez-Rodríguez, J. E. Labra-Gayo, and M. Martínez-

Merino. Towards a journalist-based news recommendation system: The we-

somender approach. Expert Systems with Applications, 40(17):6735–6741, 2013.

[126] C. E. Moody. Mixing Dirichlet Topic Models and Word Embeddings to Make

lda2vec. arXiv:1605.02019 [cs], May 2016. arXiv: 1605.02019.

[127] Y. Moshfeghi, B. Piwowarski, and J. M. Jose. Handling data sparsity in collabora-

tive filtering using emotion and semantic based features. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in Information

Retrieval, pages 625–634. ACM, 2011.

[128] M. Mozafari, R. Farahbakhsh, and N. Crespi. A bert-based transfer learning

approach for hate speech detection in online social media. Studies in Computational

Intelligence, page 928–940, Nov 2019.

[129] H. Mulki, C. B. Ali, H. Haddad, and I. Babaoğlu. Tw-star at semeval-2018 task 1:

Preprocessing impact on multi-label emotion classification. In Proceedings of The

12th International Workshop on Semantic Evaluation, pages 167–171, 2018.

[130] P. Nakov, A. Ritter, S. Rosenthal, V. Stoyanov, and F. Sebastiani. SemEval-2016

212



task 4: Sentiment analysis in Twitter. In Proceedings of the 10th International

Workshop on Semantic Evaluation, SemEval ’16, San Diego, California, June 2016.

Association for Computational Linguistics.

[131] A. Odić, M. Tkalčič, J. F. Tasič, and A. Košir. Predicting and detecting the

relevant contextual information in a movie-recommender system. Interacting with

Computers, 25(1):74–90, 2013.

[132] S. Oraby, V. Harrison, L. Reed, E. Hernandez, E. Riloff, and M. Walker. Creating

and characterizing a diverse corpus of sarcasm in dialogue. In Proceedings of the

17th Annual Meeting of the Special Interest Group on Discourse and Dialogue,

pages 31–41, Los Angeles, Sept. 2016. Association for Computational Linguistics.

[133] S. O. Orimaye, S. M. Alhashmi, and S. Eu-gene. Sentiment Analysis Amidst

Ambiguities in Youtube Comments on Yoruba Language (Nollywood) Movies. In

Proceedings of the 21st International Conference on World Wide Web, WWW ’12

Companion, pages 583–584, New York, NY, USA, 2012. ACM.

[134] Y. Ozaki, M. Yano, and M. Onishi. Effective hyperparameter optimization using

Nelder-Mead method in deep learning. IPSJ Transactions on Computer Vision and

Applications, 9(1):20, Nov. 2017.

[135] M. Pantic and A. Vinciarelli. Implicit human-centered tagging [social sciences].

IEEE Signal Processing Magazine, 26(6):173–180, 2009.

213



[136] M. Papagelis and D. Plexousakis. Qualitative analysis of user-based and item-based

prediction algorithms for recommendation agents. Engineering Applications of

Artificial Intelligence, 18(7):781–789, 2005.

[137] M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem of

collaborative filtering using trust inferences. In International Conference on Trust

Management, pages 224–239. Springer, 2005.

[138] A. H. Parizi and M. Kazemifard. Emotional news recommender system. In 2015

Sixth International Conference of Cognitive Science (ICCS), pages 37–41. IEEE,

2015.

[139] J. H. Park, P. Xu, and P. Fung. PlusEmo2Vec at SemEval-2018 task 1: Exploiting

emotion knowledge from emoji and #hashtags. In Proceedings of The 12th Interna-

tional Workshop on Semantic Evaluation, pages 264–272, New Orleans, Louisiana,

June 2018. Association for Computational Linguistics.

[140] C. G. Patil and S. Patil. Use of porter stemming algorithm and svm for emotion

extraction from news headlines. In International Journal of Electronics, Communi-

cation and Soft Computing Science and Engineering, 2013.

