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Abstract

Trajectory-user linking (TUL) is a problem in trajectory classification that links

anonymous trajectories to the users who generated them. TUL has various uses

such as identity verification, personalized recommendation, epidemiological monitor-

ing, and threat assessments. A major challenge in TUL modeling is sparse data.

Previous TUL research heavily relies on recurrent neural networks models such as

RNNs and LSTMs, with trajectory segmentation to combat sparsity, but segmen-

tation does not sufficiently address the issue and existing models often ignore data

skewness, resulting in poor precision and performance. To address these problems,

we present TULHOR, a TUL model inspired by BERT, a popular language represen-

tation model. One of TULHOR’s innovations is the use of higher-order mobility flow

data representations enabled by geographic area tessellation. This allows the model

to alleviate the sparsity problem and also to generalize better. TULHOR consists of

a spatial embedding layer, a spatial-temporal embedding layer and an encoder layer,

which encodes properties and learns a rich trajectory representation. It is trained

in two steps, first using a masked language modeling task to learn general embed-

dings, then fine-tuned using a balanced cross-entropy loss to make predictions while

handling imbalanced data. Experiments on real-life mobility data show TULHOR’s

effectiveness as compared to current state-of-the-art models.
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Chapter 1

Introduction

Location-based services (LBS) are systems that provide services to users based on

their geographic location. The location information is typically obtained from a

GPS-enabled device (such as a cell phone) and is used to provide services such as

maps, directions, local search, and location-based advertising. Examples of LBS in-

clude ride-hailing apps, food delivery apps, and weather apps, to name a few. LBS

can provide more personalized and relevant experiences to users by analyzing user

trajectory data, a collection of geographic data points that describe the moving pat-

terns of a user or vehicle, over a period of time. For instance, they can be used to

provide location-based recommendations to users based on their past movements and

interests, or to predict future traffic conditions for commuting to home or work loca-

tion. They can also be used in marketing for optimizing the placement and timing of

advertisements based on the trajectory of users in a particular area, or for customer

segmentation by grouping customers together based on their movement patterns and

preferences.

1.1 Problem of Interest

Associating a particular trajectory with the correct user is known as the trajectory-

user linking (TUL) problem. In principle, the TUL problem is a trajectory clas-

sification problem that aims at classifying anonymous trajectories to the users who
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generated them. Addressing this problem is essential for LBS because it ensures the

privacy and security of user data and enables the provision of accurate and trust-

worthy location-based services. The main idea in addressing the TUL problem is to

examine human mobility patterns to gain insight into the ways in which people move

and interact with their surroundings. This analysis can encompass various aspects of

human movement, including daily routines, commuting habits, event data (check-ins),

and general movement patterns within a specific geographic region.

1.2 Current Approaches

Current methods to address the TUL problem can be broadly divided into two cat-

egories: (i) classical machine learning (ML)-based methods, and (ii) deep learning-

based methods. The classical ML-based methods involve traditional trajectory sim-

ilarity techniques. The most prominent ones are the longest common sub-sequence,

dynamic time warping [1], and NeuTraj [2]. These techniques are used to link a

user to a trajectory by comparing the similarities between identified and unidentified

trajectories. The deep learning-based methods involve modeling the trajectories by

learning rich low-level spatial-temporal embeddings of points of interest (POIs), then

linking them to the corresponding user based on the spatial-temporal patterns ob-

served in their trajectories. Most existing solutions apply seq2seq models like RNN

and LSTM to learn the transition pattern between POIs in trajectories [3]. Miao et

al. [4] use LSTM and BiLSTM with attention to learn intra-trajectory relationships.

Zhou et al. [5] use RNN with variational auto encoding to learn the temporal pattern

in trajectories; they also address the problem by constructing a spatial and a check-in

graph, then combining them together and applying GNN to learn POI embeddings

[6].
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1.3 Limitations of Current Approaches

Despite the promising results of the current approaches, there are some major chal-

lenges of the TUL problem:

• data quality: trajectory data are typically of low quality, due to low accuracy

and/or completeness;

• data sparsity: trajectory data are sparse, due to limited and/or missing data;

• imbalanced data: the distribution of trajectories across different users (classes)

is unequal.

These challenges can hinder the accurate linking of trajectories to their correspond-

ing users. Some of the existing works attempt to resolve the limited data issue by

generating new trajectories from existing ones through trajectory segmentation and

augmentation methods. While this approach increases the number of available train-

ing samples, and can potentially improve model performance, it does not resolve the

data quality and sparsity problems. In addition, existing works have overlooked the

imbalanced data issue, which can be problematic when developing machine learning

models, as it can lead to biased or inaccurate results.

1.4 Thesis Contributions

Our approach to the problem aims at addressing some of the main challenges of the

TUL problem. The key idea is that we extrapolate location data to higher-order mo-

bility flow data. Mobility flow refers to the movement of people from one location

to another over time. This is in contrast to existing models that incorporate spa-

tial features into learned models by either using pre-trained POI embeddings, or by

directly modeling the physical distance between POIs. Note that physical distance

does not capture the mobility flow dynamics, as it does not follow the mobility con-

straints imposed by the map. In addition, instead of defining mobility flow at the
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granularity of trajectory data points (which are sparse), we learn higher-order mobil-

ity flow representations based on a regular tessellation of the observation area (map)

in hexagons. These high-order representations of trajectories are used to address the

TUL problem. A summary of our contributions is provided below:

• We present a method that given location data (as data points), generates higher-

order mobility flow data. These data represent sequences of regular hexagons

defined on a tessellated observation area (map). The method generalizes and

can generate mobility flow data at different levels of tessellation granularity.

• We propose TULHOR (trajectory-user linking using higher-order representations),

a deep learning model based on a spatial-temporal variation of the Bidirectional

Encoder Representation from Transformers (BERT) [7] that addresses the TUL

problem by learning and utilizing higher-order mobility flow representations.

• We address the problem of imbalanced data that is important for developing

fair and accurate TUL models that can effectively handle real-world data with

unequal class distributions.

• We demonstrate empirically that our proposed model TULHOR outperforms

the state-of-the-art methods and other sensible baselines. We also perform

an ablation study and a parameter sensitivity analysis that demonstrate the

impact of the different embedding components in the accuracy performance of

TULHOR.

• We make our source code publicly available to encourage the reproducibility of

our work1.

• This work has been published at the 24th IEEE International Conference on

Mobile Data Management (IEEE MDM 2023) [8].

1https://github.com/theWonderBoy/TULHOR
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1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 3 presents preliminaries

and a formal definition of the problem. Chapter 4 presents our method for generating

higher-order mobility flow data, and chapter 5 presents our TULHOR model for

addressing the TUL problem. We describe the experimental setup, and present and

discuss the results in chapter 6. We review related work in chapter 2 and conclude in

chapter 7.
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Chapter 2

Related Work

Our research is related to (i) trajectory data mining, (ii) trajectory classification, and

(iii) deep learning for spatiotemporal data. We cover below some of the most significant

efforts relevant to our work. Note that some related work have already been cited

throughout the manuscript to keep the discussion focused, so they are mostly omitted

here.

2.1 Trajectory Data Mining

Trajectory data mining involves extracting insights and patterns from large-scale mo-

bility data. It aims to uncover hidden relationships and insights into mobility patterns

and behaviors, with the goal of supporting a wide range of applications, including

transportation planning [9], location-based services, urban planning [10], and public

health monitoring [9, 11, 12]. Of particular interest are technical problems related

to trajectory similarity [13], trajectory clustering [14], anomaly detection in moving

objects [15], and graph-related problems, such as finding important nodes in mobility

networks [16], and mining interactions of moving objects or people [17–19]. A couple

of comprehensive surveys on trajectory data mining exist that provide a taxonomy

of the technical problems, available methods to address them, applications and open

research problems [20–22]. Recently, deep learning approaches for spatiotemporal

data representation learning have gained increasing attention (see survey by Wang et
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al. [23] and discussion in paragraph 2.5).

2.2 Trajectory Classification

A prevalent data mining task is trajectory classification which aims to predict labels

or classes of moving objects based on their trajectories. Works in this field focus

on discovering and studying the optimal methods to extract features from trajecto-

ries. These features are divided into global features (such as maximum and minimum

speed), obtained by studying the entire trajectory, and local features (obtained by ex-

amining subparts of the trajectory independently). Trajectories can also be classified

into two categories: raw trajectories, which only contain spatial and temporal data,

and multi-aspect trajectories, which contain semantic information - sometimes called

semantic dimension - about visited places, such as their name, category, and open-

ing hours. We classify the work in trajectory classification into two main categories,

(i) General classification (ii) Problem-Specific Classifications. General classification

approaches aim to develop techniques applicable to various trajectory classification

tasks. In contrast, problem-specific classification approaches focus on developing tech-

niques tailored to a particular application or problem domain. In the next section,

we provide an overview of each trajectory classification category before we examine

Trajectory-user linking in depth, which is considered a problem-specific classification.

2.2.1 General Classification

One of the earlier’s works in General classification is Trajclass [24] which proposed a

classification method using hierarchical Region-based and Trajectory Based cluster-

ing. After preprocessing data through the partitioning and grouping stage, Trajclass

constructs a grid structure to cover the spatial dimension. Each trajectory is then

assigned a cell; if the cell is non-homogeneous (i.e., there is an imbalance in the class

distribution of trajectories within the cell), the cell is split further into the minor

part until the ideal homogeneity and conciseness are reached. Some cells will not
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reach the ideal level of homogeneity, and they will be passed to the next step, where

the trajectory-based metric is used for clustering. A significant limitation of Traj-

class is that the method only considers the spatial dimension of the trajectory. [15]

tries to address the issue by proposing a trajectory feature extraction method that

captures spatial and temporal features along with speed, velocity, and acceleration

while also learning the local and global feature. Previous works split the trajecto-

ries based on some predefined metrics, Trajeclass based on homogeneity while based

[15] on the change in movement parameters. [25] proposed an algorithm to split

trajectories without relying on any predefined notions. It works by splitting trajec-

tories into smaller sub-trajectories called Movelets, short for ”Moving Elements of

Trajectories”. These MOVELETS represent local features of the trajectory and cap-

ture its distinctive characteristics. MOVELETS then extracts features from these

MOVELETS using a set of statistical measures such as mean, standard deviation,

and entropy. Next, MOVELETS uses a feature selection algorithm to select the most

relevant MOVELETS that are most discriminative in distinguishing between different

classes of trajectories. The selected MOVELETS are then used to construct a feature

vector representing the trajectory. [25] Extended the idea of MOVELETS to work

for Multi-aspect trajectories, where they take into account semantic features such as

weather and POI category while generating the subtrajectoreis.

2.2.2 Problem-specific Classifications

We consider three problem-specific classification tasks (i) transportation mode, (ii)

trajectories on Road Network, and (iii) trajectory-user linking.

2.2.2.1 Transportation Mode

Transportation mode classification is a trajectory classification problem where the

goal is to infer/predict the mode of transportation of individuals through their move-

ment patterns. The transportation mode classification task has numerous applications
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in planning, traffic management, and urban mobility. The datasets used for trans-

portation mode classification are divided into two primary categories: single-mode-

based trajectories (SMT) and multi-mode-based trajectories (MMT). SMT consists

of trajectories collected using only one transportation mode, while MMT consists of

trajectories collected with multiple modes of transportation used by the user. [26]

provides a review of significant works in the transportation mode classification field.

Among notable works in transportation mode classification is [27], which introduced

a technique to extract intricate features that are more effective in discriminating be-

tween modes of transportation than conventional features like acceleration and speed.

The features include heading change rate (HCR), stop rate (SR), and velocity change

rate (VCR). After feature extraction, a post-processing algorithm is used with a su-

pervised learning model for classification. [27]’s the main limitation is the small

and temporally sparse dataset used. Subsequent works, such as [28], addressed this

problem by collecting additional data using smartphones. To better understand the

impact of each feature in trajectory and its role in classification, [29] conducted a

comprehensive study on trajectory features to study their impact on the classifica-

tion task. Trajectories are prone to error or inaccuracies due to various factors, such

as GPS signal interference, low-quality GPS devices, or inadequate sampling rates.

The noise in the trajectory data can affect the accuracy and reliability of transporta-

tion mode classification and other analysis tasks that rely on trajectory data. [30]

addressed this issue by using a noise removal technique.

2.2.2.2 Trajectories on Road Network

Trajectories on road network classification refers to categorizing or labeling the move-

ment patterns of vehicles or individuals as they move through a road network. Tra-

jectories on road network classification distinguishes itself from other trajectory clas-

sification tasks primarily because of its data. In trajectories on road network, the

trajectory is mapped onto the road network, thereby converting it from a sequence of
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spatial-temporal points to a sequence of road segments. The work [31] formally intro-

duced the road vehicle classification problem and suggested a frequent pattern-based

model tackling the classification task.[32] focused on capturing the sequential features

of trajectories on a road network and proposed a neural network based approach

2.3 Trajectory-user Linking

Trajectory-user linking (TUL) is a recently introduced trajectory classification prob-

lem, where the objective is to link anonymous trajectories to the users that they

belong to. Addressing the TUL problem is essential for LBS as it enables personal-

ization, improves data privacy and security, and ensures the accuracy of the services

provided to users. Without the ability to accurately link trajectories to users, LBS

would not be able to personalize their offerings effectively. For example, if a LBS is

not able to accurately identify a user, it may not be able to provide accurate recom-

mendations or advertisements based on their location and movement patterns. By

being able to link trajectories to users, LBS can ensure that user data is only used

for the intended purpose and is not shared or misused by third parties. TUL can

be addressed using either classical methods or machine learning-based methods (both

conventional and deep learning-based ones).

2.3.1 Classical Methods

Classical methods rely on trajectory similarity metrics. Typically, these metrics com-

pute the distance between an anonymous trajectory and those of known users, and

linking is done based on the smallest distance. The most popular techniques include

the longest common sub-sequence, the Hausdorff distance, dynamic time warping

[1], and NeuTraj [2]. Despite their widespread use, these methods have limited ca-

pability of capturing long-term relationships between location data points, they are

sensitive to noise and outliers in the data, which can lead to inaccurate results, and

they are computationally expensive, therefore not suitable for real-time or large-scale
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applications.

2.3.2 Conventional ML Methods

Conventional ML-based classification models, such as k-nearest neighbors (KNN)

[33] and support vector machines (SVM) [34] can also solve the TUL problem by

transforming trajectories into a one-hot vector, treating users as labels, and training

the models on trajectories with known users. However, these methods fail to consider

spatial-temporal features and often perform inferior to deep learning-based models.

2.3.3 Deep learning-based ML Methods

Deep learning-based methods offer several advantages over traditional methods for

solving the TUL problem, including improved accuracy, the ability to handle high-

dimensional trajectory data, robustness to noise and outliers, and scalability. These

advantages make these methods a promising approach for solving the TUL problem.

One of the first works in this category [3] used sequence-to-sequence models such

as RNN, LSTM, and GRU to learn the check-in embeddings and feed the output

to a shallow classification layer. DeepTul [4] improved on this by adding an atten-

tion component and considering the temporal dimension. The method generates a

representation of a user’s historical trajectories for classification and learning multi-

periodic patterns. GNNTUL [6] pointed out the high computational cost of previous

works and proposed a graph neural network approach that incorporates user visiting

intentions in the classification task. TULSN [35] used a siamese neural network to

capture semantic information of the trajectories.
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2.4 Statistical Models for Trajectory Data

Statistical models are helpful in trajectory mining because they can capture relation-

ships between spatial-temporal data points that do not occur sequentially. Statistical

models, such as Collaborative Filtering are used to address human trajectory predic-

tion task [36, 37]. These models are instrumental in applications where the data is

high-dimensional and sparse, as they can effectively handle large amounts of data,

which is the case for most trajectories datasets. Most trajectories data mining works

that apply a classical model are focused on human trajectory prediction tasks, where

the goal is the predict the next spatial-temporal point - referred to as the Point of

Interest- that user will interact with.

Matrix Factorization is the most popular collaborative filtering method, which projects

users and spatial-temporal points into a shared vector space. MF then estimates users’

preference for a point by calculating the inner product between the user vector and

the spatial-temporal point vector [38–40]. Another famous line of work is item-based

neighborhood methods [41–43], which estimate a user’s interest in a point via mea-

suring its similarities with the user interactions history.

In recent years, deep learning-based methods have been developed to learn trajectory

embeddings by leveraging neural networks. Two-layer Restricted Boltaman Machines

was one of the earliest works to use Deep Learning for Collaborative Filtering

2.5 Deep Learning for Trajectory Data

Trajectory data is a type of spatiotemporal data, which depending on the task, can

be treated as sequantial data.

2.5.1 Sequential Models

For many tasks it is customary to treat trajectory data as a type of sequential data

that can be processed by sequence models. One of the earliest techniques to cap-
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ture sequential patterns relied on Markov chains. For instance, [44] formalized the

sequential recommendation as an optimization problem and then employed Markov

Decision Proccies to address it. Other works tried to combine Matrix Factorisation

with Markov chains into Factorzaing Personalized Markove Chaines to model sequen-

tial behaviors [45]. Also, high-order Markov chains were used to expand the size of

the lookback window [46, 47].