[141] S. Pecar, M. Farkas, M. Simko, P. Lacko, and M. Bielikova. Nl-fiit at iest-2018:

Emotion recognition utilizing neural networks and multi-level preprocessing. In

214



Proceedings of the 9th Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis, pages 217–223, 2018.

[142] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543, 2014.

[143] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer. Deep contextualized word representations. Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018.

[144] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer. Deep contextualized word representations. ArXiv, abs/1802.05365, 2018.

[145] M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi, S. Singh, and N. A.

Smith. Knowledge enhanced contextual word representations. Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), 2019.

[146] R. W. Picard, E. Vyzas, and J. Healey. Toward machine emotional intelligence:

analysis of affective physiological state. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 23(10):1175–1191, 2001.

215



[147] B. Pickering, D. Thompson, and R. Filik. Examining the emotional impact of sar-

casm using a virtual environment. Metaphor and Symbol, 33(3):185–197, July 2018.

Publisher: Routledge _eprint: https://doi.org/10.1080/10926488.2018.1481261.

[148] S. Poria, E. Cambria, D. Hazarika, and P. Vij. A deeper look into sarcastic tweets

using deep convolutional neural networks. ArXiv, abs/1610.08815, 2016.

[149] R. A. Potamias, G. Siolas, and A. G. Stafylopatis. A transformer-based approach

to irony and sarcasm detection, 2019.

[150] T. Ptácek, I. Habernal, and J. Hong. Sarcasm detection on czech and english twitter.

In COLING, 2014.

[151] A. Rajadesingan, R. Zafarani, and H. Liu. Sarcasm detection on twitter: A be-

havioral modeling approach. In Proceedings of the Eighth ACM International

Conference on Web Search and Data Mining, WSDM ’15, page 97–106, New York,

NY, USA, 2015. Association for Computing Machinery.

[152] R. Rakov and A. Rosenberg. "sure, i did the right thing": a system for sarcasm

detection in speech. In INTERSPEECH, 2013.

[153] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese

bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, 11 2019.

216



[154] E. Riloff, A. Qadir, P. Surve, L. De Silva, N. Gilbert, and R. Huang. Sarcasm as

contrast between a positive sentiment and negative situation. In Proceedings of the

2013 Conference on Empirical Methods in Natural Language Processing, pages

704–714, Seattle, Washington, USA, Oct. 2013. Association for Computational

Linguistics.

[155] S. L. Rose, R. Venkatesan, G. Pasupathy, and P. Swaradh. A lexicon-based term

weighting scheme for emotion identification of tweets. International Journal of

Data Analysis Techniques and Strategies, 10(4):369–380, 2018.

[156] M. Rumiantcev. Music adviser : emotion-driven music recommendation ecosys-

tem. PhD thesis, Department of Mathematical Information Technology Oleksiy

Khriyenko, 2017.

[157] A. D. S, R. S, S. M. Rajendram, and M. T T. SSN MLRG1 at SemEval-2018 task

1: Emotion and sentiment intensity detection using rule based feature selection. In

Proceedings of The 12th International Workshop on Semantic Evaluation, pages

324–328, New Orleans, Louisiana, June 2018. Association for Computational

Linguistics.

[158] H. Saif, M. Fernandez, Y. He, and H. Alani. On stopwords, filtering and data

sparsity for sentiment analysis of twitter. In Proceedings of the Ninth International

217



Conference on Language Resources and Evaluation (LREC’14), pages 810–817,

Reykjavik, Iceland, may 2014. European Language Resources Association (ELRA).

[159] H. Schuff, J. Barnes, J. Mohme, S. Padó, and R. Klinger. Annotation, modelling

and analysis of fine-grained emotions on a stance and sentiment detection corpus.

In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis, pages 13–23, 2017.

[160] D. Seal, U. K. Roy, and R. Basak. Sentence-level emotion detection from text based

on semantic rules. In Information and Communication Technology for Sustainable

Development, pages 423–430. Springer, 2020.