Recurrent Neural Networks and, more specifically, Long Short -TermMemory (LSTM)

became a popular solution for modeling user behavior sequences [48–50], and to gen-

erate trajectories using generative models [51].

Besides RNNs, various deep learning models are proposed for capturing sequential

features and apply them in recommendations tasks [52–55]. The most famous ones

are [55] which offer a convolutional sequence Model to learn the sequential patterns.

[52] Uses memory network to enhance the performance of sequential recommendation.

Additionally, attention-based models, such as Transformer models [56], can also be

used to model trajectory data and capture the long-range dependencies between the

different points in the trajectory. For example, Li et al. use a graph-based spatial

Transformer-based deep learning model for pedestrian trajectory prediction [57].

2.5.2 Spatiotemporal Models

Deep learning based methods have been proposed for learning representations of spa-

tiotemporal data that are a good fit for several trajectory data mining downstream

tasks. A few examples include recommending points of interest (POIs) [58–61], clus-

tering trajectories [62, 63], and analyzing movement behavior [64]. The foundation

of these approaches involves learning low-dimensional representations of the trajec-

tory data. One of the first methods towards this was “trajectory2vec” [62], which

used a sliding window method to capture space- and time-invariant characteristics

of trajectories. Similarly, “t2vec” [63] used a customized RNN with a spatial-loss

function to address the low sampling rate and noisiness of the data. While other ap-
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proaches focused solely on capturing the spatial-temporal properties of trajectories,

Boonchoo et al. [65] were the first to consider multimodal deep learning that learns

representations from data of multiple modalities (images, reviews, and geo-tags). The

model learns embeddings by predicting the context of the next trajectory data point,

similar to learning sentence representations in language models. A recent trend for

learning trajectory representations exploits paths defined on the road networks due

to the decrease in sparsity and the ability to learn richer embeddings [66, 67]. A

comprehensive review can be found in Wang et al. [23]. [68].

Another famous line of work is integrating deep learning-based methods with auxiliary

information, e.g., text [69, 70] and images [71, 72].
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Chapter 3

Preliminaries & Problem
Definition

In this chapter, we briefly introduce some definitions and notations (a summary is

provided in Table 3.1). Then we formally define the trajectory-user linking problem.

3.1 Preliminaries

Definition 1 (Map) Let M be a map over a predefined, finite, and continuous ge-

ographical area.

Definition 2 (POI) Let P = {p1, p2, . . . , p|P |} be a set of points of interests on a

map M.

Definition 3 (Visits or Check-ins) In location-based services, a visit or check-in

of a person to a location or place at a particular time is a record represented by a

quadruplet r = (u, l, t, ⟨x, y⟩), where u denotes the user, l denotes the location ID,

t stands for the time of the visit, and the tuple ⟨x, y⟩ represents the latitude and

longitude of the visited location. We represent the set of all visits or check-ins by R.

In this research, we use the term visit or check-in interchangeably.

Definition 4 (Trajectory) A temporarily ordered sequence of a user’s visits to

places (or check-ins), observed during a time period, can be used to describe a tra-

jectory Tr = {r1, r2, ...., rm}, where m represents the length of the trajectory. We
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represent the set of all trajectories by T . Since every visit or check-in record relates

to a specific point of interest p ∈ P, a trajectory can also be represented by a sequence

of points of interest Tr = {p1, p2, ..., pm}, where pi is a point of interest at the location

l of the record ri.

3.2 Problem Definition

TUL aims to link anonymous trajectories to the user who generates them. Let T =

{Tr1, T r2, ..., T rn} be the set of unlinked trajectories and U = {u1, u2, u3, .., uc} be

the set of users who generate them, then TUL is defined as a multiclass classification

problem where an instance (a trajectory) belongs to one of the many classes (i.e., one

user out of c):

min
f

E[L(f(Tri), ui)] over F , (3.1)

where F is the set of all classifiers in the hypothesis space, L(·) is the loss between

the predicted label f(Tri) ∈ U and the true label ui ∈ U of trajectory Tri.
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Table 3.1: Summary of notations

Symbol Description

M The map of a geographic area

P A set of points of interest in M

u User ID

l Location ID

t Timestamp

⟨x, y⟩ A tuple of latitude and longitude

r A check-in record represented by a quadruplet (u, l, t, ⟨x, y⟩)

Tr A check-in trajectory represented as Tr = {r1, r2, ...., rm}, where ri
is the ith check-in

G G = {g1, g2, g3, ..., gn} is an hexagonal tessellation of M, where gi is
the ith grid cell ID
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Chapter 4

Generating Higher-order Mobility
Flow Representations

In this chapter, we present details of our method for generating higher-order mobility

flow data. We first present the key idea of our method. Then, we can expand on the

details and provide explanation and examples to clarify the main points.

4.1 Key Idea

The check-in data lacks information on the route traveled by a user between con-

secutive check-ins. However, the routes could provide additional context and show

the flow of people in a city. We therefore calculate possible routes that connect the

check-in locations, consisting of origin, destination, as well as intermediate check-ins

(waypoints). We can estimate these routes using publicly available APIs1. While

these routes are not representing the actual path a user followed, they can largely

capture the common routes that connect specific check-in locations. In addition, mo-

bility flow from a check-in to location to another one can also be further abstracted,

by considering higher-order abstractions on the map. This include higher-order rep-

resentations of the check-in locations and the routes connecting them. We achieve

this by tessellating the map and translating check-in and route information using

higher-order elements of the map’s tessellation. The premise of these ideas is that

1https://developers.google.com/maps/documentation/directions
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Figure 4.1: An illustrative example (Foursquare-NYC) that shows how trans-
forming higher-order check-in data (top) to higher-order mobility flow data (bottom)
enriches the trajectory semantics and can help to address the TUL problem.
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(a) (b) (c) (d)

Figure 4.2: An illustrative example that shows how sample check-in data from
Foursquare-NYC (a) can be abstracted to higher-order areas (b), and how the
sequence of check-ins that infer a trajectory (c) can be abstracted to higher-order mo-
bility flow (d). We propose TULHOR, a spatiotemporal BERT-based model that
learns higher-order mobility flow representations to solve the trajectory-user linking
(TUL) problem.

the richer data will help our deep learning model to generalize and avoid overfitting

to input training data.

We provide below a formal definition of the key concepts.

Definition 5 (Grid) Let G ∈ {g1, g2, . . . , gn} be a set of disjoint grid cells that fully

tessellate map M. All gk ∈ G are polygons of the same size covering an area. Our

work assumes that grid cells are regular hexagons that can fill a plane with no gaps,

forming a hexagonal tiling (see example in Fig. 4.2b).

Note that the tessellation can happen at different level of resolution, by defining

different sizes of the hexagons. The smaller the hexagon size, the higher the resolution.

The tessellation of the map allows to define higher-order semantics for chech-ins,

trajectories and mobility flow.

Definition 6 (Higher-order check-ins) Since the map M is fully tessellated, for

every visit/check-in and every p ∈ P there is a g ∈ G, such that p is located in g.

Therefore, g represents a higher-order check-in.
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Figure 4.3: Impact of higher-order abstraction on sparsity.

Definition 7 (Higher-order trajectories) Since every p ∈ P belongs in a g ∈ G,

we can translate every trajectory Tr = {p1, p2, ..., pm} to a sequence of grid cells

Tr = {g1, g2, ..., gm}, where every gi ∈ G. Therefore, Tr = {g1, g2, ..., gm} represents

a higher-order trajectory.

Definition 8 (Higher-order mobility flow) Given a higher-order trajectory Tr =

{g1, g2, ..., gm}, we can define a higher-order mobility flow as a new trajectory Tr =

{g1, ⟨. . .⟩, g2, ⟨. . .⟩, ..., ⟨. . .⟩, gm}, where every ⟨. . .⟩ represents the sequence of grid cells

g ∈ G that need to be traversed between two sequential grid cells of the original

trajectory.