[161] N. Shahbazi, M. Chahhou, and J. Gryz. Truncated SVD-based Feature Engineering

for Music Recommendation. In The 11th ACM International Conference on Web

Search and Data Mining(WSDM), page 7, London, England, 2017. The 11th ACM

International Conference on Web Search and Data Mining.

[162] B. Shiv and A. Fedorikhin. Heart and Mind in Conflict: The Interplay of Affect

and Cognition in Consumer Decision Making. Journal of Consumer Research,

26(3):278–292, 12 1999.

[163] S. N. Shivhare and S. K. Saritha. Emotion Detection From Text Documents.

International Journal of Data Mining & Knowledge Management Process, 4(6):51–

57, Nov. 2014.

218



[164] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with compositional

vector grammars. In Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 455–465, Sofia,

Bulgaria, Aug. 2013. Association for Computational Linguistics.

[165] M. Soleymani, S. Asghari-Esfeden, Y. Fu, and M. Pantic. Analysis of eeg signals

and facial expressions for continuous emotion detection. IEEE Transactions on

Affective Computing, 7(1):17–28, 2016.

[166] C. Strapparava and R. Mihalcea. Semeval-2007 task 14: Affective text. In Pro-

ceedings of the 4th International Workshop on Semantic Evaluations, pages 70–74.

Association for Computational Linguistics, 2007.

[167] C. Strapparava, A. Valitutti, and others. WordNet Affect: an Affective Extension of

WordNet. In LREC, volume 4, pages 1083–1086, Lisbon, Portugal, 2004. European

Language Resources Association (ELRA).

[168] F. Strohm. The impact of intensifiers, diminishers and negations on emotion

expressions. B.S. thesis, University of Stuttgart, 2017.

[169] C. Sun, L. Huang, and X. Qiu. Utilizing BERT for aspect-based sentiment analysis

via constructing auxiliary sentence. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics:

219



Human Language Technologies, Volume 1 (Long and Short Papers), pages 380–385,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[170] S. Symeonidis, D. Effrosynidis, and A. Arampatzis. A comparative evaluation

of pre-processing techniques and their interactions for twitter sentiment analysis.

Expert Systems with Applications, 110:298–310, 2018.

[171] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix

factorization methods for large recommender systems. In 2008 IEEE International

Conference on Data Mining Workshops, pages 553–562. IEEE, 2008.

[172] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-

specific word embedding for twitter sentiment classification. In Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1555–1565, Baltimore, Maryland, June 2014. Association for

Computational Linguistics.

[173] J. Tang and K. Wang. Personalized top-n sequential recommendation via convo-

lutional sequence embedding. Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining (WSDM), 2018.

[174] Y. Tay, A. T. Luu, S. C. Hui, and J. Su. Reasoning with sarcasm by reading in-

between. Proceedings of 56th Annual Meeting of the Association for Computational

Linguistics, 2018.

220



[175] M. Tkalcic, A. Kosir, J. Tasivc, and M. Kunaver. Affective recommender sys-

tems: the role of emotions in recommender systems. In 5th ACM Conference on

Recommender Systems (RecSys, pages 9–13, 01 2011.

[176] M. Tkalčič, U. Burnik, A. Odić, A. Košir, and J. Tasič. Emotion-Aware Recom-

mender Systems – A Framework and a Case Study. In S. Markovski and M. Gusev,

editors, ICT Innovations 2012, pages 141–150, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[177] O. Tsur, D. Davidov, and A. Rappoport. ICWSM-A Great Catchy Name: Semi-

Supervised Recognition of Sarcastic Sentences in Online Product Reviews. In In

Fourth International AAAI Conference on Weblogs and Social Media, 2010.

[178] P. Uhr, J. Zenkert, and M. Fathi. Sentiment analysis in financial markets - a

framework to utilize the human ability of word association for analyzing stock

market news reports. In Conference Proceedings - IEEE International Conference

on Systems, Man and Cybernetics, volume 2014, 10 2014.