Fig. 4.2 provides an example of how starting from check-in data as input to the

problem, we can gradually generate higher-order mobility flow data. In addition,

Fig. 4.1 provides an illustrative example that shows how transforming higher-order

check-in data to higher-order mobility flow data enriches the trajectory semantics

and can potentially help to improve on the TUL problem. In the figure, we can also

observe how higher-order mobility data captures the city’s road infrastructure and

physical constraints. We also notice that higher-order mobility data exposes new

densely visited areas that are missed with the higher-order check-ins. The method is

general and can probably be useful in other problems and applications.
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4.2 Rationale for using Higher-order Mobility Flow

Check-in data is known to be very sparse. Sparsity is characterized by the percentage

of zeros in the user-POI interaction matrix. In this matrix, an entry (i, j) is set to 1

if user i visited POI j. Other than being sparse, the data is also very skewed, with

most locations having a few check-ins, and only a few locations having many check-

ins. This sparsity level can affect the accuracy of modeling trajectories and result in

a skewed data representation. Another major challenge of of check-in data is that

embedding the longitude and latitude pairs of location data into a machine learning

model is challenging due to their continuous nature. They also provide information at

a very refined level. A more practical approach is to learn spatiotemporal embeddings

at a higher level of granularity, such as at the level of grid cells (of a tessellated map).

We therefore propose to transform the check-ins and mobility flow data to a higher

order to address this issue. In practice, this translates the sparse user-POI matrix

into a denser user-grid cell matrix. In the user-grid cell matrix, an entry is equal

to 1 if the user has visited any place in the corresponding grid cell. This expands

the range of interactions from a single locations to multiple locations in a broader

area, reducing sparsity. Additionally, multiple POIs can be located within the same

cell, further decreasing sparsity. For example, consider the case of three users visiting

only one POI each. In this case, the sparsity of the toy user-POI matrix is 66.6%

since it has nine entries (3 users x 3 POIs), and only three of them are 1. If we

project this to a higher dimension and assume two POIs fall in the same grid cell,

then the toy user-grid cell matrix has six entries (3 users x 2 grid cells), and three of

them are 1, reducing the sparsity to 50%. Fig. 4.3 presents the impact of higher-order

representations on decreasing the sparsity on two benchmark datasets (Foursquare-

NYC and Foursquare-TKY). We observe about a 1% decrease in sparsity when

using higher-order check-ins, and more than a 5% decrease for the case of higher-order

mobility flow.
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4.3 Implementation Considerations

This section provides detailed information about the tools used in this work.

4.3.1 Google Maps

Google Maps API is a powerful toolset provided by Google that enables developers to

integrate maps, location-based services, and geolocation features into web or mobile

applications. One feature of interest to our work is the Directions service, an API

to get the route between two or more locations. The route generated is provided as

an Encoded Polyline, which is a Google-specific method of representing polyline data

in a compressed format that is easily transmitted over the internet. Instead of using

a series of latitude and longitude coordinates to define the points along a polyline,

encoded polylines use a series of encoded strings representing the offsets between

consecutive points on the polyline. The dataset we have at hand includes only the

check-ins made by users and does not encompass any information about the users’

movements between those check-ins. To address this, we have utilized the Directions

service to produce the trajectories, as depicted in figures 4.4 & 4.5.

A significant limitation of Google API is privacy laws prohibiting sharing the gen-

erated routes. Additionally, the API incurs a cost and is not free of charge. To this

end, we suggest using open-source routing APIs, such as OSRM2 and Graphhopper3.

2https://project-osrm.org/
3https://www.graphhopper.com/
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Figure 4.4: Trajectories for Foursquare-NYC

24



Figure 4.5: Trajectories for Foursquare-TKY
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4.3.2 H3

(a) H3 partition of the globe into Hexagons. (b) H3 Hexagons hierarchy

H34 is an open-source geospatial indexing system developed by Uber. The library

provides a way to represent and organize geographic coordinates into a hierarchical

grid system. H3 divides the earth’s surface into hexagons of various sizes, which can

be nested within each other to create a hierarchical structure. The hexagons are

defined by a unique index, which can be used to identify a specific location on the

earth’s surface. H3 provides a range of tools and functions to manipulate and analyze

data based on the hexagonal grid system.

We use H3 to obtain the higher-order check-ins and higher-order mobility flow.

Specifically, we utilize the latLngToCell(lat, lng, resolution) function, which

takes as inputs a latitude, longitude, and resolution and outputs the hexagon that en-

compasses the corresponding location at the specified resolution. Generating higher-

order check-ins is easy compared to higher-order mobility flow. As mentioned previ-

ously, the trajectory data consists of encoded polylines. Regrettably, H3 does not have

built-in compatibility for this format. Nevertheless, we have leveraged a community-

4https://h3geo.org/
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developed solution5 that expands the functionality of the H3 library to enable the

intersection of polylines with H3 hexagons. This capability is necessary for generat-

ing the higher-order mobility flow.

5https://github.com/DahnJ/H3-Pandas/issues/11
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Chapter 5

Modeling Trajectory-user Linking

In this chapter, we present details of our spatiotemporal deep-learning model, TUL-

HOR, that utilizes higher-order mobility flow data to accurately address the TUL

problem. TULHOR is composed of three components: (A) a spatial embedding

layer, (B) a spatial-temporal embedding layer, and (C) an encoder (see Fig. 5.1).

TULHOR is based on a Transformer architecture, specifically BERT [7], and uses a

masked language modeling task to generate contextual embeddings. TULHOR also

benefits from the self-attention mechanism of the Transformer architecture, making

it more powerful and efficient than RNN or LSTM models. Unlike BERT, which is

trained on sentences, TULHOR is trained on higher-order sequences of check-ins. We

also provide information about (D) pre-training, and (E) fine-tuning the model.

5.1 TULHOR’s Spatial Embedding Layer

To learn the spatial relationship of the grid cells, we first construct a graph that

captures the spatial proximity of grid cells. Then, we use the higher-order mobility

flow data to capture the semantic relationship of grid cells, similarly to the approach

followed in [73].
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Figure 5.1: High-level architecture of TULHOR.

5.1.1 Constructing a Hexagon-lattice Graph

Given a grid G, we construct an undirected, unweighted graph G = (V,E) of V nodes

and E edges, where a node u ∈ V represents a grid cell g ∈ G and an edge e(u,v) ∈ E

indicates that there is a movement from u ∈ V to v ∈ V in the mobility flow data.

We call this graph a hexagon-lattice graph because its nodes and edges are artifacts

of a hexagonal tiling of a map.

5.1.2 Learning Node Representations of the Hexagon-lattice
Graph

In this step, we employ the node2vec model [74] to learn the node representations of

the grid cells modeled in the hexagon-lattice graph. The node2vec model is based on

random walks on a graph to learn node representations. Instead of random walks, we
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use the high-order mobility flow data to represent walks on the graph (i.e., each high-

order trajectory represents a walk on the hexagon-lattice graph). By employing these

walks we end up learning the semantic relationships between different grid cells on

the map. These relationships reflect real-life connections between geographic areas,

including constraints imposed by the map (e.g., bridges) and do not solely capture

physical proximity. As a result, we learn spatial representations of grid cells.

5.2 TULHOR’s Spatiotemporal Embedding Layer

The spatial-temporal embedding layer converts sparse one-hot encodings of check-in

components (grid cells, POI, and timestamps) into a dense representation. POI infor-

mation is included to differentiate mobility patterns that traverse the same grid cell

sequence. For instance, Alice and Bob studying at the same university but in different

departments, would have similar grid cell movements but varying POI interactions.

The embedding process can be formulated as:

zgi = ϕg(gi,Wg) (5.1)

zpi = ϕp(pi,Wp) (5.2)

zsi = ϕs(gi,Ws) (5.3)

where gi is the grid cell id, pi is the point of interest visited in grid cell gi, and

zgi , z
p
i , and zsi are the embedding of the grid cell gi, point of interest pi, and the

spatial embedding of gi, respectively. The three embeddings are calculated through

three different layers: ϕg(.), ϕp(.), ϕs(.). The W refers to the learnable parameters

optimized during the learning process. Wg and Wp are randomly initialized matrices,

while Ws is initialized with the output of the spatial embedding layer.To preserve

the unchanging spatial features of cells and avoid unintended modifications during

training, Ws is frozen. Equations 5.1 and 5.3 use the same input, gi, but while

equation 5.1 learns the semantic embedding of cells during training, equation 5.3

reflects the static spatial features that remain constant. The dimensions of Wg, Wp,
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and Ws are n× dL , np × dL and n× dL, respectively, where n is the number of grid

cells in the tessellation, np is the number of POIs, and dL is the embedding dimension.

The timestamp ti is a continuous feature, and therefore, regarding it directly as

an input feature will lead to a loss of information since the embeddings will not

scale linearly in the feature space. The aim is to learn timestamp embeddings that

preserve the properties of time, such as periodicity. Furthermore, the distance in the

embedding space between two timestamps needs to be proportional to the difference

between the timestamps, i.e., the relative information between the timestamps must

be preserved. Inspired by existing work [75], we design a temporal-aware positional

encoding to replace the positional encoding used in the original BERT model with:

[zti ]j =

{︄
sin(wjti), if j is odd

cos(wjti), if j is even
(5.4)

where j is the order of the dimension, wj is a learnable parameter, and ti is the

timestamp of the ith check-in in the trajectory. To see why this temporal encod-

ing preserves the relative information between the timestamps, we can calculate the

distance between two consecutive timestamps as:

(zti)(z
t
i+1)

⊺ =
d∑︂

i=1

cos(wi(ti+1 − ti)) (5.5)

where the distance between ti and ti+1 timestamps is the dot product of their respec-

tive temporal encoding (zti) and (zti+1). We can observe that the distance between

the vectors is dependent on the difference between the timestamps ti+1 − ti and on

wi (parameters which the model learns during the training). Thus, the relative and

periodic information of time is preserved and learned in this encoding function.

We adopt a non-invasive self-attention mechanism [76] where the side information,

like spatial and temporal properties, is passed to the self-attention module directly

instead of adding it to the grid cell embeddings. Therefore, the spatial-temporal
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embedding layer produces two outputs:

R(id) = zg1 , z
g
2 , ..., z

g
m (5.6)

R = ({zs1, zs2, ..., zsm}, {z
p
1 , z

p
2 , ..., z

p
m}, {zt1, zt2, ..., ztm}) (5.7)

where R(id) embeddings are passed forward to the encoder, while the R embeddings

are passed directly to the self-attention component, as shown in the Figure 5.1. The

R(id) contains the embeddings of the grid cells, while R contains three sets, each one

having the embedding of different side information like spatial, temporal, and POIs.

5.3 TULHOR’s Encoder

The encoder block consists of a multi-head spatial-temporal non-invasive self-attention

mechanism followed by a position-wise feed-forward layer. The self-attention enriches

each token with spatial, temporal, and contextual information from other tokens in

the sequence. For the model to attend to all these different dependencies, the self-

attention mechanism uses multiple heads, allowing the model to capture various de-

pendencies in parallel. Following the multi-head self-attention component, there is a

position-wise feed-forward network with ReLu activation function to introduce non-

linearity. Next, there is a residual connection, which allows the gradient to flow

through the model without exploding or vanishing, making the training stable. The

training is further stabilized using layer normalization.

Note that the multi-head spatial-temporal non-invasive self-attention (ST-NOVA)

in TULHOR differs from the standard self-attention (SA) found in Transformer mod-

els. The standard self-attention is represented as:

SA(Q,K, V ) = σ(
QKT

√
dn

)V (5.8)

where Q,K, V ∈ Rm×dn , dn is the hidden state embedding dimensions, and σ is the

softmax operation. SA calculates the weighted average for each token in the sequence

based on its corresponding similarity with the other tokens in the same sequence. SA
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uses an invasive-attention, implying that any additional features, such as positional

information, must be infused into the input sequence representation. This has a major

drawback because the output of the self-attention layer is fed to the predicting layer,

which tries to search the token ID space; if we were to add additional features to the

sequence representation, then we would end up creating a compounded embedding

space, which makes the searching task harder. To address these problems, we use a

non-invasive attention instead, which is represented as:

NOV A(R(id), R) = σ(
QKT

√
dL

)V (5.9)

V = Rid ×WV , K = F ×Wk, Q = F ×WQ (5.10)

F = MLP (R(id)||R) (5.11)

where WV ,Wk,WQ ∈ RdL×dn , F ∈ Rm×dL and || is the concatenation operation. The

ST-NOVA takes two inputs, the input sequence id R(id) and the other side information

in R. Then ST-NOVA uses the input sequence id R(id) to calculate the Values

matrix. Regarding the Keys and Query matrices, the component concatenates the

input sequence id with the additional features and uses a multilayer perceptron (MLP)

to unify the dimension; the output of the MLP is used to calculate the Keys and Query

matrices. ST-NOVA uses the additional features to calculate how tokens are similar.

Unlike SA, which infuses the additional features directly into the input sequence, we

use the additional features to understand how two tokens are similar.

5.4 Pre-training TULHOR

BERT-based models are trained following the masked language modeling (MLM) and

the next sentence prediction (NSP) training approaches. In our setting, we do not

require the NSP task, so we drop it. The main issue with the MLM training is that

the model requires many steps to converge because only a percentage of the tokens are

masked, which translates to smaller training samples than the autoregressive training

task. To address this issue, we increase the percentage of masked tokens. The original
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BERT model is trained with 15% of tokens masked. However, recent research [77]

has shown that increasing the percentage of the masked tokens can boost the model’s

performance, while also helping it to converge faster. Therefore, we adapted the

recommended configuration of 40% of masked tokens. Let LMLM be the Masked

Language Modeling loss, then:

LMLM =
1

|Trm|
∑︂

gm∈Trm

− logP (gm = gm∗|Trm′
) (5.12)

where Tr is a trajectory and Trm
′
is the masked version of it, Trm is the set containing

the randomly masked items in Tr, and gm
∗
is the true grid cell for the masked item

gm.

5.5 Fine-tuning TULHOR

Pre-training our model using the masked language modeling objective, enables it to

learn generalized embeddings. Next, we need to fine-tune the model for addressing

the trajectory-user linking problem. The first step in fine-tuning our model is to

add a classification layer to TULHOR, which will get the probability distribution

of users. As in the traditional BERT, a [CLS] token is added in the beginning of

each trajectory. This token has no temporal-positional information; however, the

output of TULHOR for the token [CLS] is inferred by all the other steps in the

trajectory, so [CLS] maintains the spatial-temporal representation of the trajectory.

This means that the output of TULHOR for [CLS] can still be useful for trajectory-

user linking problem. Let hTr be the [CLS] representation of the trajectory Tr. Then

the classification layer is formulated as follows:

y′ = (WC · hTr + bc) (5.13)

where Wc ∈ R|U|×dL and bc ∈ R|U| are the weight matrix and bias of the classification

layer, y′ is a vector, and y′i is the probability that the trajectory Tr belongs to user ui.
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We apply a softmax activation function to y to transform the values into normalized

probabilities:

σ(y′i) =
ey

′
i∑︁|U|

j=1 e
y′j

for i = 1, 2, . . . , |U| (5.14)

The function’s output is a probability distribution, where all values are between 0

and 1, and the sum of all values is 1. This makes it easy to select the user with the

highest probability as the final output with argmax.

The final step in fine-tuning is network training, where we apply a balanced cross-

entropy loss, balanced by the number of effective samples [78], with backpropagation

to train our model. Given unlinked trajectory Tr generated by ui, then the loss is

represented as:

L(Tr, ui) =
1− β

1− βnui
log(σ(y′)) (5.15)

where nui
is the number of trajectories in the training set with user ui and β is a

hyperparameter that controls the balancing factor. Not all samples in the training set

have the same impact on performance. Some samples are more crucial, while others

may overlap, like in the case of trajectories. Balancing by the effective number of

samples considers this factor, whereas inverse class frequency sampling does not.

Note as well that the TULHOR is trained on a set of existing users (i.e., classes)

and its purpose is to classify new instances into one of the existing users (i.e., class).

If the TULHOR encounters a new instance that doesn’t fit into any of the existing

users (i.e., classes), it cannot make a prediction. In some cases, it is possible to retrain

the our model with new users (classes) or to modify the existing users (classes) to

include the new instance. However, this would require retraining the model with new

data and modifying its architecture accordingly.
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Chapter 6

Experimental Evaluation

This section provides an overview of the datasets, then presents the baseline methods

and elaborates on implementation details.

6.1 Datasets

We perform experiments on two real-world datasets, the New York (NYC) and Tokyo

(TKY) check-in datasets from the Foursquare1 social network, consisting of check-

ins from 2012-2013. The dataset is in tab-separated values(tsv) format, where each

row represents a check-in/record, as seen in 6.1. Each check-in contains:

• User ID (anonymized)

• Venue ID (Foursquare)

• Venue category ID (Foursquare)

• Venue category name (Foursquare)

1https://sites.google.com/site/yangdingqi

Figure 6.1: snippet of Foursquare-NYC
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• Latitude

• Longitude

• Timezone offset in minutes (The offset in minutes between when this check-in

occurred and the same time in UTC)

• UTC time

We form a check-ins trajectory by grouping user check-ins for each date where ”date”

refers to the year, month, and day. When creating a check-ins trajectory, the user

check-ins are first grouped by date, which means that all the check-ins that occurred

on the same day are combined and then merged in a temporally ascending order start-

ing with the earliest check-in and ending with the latest check-in. We do not consider

trajectories with less than three check-ins and users with less than five trajectories.