[179] A. K. Uysal and S. Gunal. The impact of preprocessing on text classification.

Information Processing and Management, 50:104 – 112, 01 2014.

[180] C. Van Hee, E. Lefever, and V. Hoste. SemEval-2018 task 3: Irony detection in

English tweets. In Proceedings of The 12th International Workshop on Semantic

221



Evaluation, pages 39–50, New Orleans, Louisiana, June 2018. Association for

Computational Linguistics.

[181] B. Vargas-Govea, G. González-Serna, and R. Ponce-Medellın. Effects of relevant

contextual features in the performance of a restaurant recommender system. ACM

RecSys, 11(592):56, 2011.

[182] S. Vashishth, M. Bhandari, P. Yadav, P. Rai, C. Bhattacharyya, and P. Talukdar.

Incorporating syntactic and semantic information in word embeddings using graph

convolutional networks. In Proceedings of the 57th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 3308–3318, Florence, Italy, July 2019.

Association for Computational Linguistics.

[183] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser,

and I. Polosukhin. Attention is all you need. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010,

Red Hook, NY, USA, 2017. Curran Associates Inc.

[184] I. Vulić, S. Baker, E. M. Ponti, U. Petti, I. Leviant, K. Wing, O. Majewska, E. Bar,

M. Malone, T. Poibeau, R. Reichart, and A. Korhonen. Multi-simlex: A large-scale

evaluation of multilingual and cross-lingual lexical semantic similarity, 2020.

[185] K. Wakil, R. Bakhtyar, K. Ali, and K. Alaadin. Improving Web Movie Recom-

222



mender System Based on Emotions. International Journal of Advanced Computer

Science and Applications, 6(2):9, 2015.

[186] H. G. Wallbott and K. R. Scherer. How universal and specific is emotional experi-

ence? Evidence from 27 countries on five continents. Social Science Information,

25(4):763–795, Dec. 1986.

[187] B. Wang and C. C. J. Kuo. Sbert-wk: A sentence embedding method by dissecting

bert-based word models, 2020.

[188] T. Wharton. Interjections, language and the ’showing/saying’ continuum. Prag-

matics and Cognition, 11(1):39–91, 1 2003.

[189] C. Wu, F. Wu, S. Wu, J. Liu, Z. Yuan, and Y. Huang. THU_NGN at SemEval-

2018 task 3: Tweet irony detection with densely connected LSTM and multi-

task learning. In Proceedings of The 12th International Workshop on Semantic

Evaluation, pages 51–56, New Orleans, Louisiana, June 2018. Association for

Computational Linguistics.

[190] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,

S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,

C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and

223



J. Dean. Google’s neural machine translation system: Bridging the gap between

human and machine translation. CoRR, abs/1609.08144, 2016.

[191] H. Xie and T. Y. Tang. Vector Projection on Lyrics and User Comments for a

Lightweight Emotion-aware Chinese Music Recommendation System. In Pro-

ceedings of 2018 International Conference on Big Data Technologies, ICBDT ’18,

pages 88–94, New York, NY, USA, 2018. ACM. event-place: Hangzhou, China.

[192] C. Xu, P. Zhao, Y. Liu, J. Xu, V. S. S.Sheng, Z. Cui, X. Zhou, and H. Xiong.

Recurrent convolutional neural network for sequential recommendation. In The

World Wide Web Conference, WWW ’19, page 3398–3404, New York, NY, USA,

2019. Association for Computing Machinery.

[193] H. Xu, M. Lan, and Y. Wu. ECNU at SemEval-2018 task 1: Emotion intensity

prediction using effective features and machine learning models. In Proceedings of

The 12th International Workshop on Semantic Evaluation, pages 231–235, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[194] H. Xu, B. Liu, L. Shu, and P. S. Yu. Bert post-training for review reading compre-

hension and aspect-based sentiment analysis. In NAACL-HLT, 2019.

[195] H. Xu, W. Yang, and J. Wang. Hierarchical emotion classification and emotion

component analysis on chinese micro-blog posts. Expert Syst. Appl., 42:8745–8752,

2015.