To assess model robustness, we evaluate them on three user groups (109, 208, all)

from both datasets, using 80% of user trajectories for training and the remaining 20%

to evaluate performance. Table 6.1 provides the statistics of the datasets.
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Table 6.1: Statistics of two Foursquare datasets (Foursquare-NYC and
Foursquare-TKY) including the # of trajectories for three user groups (108, 209,
all).

Dataset |U| |T |

Foursquare-NYC

108 6795

209 9,637

234 10,133

Foursquare-TKY

108 9343

209 14,151

451 20,964
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6.2 Baselines Methods

We evaluate TULHOR against the following baselines:

• Linear Discriminant Analysis (LDA): Is a supervised machine-learning method

for classification which aims to project the high-dimensional input data onto a

lower-dimensional space while preserving class-discriminatory information. We

use Bag-of-Words (BOW) to embed the trajectories and then apply Singular

Value Decomposition to reduce the dimensionality of the embeddings (SVD).

• Decision Tree (DT):The decision tree algorithm is a non-parametric method for

machine learning. It learns decision rules based on the data features and can

be used for classification purposes.

• Support Vector Machine (SVM): is a supervised machine learning technique that

seeks to learn a hyperplane capable of separating data points. It accomplishes

this by mapping the data to a higher dimensional space and then learning the

hyperplane. There are three distinct variations of SVM: Linear-SVM, which

learns a linear hyperplane, poly-SVM, which learns a polynomial hyperplane,

and RBF-SVM, which learns a radius-based hyperplane.

• TULER [3]: A recurrent neural network model with three variations RNN

(TULER), LSTM (TULER-L), and GRU (TULER-G). We reimplement this

model in PyTorch.

• DeepTUL [4]: A recurrent neural network with historical attention module,

this also has three variations RNN (DeepTUL), LSTM (Attn-LSTM) and GRU

(Attn-GRU). Unlike TULER, DeepTUL captures the temporal features and is

the current state-of-the-art model.
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6.2.1 Implementation Details

TULHOR model is implemented in PyTorch with one encoder layer and 12 attention

heads. For pre-training and fine-tuning, we use a batch size of 24 and a learning rate

of 0.005 with decays of 0.5. The embedding size is set to 512, β is set to 0.99 and

the model is trained for 10 epochs. We also reimplement TULER and its variants in

PyTorch and provide the code with our source code. The default settings are used

for the baselines.

6.3 Evaluation Metrics

For evaluating the performance of the TUL models, we use the following metrics from

the multiclass classification domain:

• Accuracy@k: Metric to measure how well a TUL model can identify and label

unknown trajectories. It measures the proportion of correct predictions within

the top k-ranked labels. For this work, we use acc@k with k=1 and k=5,

represented by the formula:

ACC@k =
(# of correct predictions within top k ranked items or labels)

k

(6.1)

• Macro-P: In TUL each trajectory is assigned to a user or label, and the goal

of the linking algorithm is to correctly identify the user for each trajectory.

Macro-precision, in this case, is the average precision across all the users or

labels in the dataset, where precision is the ratio of true positives to the sum of

true positives and false positives for each user or label.

To calculate macro-precision in the context of TUL, we first calculate the pre-

cision for every user(label) using the formula mentioned earlier:

Precision of a User =
TP

(TP + FP )
(6.2)
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Here, TP refers to the number of true positive trajectories (trajectories cor-

rectly linked to the user), while FP is the number of false positive trajectories

(trajectories incorrectly linked to the user). Once the precision for each user or

label is calculated, the macro-precision is obtained by taking the average of all

the precision values:

Macro− P =

∑︁U
i=1 Precision of i

|U|
(6.3)

A high macro-precision score indicates that the linking algorithm is performing

well in correctly identifying the user for each trajectory, while a low macro-

precision score implies that the linking algorithm is struggling to identify the

correct user, leading to a high number of false positives.

• Macro-Recall: is the average of recall for all users or labels in the datasets, where

recall is the ratio of true positives to the sum of true positives and false negatives

for each user or label. To calculate macro-Recall in the context of TUL, we first

calculate the Recall for every user(label) using the formula mentioned earlier:

Recall of a User =
TP

(TP + FN)
(6.4)

Where FN is the number of false negative trajectories (trajectories belonging

to the user but incorrectly linked to other users). The Macro-Recall is obtained

by taking the average of all the Recall values:

Macro−R =

∑︁U
i=1Recall of i

|U|
(6.5)

A high macro-recall score implies that the linking algorithm is correctly identi-

fying the majority of the trajectories that belong to a particular user or label,

with a relatively low number of false negatives. This means that the linking al-

gorithm is able to effectively distinguish between different users and accurately

identify their trajectories.
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• F1-Score:is an evaluation metric that combines both Macro-Recall and Macro-

P and is computed as the harmonic mean of the Macro-P and Macro-Recall

scores. A high F1 score indicates that the model achieves high precision and re-

call simultaneously. It accurately identifies positive instances while minimizing

false positives(trajectories incorrectly linked to a user or label) and negatives

(trajectories belonging to a user or label but incorrectly linked to another user

or label). The formula for F1-score is:

F1 = 2 ∗ Macro− P ∗Macro−R

Macro− P +Macro−R
(6.6)

6.4 Experimental Results

6.4.1 Accuracy Performance

In this study, we evaluate the performance of TULHOR and various baseline models

on the NYC and TKY datasets, with the results presented in Tables 6.2 and 6.3,

respectively. Our findings indicate that TULHOR outperforms all the other baseline

models under all the user groups settings and along every metric. In terms of F1

score, on the NYC dataset, TULHOR yields improvements of 2.53%, 7.8%, and 7.1%

when |U| = 108, 209, 234, respectively, over the strongest baseline model. Similarly,

for the TKY dataset, although the improvement in smaller user settings is moderate,

when |U| = 451 setting is considered, TULHOR improves over the strongest baseline

by nearly 8.1%. It is worth noting that while TULHOR consistently outperforms

the other baselines, the amount of improvement gains considerably increases as the

problem becomes more challenging (number of users increases), indicating the scal-

ability and effectiveness of our model. This superior performance can be attributed

to TULHOR’s ability to capture spatial-temporal patterns in trajectories more effec-

tively than the other methods. Additionally, unlike the baseline models, TULHOR

sufficiently addresses the imbalanced data through proper sampling techniques as re-

flected by the competitive macro recall and macro precision scores for all user groups.
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Table 6.2: Results on Foursquare-NYC mobility dataset. The highest perfor-
mance is indicated in bold and the second best performance has been underlined.
‘Improvement’ denotes the improvement of TULHOR model over the strongest base-
line.

Foursquare-NYC

|U| = 108 |U| = 209 |U| = 234

Model Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1

DT 0.884 0.892 0.878 0.867 0.868 0.785 0.788 0.753 0.728 0.730 0.778 0.782 0.722 0.712 0.705

LDA 0.822 0.851 0.962 0.810 0.868 0.746 0.781 0.791 0.687 0.718 0.696 0.752 0.724 0.615 0.650

LINEAR-SVM 0.873 0.929 0.966 0.878 0.909 0.776 0.839 0.785 0.702 0.727 0.731 0.798 0.724 0.628 0.657

POLY-SVM 0.640 0.712 0.916 0.556 0.657 0.478 0.586 0.678 0.440 0.509 0.495 0.584 0.634 0.415 0.480

RBF-SVM 0.885 0.932 0.949 0.850 0.885 0.763 0.842 0.760 0.673 0.702 0.724 0.797 0.697 0.600 0.632

TULER 0.870 0.929 0.869 0.851 0.852 0.776 0.853 0.749 0.722 0.718 0.768 0.844 0.733 0.707 0.703

TULER-L 0.903 0.942 0.904 0.890 0.890 0.847 0.898 0.828 0.803 0.807 0.845 0.889 0.821 0.806 0.803

TULER-G 0.909 0.949 0.914 0.897 0.898 0.854 0.892 0.835 0.811 0.812 0.846 0.891 0.821 0.805 0.803

Att-LSTM 0.823 0.896 0.715 0.703 0.709 0.716 0.832 0.554 0.559 0.556 0.712 0.830 0.569 0.557 0.563

Att-GRU 0.886 0.933 0.779 0.779 0.791 0.835 0.891 0.663 0.680 0.671 0.889 0.936 0.741 0.738 0.740

DeepTul 0.853 0.923 0.765 0.738 0.751 0.733 0.840 0.614 0.597 0.606 0.789 0.891 0.607 0.617 0.612

TULHOR 0.940 0.966 0.938 0.931 0.932 0.903 0.943 0.890 0.877 0.876 0.892 0.932 0.876 0.864 0.860

Improvement 3.42% 1.85% -2.89% 3.85% 2.53% 5.82% 5.07% 6.58% 7.83% 7.87% 0.35% -0.49% 6.61% 7.13% 7.19%
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Table 6.3: Results on Foursquare-TKY mobility dataset. The highest perfor-
mance is indicated in bold and the second best performance has been underlined.
‘Improvement’ denotes the improvement of TULHOR model over the strongest base-
line.