224



[196] P. Xu, A. Madotto, C.-S. Wu, J. H. Park, and P. Fung. Emo2Vec: Learning

generalized emotion representation by multi-task training. In Proceedings of the

9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social

Media Analysis, pages 292–298, Brussels, Belgium, Oct. 2018. Association for

Computational Linguistics.

[197] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen. Deep Matrix Factorization

Models for Recommender Systems. In Proceedings of the Twenty-Sixth Interna-

tional Joint Conference on Artificial Intelligence, pages 3203–3209, Melbourne,

Australia, Aug. 2017. International Joint Conferences on Artificial Intelligence

Organization.

[198] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet:

Generalized autoregressive pretraining for language understanding, 2019.

[199] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention

networks for document classification. In Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 1480–1489, San Diego, California, June

2016. Association for Computational Linguistics.

[200] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu. Sequen-

tial recommender system based on hierarchical attention networks. In Proceedings

225



of the Twenty-Seventh International Joint Conference on Artificial Intelligence,

IJCAI-18, pages 3926–3932. International Joint Conferences on Artificial Intelli-

gence Organization, 7 2018.

[201] E. Zangerle, C. Chen, M. Tsai, and Y. Yang. Leveraging Affective Hashtags for

Ranking Music Recommendations. IEEE Transactions on Affective Computing,

pages 1–1, 2018.

[202] M. Zhang, Y. Zhang, and G. Fu. Tweet sarcasm detection using deep neural

network. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pages 2449–2460, Osaka, Japan,

Dec. 2016. The COLING 2016 Organizing Committee.

[203] S. Zhang, Y. Tay, L. Yao, and A. Sun. Next item recommendation with self-attention.

ArXiv, abs/1808.06414, 2018.

[204] S. Zhang, X. Zhang, J. Chan, and P. Rosso. Irony detection via sentiment-based

transfer learning. Information Processing & Management, 56(5):1633–1644, Sept.

2019.

[205] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating

text generation with bert, 2019.

[206] Z. Zhang, M. Dong, and S. S. Ge. Emotion analysis of children’s stories with con-

226



text information. Signal and Information Processing Association Annual Summit

and Conference (APSIPA), 2014 Asia-Pacific, pages 1–7, 2014.

[207] Q. Zhao, Y. Shi, and L. Hong. GB-CENT: Gradient Boosted Categorical Embed-

ding and Numerical Trees. In Proceedings of the 26th International Conference on

World Wide Web, WWW ’17, pages 1311–1319, Republic and Canton of Geneva,

Switzerland, 2017. International World Wide Web Conferences Steering Commit-

tee. event-place: Perth, Australia.

[208] W. Zhao, M. Peyrard, F. Liu, Y. Gao, C. M. Meyer, and S. Eger. Moverscore: Text

generation evaluating with contextualized embeddings and earth mover distance.

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), 2019.

[209] A. Zheng and A. Casari. Feature Engineering for Machine Learning: Principles

and Techniques for Data Scientists. "O’Reilly Media, Inc.", Mar. 2018. Google-

Books-ID: sthSDwAAQBAJ.

[210] Y. Zheng, R. Burke, and B. Mobasher. The Role of Emotions in Context-aware

Recommendation. In RecSys workshop in conjunction with the 7th ACM confer-

ence on Recommender Systems, page 8, Hong Kong, China., Oct. 2013. RecSys

workshop in conjunction with the 7th ACM conference on Recommender Systems.

227



[211] X. Zhu, H. Guo, S. Mohammad, and S. Kiritchenko. An empirical study on

the effect of negation words on sentiment. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 304–313, Baltimore, Maryland, June 2014. Association for Computational

Linguistics.

[212] M. Zihayat, A. Ayanso, X. Zhao, H. Davoudi, and A. An. A utility-based news

recommendation system. Decision Support Systems, 117:14–27, 2019.

228