Foursquare-TKY

|U| = 108 |U| = 209 |U| = 451

Model Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1

DT 0.789 0.793 0.785 0.777 0.775 0.658 0.664 0.629 0.615 0.613 0.522 0.525 0.446 0.437 0.431

LDA 0.853 0.912 0.927 0.847 0.874 0.722 0.808 0.778 0.692 0.713 0.574 0.720 0.553 0.501 0.495

LINEAR-SVM 0.890 0.948 0.923 0.886 0.898 0.769 0.878 0.794 0.736 0.748 0.609 0.761 0.610 0.539 0.550

POLY-SVM 0.716 0.791 0.954 0.602 0.706 0.581 0.686 0.765 0.483 0.564 0.432 0.539 0.528 0.321 0.375

RBF-SVM 0.890 0.948 0.914 0.873 0.885 0.772 0.872 0.787 0.713 0.732 0.598 0.738 0.584 0.487 0.504

TULER 0.870 0.933 0.871 0.860 0.860 0.768 0.864 0.762 0.735 0.736 0.637 0.74 0.588 0.554 0.548

TULER-L 0.905 0.952 0.904 0.898 0.897 0.848 0.911 0.837 0.825 0.824 0.739 0.827 0.708 0.675 0.675

TULER-G 0.915 0.954 0.916 0.910 0.909 0.851 0.911 0.842 0.824 0.825 0.738 0.823 0.701 0.672 0.671

Att-LSTM 0.908 0.966 0.916 0.901 0.908 0.752 0.871 0.795 0.729 0.760 0.407 0.584 0.362 0.326 0.343

Att-GRU 0.933 0.975 0.932 0.928 0.930 0.869 0.937 0.872 0.856 0.864 0.742 0.821 0.715 0.689 0.695

DeepTul 0.922 0.966 0.927 0.913 0.920 0.773 0.904 0.820 0.747 0.782 0.660 0.790 0.631 0.587 0.608

TULHOR 0.939 0.973 0.937 0.934 0.933 0.893 0.953 0.883 0.877 0.875 0.801 0.888 0.783 0.755 0.752

Improvement 0.58% -0.26% -1.78% 0.71% 0.37% 2.7% 1.77% 1.33% 2.53% 1.30% 7.86% 7.47% 9.52% 9.53% 8.11%
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6.4.2 Ablation Study

We conduct a comprehensive ablation study to assess each component’s significance

in the TULHOR model. The full TULHOR model is compared against several mod-

ified variations, including: (1) -HOR: This eliminates the higher-order generation

step, essentially reducing the model to a BERT architecture that processes trajec-

tory data without high-order information, making it comparable to the approach of

the other baseline models. (2) -SP: This removes the spatial feature extractor step,

thus excluding spatial embedding from embedding layer. (3) -POI: The point-of-

interest information is removed from the higher-order trajectory and subsequently

POIs embeddings are removed from the spatial-temporal embedding layer. (4) -T:

This substitutes the temporal positional encoding with the standard positional encod-

ing used in the original Transformer architecture. (5) -B: This omits the balancing

factor from the training loss. The ablation study is conducted across different tes-

sellation levels to evaluate each component’s impact as grid cell size increases. We

discuss the ablation study for each tessellation separately before extrapolating how

each component behaves as the grid changes in size. The results of the ablation study

are shown in Figure 6.2.

Hex@9: Observing Figure 6.2a, where we notice that the removal of any of the

components results in a decrease in performance of the model, with varying degrees.

The results indicate that the inclusion of higher-order information in Hex@9 is cru-

cial for the model’s performance, as evidenced by the fact that the -HOR variation

performed the worst among all the experiments. The second worst performance was

observed in the -POI variation, highlighting the importance of using POI information

in conjunction with higher-order information to differentiate between visits to similar

grid cells. The results of the -SP and -T variations demonstrate the significance

of spatiotemporal features, respectively, in enhancing the performance of the model.

Lastly, the -B variation highlights the importance of effective sampling techniques
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(c) Hex@7 tessellation

Figure 6.2: Results of ablation experiments of TULHOR model for Foursquare-
TKY, |U| = 451 on different tessellation levels
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when dealing with imbalanced datasets, which is characteristic of the TUL datasets.

Hex@8: Upon examination of the Figure 6.2b, it is apparent that removing any

component, excluding -SP, leads to a reduction in performance. Notably, including

or excluding spatial embedding (-SP) produces equivalent performance levels across

all metrics because as the cell size increases, it becomes increasingly challenging for

the grid to capture the physical characteristics of the map. Specifically, in Hex@8,

the cell can encompass an entire block, which may comprise numerous roads. The

presence of multiple physical features within a single cell may hinder the model’s

ability to differentiate between them, thereby impeding its trajectory classification

capabilities. This may explain why the inclusion or exclusion of -SP from TULHOR

in Hex@8 does not impact the model’s performance. We notice that -Time, -POI,

and -B result in similar performance declines as in the previous tessellation.

Hex@7:The results of the ablation study conducted on Hex@7 are presented in

Figure 6.2c. The findings indicate that TULHOR performs best in terms of Macro-

Recall and F1-score. However, compared to -HOR, -Time, -SP, and -B, TULHOR

falls short in Acc@1. This is because as trajectories are represented on Higher-order

(Hex@7) where each cell covers a significant spatial size, all the trajectories will look

similar, making it harder for the model to classify the trajectory accurately. We notice

a significant decrease in performance for -POI variation since POIs can be used to

distinguish different trajectories and patterns. Removing them will make the linking

task harder, explaining the noticeable decrease in performance for -POI variation.

When we examine various tessellation options, we notice that the -POI variation’s

performance worsens as the size of the grid cell increases. This is not surprising, as

POIs are useful for differentiating between visits to the same cell. The decline in

performance is most noticeable in the lower levels of tessellation. In contrast, we

observe that -HOR maintains consistent performance across all tessellation levels

because it eliminates the higher-order generation step. With -SP, we observe a

decline in performance, particularly in the Hex@9 settings. However, there seems to
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be little reason to use spatial embedding at lower tessellation levels such as Hex@7

and Hex@8, as the grid cell becomes too large to capture the finer details of the map’s

spatial properties. Finally, removing time and balancing (-Time and -B) leads to

reduced performance across all tessellation levels.
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Figure 6.3: Results of varying hyperparameters on TULHOR model for
Foursquare-TKY, |U| = 451.

6.4.3 Impact of Hyperparameters

We evaluated TULHOR’s performance through a parameter study to understand the

effect of various hyperparameters: embedding dimension, hidden dimension, number

of encoder layers, and number of attention heads, with the experiments conducted

using Foursquare-TKY dataset with 451 users. The results are presented in Fig-

ure 6.3. We observe that increasing the embedding and hidden dimensions generally

improve TULHOR’s performance by allowing the model to store more information

in the latent space. Similarly, increasing the number of attention heads leads to im-

proved performance up to a certain point, but adding more than 16 heads results in a

decrease in performance, likely due to the limited size of the dataset. Lastly, adding

more encoder layers reduces the performance, suggesting that fewer layers may be

sufficient for smaller datasets.
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Table 6.4: Statistics about different tessellations with the # of cells and cell size for
each resolution for Foursquare-TKY

Resolution # of cells cell size (km2)

Hex@7 334 5.160

Hex@8 2,003 0.730

Hex@9 11,036 0.015

Table 6.5: Results of impact of different grid sizes on the performance of TULHOR
on Foursquare-TKY dataset.

Foursquare-TKY

#users = 108 #users = 209 #users = 451

Method Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1

Hex@7 0.923 0.971 0.920 0.911 0.913 0.868 0.943 0.832 0.817 0.815 0.711 0.883 0.734 0.734 0.711

Hex@8 0.926 0.977 0.925 0.917 0.917 0.868 0.940 0.862 0.849 0.849 0.790 0.884 0.753 0.740 0.733

Hex@9 0.939 0.973 0.937 0.934 0.933 0.893 0.953 0.883 0.877 0.875 0.801 0.888 0.783 0.755 0.752

Table 6.6: Statistics about different tessellations with the # of cells and cell size for
each resolution for Foursquare-NYC

Resolution # of cells cell size (km2)

Hex@7 379 5.160

Hex@8 2,181 0.730

Hex@9 11,343 0.015

Table 6.7: Results of impact of different grid sizes on the performance of TULHOR
on Foursquare-NYC dataset.

Foursquare-NYC

#users = 108 #users = 209 #users = 234

Method Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1 Acc@1 Acc@5 P R F1

Hex@7 0.785 0.883 0.795 0.755 0.760 0.681 0.789 0.649 0.630 0.621 0.609 0.742 0.558 0.530 0.523

Hex@8 0.808 0.886 0.814 0.782 0.787 0.692 0.808 0.678 0.6489 0.647 0.642 0.765 0.628 0.597 0.592

Hex@9 0.940 0.966 0.938 0.931 0.932 0.903 0.943 0.890 0.877 0.876 0.892 0.932 0.876 0.864 0.860
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6.4.4 Impact of Grid Cell Size

We conduct one more study to test the impact of varying grid cell sizes on TULHOR’s

performance. We test three different sizes and refer to them as Hex@k, where k =

{7, 8, 9} is the resolution. The smaller the k is set to, the larger the cell size is, thereby,

decreasing the number of cells in the grid. Table 6.4 and 6.6 provides the statistics

about the different tessellations. The results of this experiment are presented in

Table 6.5 and 6.7 .

Foursquare-TKY:For the 108 user setting, a 2% decrease in macro F1 is observed

for Hex@8 and Hex@7, with slightly higher accuracy for Hex@9. For 209 users, the

gap in performance between Hex@9 and other tessellations grows, reaching a 6%

difference in macro F1 for Hex@7 and a 3% difference for Hex@8, along with a 3%

decrease in accuracy between Hex@8 and Hex@9. In the 451 user setting, while

the performance difference between Hex@8 and Hex@9 remained relatively stable, a

significant gap in ACC@1 between Hex@9 and Hex@7 is observed. Comparing the

209 and 451 user settings, the difference between Hex@9 and Hex@7 in recall and

precision decreased from 6% to 4%, likely due to the use of an effective balanced

sampling technique for dealing with imbalanced datasets, like the 451 user setting.

Foursquare-NYC:Hex@9 achieves the best performance across different user set-

tings. The gap in performance between Hex@9 and other tessellation, i.e., Hex@8

and Hex@7, widen as the number of users grows. For example, Hex@9 outperforms

Hex@8 in the 108 users settings by 14.5% in F1, while for the 209 users, the difference

in F1 is 22.9%, and finally, the difference grows to 26.8% in the 234 user settings.

These results are consistent across other performance metrics as well.

To conclude, as the cell size increases, capturing user movement patterns becomes

increasingly challenging, as seen in the results.
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(a) Hex@9 tessellation

(b) Hex@8 tessellation

(c) Hex@7 tessellation

Figure 6.4: Different tessellations levels for Foursquare-NYC dataset.
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(a) Hex@9 tessellation

(b) Hex@8 tessellation

(c) Hex@7 tessellation

Figure 6.5: Different tessellations levels for Foursquare-TKY dataset.
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6.4.5 Impact of Sparsity
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Figure 6.6: The sparsity of check-ins, High-order check-ins, and High-order mobility
flow across different tessellations For Foursquare-NYC & Foursquare-TKY
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Figure 6.7: The F1 score of -HOR and TULHOR across different tessellations. The -
HOR variation utilizes raw check-ins and acts as an indicator of the impact of sparsity.

We carried out an additional study to investigate how sparsity affects TULHOR

and how to determine the appropriate tessellation resolution. We plotted the sparsity

of high-order check-ins and mobility flow in NYC and TKY across various tessellations

as shown in Figure 6.6. As grid cells become larger, the sparsity decreases because

each cell covers a larger spatial area. To understand how changes in sparsity affect

model performance, we also plotted the sparsity of raw check-ins and the F1 score

of TULHOR across different tessellations.To provide a comparison metric, we also

plotted the performance of the -HOR variation in Figure 6.7, which removes the

higher-order generation step and reduces the model to a BERT architecture that

processes trajectory data without high-order information. This allows us to compare

the approach to other baseline models, where the input is raw check-ins.
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We observed that a small reduction in sparsity can lead to a substantial improve-

ment in performance. For instance, a 1% reduction in sparsity can increase the F1

score by more than 5%. However, further reductions in sparsity have a negative im-

pact on model performance. For example, a 2% reduction in sparsity due to the switch

from Hex@9 to Hex@8 results in a 2% decrease in F1 for TKY and a 20% decrease

in F1 for NYC. The decline in performance is more pronounced in NYC since most

of the data is concentrated in Manhattan, which requires only a few Hex@8 grid cells

to cover.

A decrease in sparsity implies an increase in the density of the interaction matrix,

making it challenging for the model to capture individual patterns. Therefore, choos-

ing an appropriate resolution requires selecting a resolution that reduces sparsity

without significantly increasing density and confusing the model.
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Chapter 7

Conclusions

In this work, we proposed a novel deep learning framework – TULHOR (trajectory-

user linking using higher-order representations) – for modeling the trajectory-user

linking problem. We proposed a method for generating higher-order check-ins and

mobility flow data to address some of the data quality and sparsity challenges. The

method creates a hexagonal tessellation of a map. Then it projects both check-ins

and mobility flow data to the higher spatial order to obtain high-order check-ins

and high-order mobility flow. The high-order data serves as an input to TULHOR,

where we use high-order mobility flow data to learn the spatial properties of grid

cells and capture the physical properties of the map, while the higher-order check-

ins serve as input to the embedding layer in TULHOR. We adopted a non-invasive

attention approach in the encoding layer to combine the spatial and temporal features.

The results of extensive experiments over two real-world datasets demonstrated the

effectiveness of the proposed model, which consistently outperforms several strong

baselines. We achieved a 7.19% improvement over SOTA in the F1 metric on NYC and

8.11% on TKY. TULHOR outperformed other baselines across all metrics, achieving

a 6.61% improvement in Macro-P on NYC and a 9.52% improvement on TKY. We

conducted an ablation study of different tessellation levels to evaluate the impact of

each component of our model at each tesselation level. Finally, we ran a parameter

study to explore the impact of hyperparameters and grid cell size.
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7.1 Future Work

7.1.1 Multi-trajectory User Linking

The TUL task involves processing a single trajectory to identify the user it belongs to.

In contrast, the Multi-trajectory user linking approach involves handling multiple tra-

jectories, all attributable to an unknown user, to identify the said user. The primary

obstacle in Multi-trajectory user linking lies in effectively capturing the extended

spatial-temporal interdependencies spanning the multiple trajectories and associat-

ing them with their respective user. However, the adaptable nature of TULHOR,

which leverages Transformer-based architectures known for their proficiency in han-

dling lengthy sequences, renders it a viable candidate for addressing Multi-trajectory

user linking.

7.1.2 Trajectory-user Linking on the Roads Network

In the context of Trajectory-user Linking on Road Networks, the trajectory under

consideration is composed of road segments that describe the path traversed by the

user on the underlying road network, as opposed to the more conventional trajecto-

ries that are composed of check-ins. This departure from the norm has the potential

to introduce novel insights into the analysis of user behavior and mobility patterns.

Using road segments in trajectory representation enables a more granular and de-

tailed account of the user’s movements, thereby affording greater accuracy in user

identification tasks. An intriguing avenue for future research would be to investigate

the efficacy of incorporating high-order trajectory information in the context of road

segments.

7.1.3 Point-of-Interest Recommendation

The point-of-interest recommendation is the task of predicting the next place that a

user will visit. It is a widely known and researched problem with various applications.

TULHOR can be extended with ease to address the POI recommendation task, as all
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it requires is to change how training and fine-tuning are done. It will be interesting

to explore the impact of incorporating higher-order mobility flow data and how it can

facilitate the recommendation task.

7.1.4 Mixed Tessellations

All tessellation techniques divide the spatial map into an equally-sized polygon. A

new avenue for future research is exploring the impact of mixed-sized tessellation. The

advantage of using mixed-sized tesselation is the ability to control what is included in

each polygon. For example: in our case, some polygons have more POI than others,

while other polygons might only have one. The proposed solution is to divide the

polygons with a high concentration of POI and merge those with fewer POI. This

approach should create a balanced distribution of POI across polygons, leading to

improved performance.
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