
LEVERAGING DEEP LEARNING FOR TRAJECTORY SIMILARITY
LEARNING AND TRAJECTORY PATHLET DICTIONARY

CONSTRUCTION

GIAN CARLO ALIX

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING & COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO

AUGUST 2023

© GIAN CARLO ALIX, 2023

Abstract

The rapid development of geospatial technologies and location-based devices have mo-

tivated the research community of trajectory data mining, due to numerous applications

including route planning and navigation services. Of interest are similarity search tasks that

several works addressed through representation learning. Our method St2Box offers refined

representations by first representing trajectories as sets of roads, then adapting set-to-box ar-

chitectures for learning accurate, versatile and generalizable set representations of trajectories

for preserving similarity. Experimentally, St2Box outperforms baselines by up to ∼38%.

Another related problem involves constructing small sets of building blocks that can rep-

resent wide-ranging trajectories (pathlet dictionaries). However, currently-existing methods

in constructing PDs are memory-intensive. Thus, we propose PathletRL for generating

dictionaries that offer significant memory-savings. It initializes unit-length pathlets and itera-

tively merges them while maximizing utility – that is approximated using deep reinforcement

learning-based method. Empirically, PathletRL can reduce its dictionary’s size by up to

65.8% against state-of-the-art methods.

ii

Acknowledgements

Firstly, I would like to express my sincerest appreciation to my supervisor, Dr. Manos

Papagelis, for his guidance, expertise, and unwavering support throughout this research

journey. His valuable insights, constructive feedback, and mentorship have been instrumental

in the shaping of this thesis.

I would also like to acknowledge the examination committee members, Dr. Hina Tabassum

and Dr. Mehdi Nourinejad, for taking the time to read my thesis and providing invaluable

feedback that enriched the content and quality of my thesis.

Furthermore, I would like to express my deepest gratitude to my parents, Nurain Alix

and Antonio Alix, for their unwavering love, endless support, and boundless encouragement

throughout this academic pursuit.

In addition, I also would like to extend my thanks to my friends and my colleagues whose

presence and camaraderie added immeasurable value to this thesis journey.

iii

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 The State of the Art and Limitations . 2

1.1.1 SotA and Their Limitations for Similarity Search Tasks 3

1.1.2 SotA and Their Limitations for Pd Construction 4

1.2 The Proposed Approach . 5

1.2.1 The Proposed Approach for Similarity Search Tasks 6

1.2.2 The Proposed Approach for Pd Construction 7

1.3 Contributions . 8

1.4 Thesis Organization . 9

2 Literature Review 11

iv

2.1 Trajectory Similarity . 11

2.1.1 Traditional Methods . 12

2.1.2 Learning-based Methods . 12

2.2 Pathlet Mining . 14

2.2.1 Subtrajectory Clustering . 15

2.3 Graph Mining . 16

2.3.1 Edge Contraction . 16

2.3.2 Machine Learning with Graphs . 17

2.4 Deep Learning . 20

2.4.1 Deep Representation Learning for Trajectories 20

2.4.2 Deep Reinforcement Learning . 21

2.4.3 Deep Learning for Sets . 23

3 Preliminaries 25

3.1 Preliminary Definitions . 25

3.2 Problem Statements . 28

3.2.1 Trajectory Similarity Learning . 28

3.2.2 Trajectory Pathlet Dictionary Construction 31

4 Methodology 38

4.1 St2Box: Similarity Learning for Trajectories 38

4.1.1 Algorithmic Details of St2Box . 40

4.1.2 Spatiotemporal Representation Learning of Road Segments 42

4.1.3 From Trajectories to Sets . 45

4.1.4 The Box Architecture . 46

4.2 PathletRL: A Solution for Pd Construction 50

4.2.1 Extracting Candidate Pathlets . 51

4.2.2 Reinforcement Learning Framework 58

4.2.3 Space Complexity Analysis . 61

5 Evaluation 62

5.1 Evaluating St2Box . 62

5.1.1 Research Questions . 62

5.1.2 Datasets . 63

5.1.3 Experimental Parameters . 63

5.1.4 Baselines . 64

5.1.5 Evaluation Metrics . 65

5.1.6 Results and Discussion . 66

5.2 Evaluating PathletRL . 71

5.2.1 Research Questions . 71

5.2.2 Datasets . 72

5.2.3 Experimental Parameters . 73

5.2.4 Baselines . 74

5.2.5 Evaluation Metrics . 75

5.2.6 Results and Discussion . 75

6 Conclusions 85

6.1 Summary and Contributions . 85

6.2 Future Research Directions . 86

Bibliography 88

Appendices 117

A The Broader Impact: Applications to Pathlet Dictionaries 117

A.1 Trajectory Compression . 117

A.2 Route Planning . 118

A.3 Trajectory Prediction . 118

A.4 Anomaly Detection . 118

B Proofs to Theorems 119

B.1 Proof of Theorem 4.2.1 . 119

B.2 Proof of Theorem 4.2.2 . 124

C Other Deep Reinforcement Learning Policies 129

D Ground Truth Similarity Measures 130

D.1 Two-Phase (Tp) . 130

D.2 Distributed In-Memory Trajectory Analytics (Dita) 130

D.3 Longest Common Road Segment (Lcrs) . 132

D.4 Network-aware Erp (NetERP) . 132

D.5 Fréchet Distance (Fréchet) . 133

E The Choice of Baselines against PathletRL 134

F Reproducibility 136

List of Tables

3.1 Summary of Notations . 26

3.2 Notations for the Pathlet Dictionary’s Objective Function 37

4.1 Cardinality measures for the objective function 48

4.2 Color Coding of Pathlets for Example 4.2.1 56

4.3 Pathlet-based Representation of Trajectories for Example 4.2.1 56

5.1 Datasets used in the Top k Similarity Search Problem 63

5.2 Trajectory Similarity Search Numerical Results 67

5.3 Datasets used in the Pd Construction Problem 72

5.4 PathletRL Ablation Features . 73

5.5 Pd Construction Numerical Results . 76

viii

List of Figures

1.1 Road-based Set Embedding Example . 5

1.2 Example of Edge-Disjoint Pathlets . 6

1.3 Initial Memory Storage Requirements (Horizontal Bar Plot) 7

3.1 Example of Map-Matching . 27

3.2 Example of Spatiotemporal Similarity in Trajectories 29

3.3 Example of a Pathlet Graph . 32

3.4 Example of a Pathlet Dictionary . 36

4.1 The overall architecture of St2Box. 39

4.2 The PathletRL Architecture . 50

4.3 Initial and Final Pathlet Dictionary Constructions 53

4.4 Road Network to Pathlet Graph Representation for Example 4.2.1 54

4.5 Trajectory Paths (Road Segments) for Example 4.2.1 54

4.6 Pathlet Labels for Example 4.2.1 . 55

5.1 Robustness of St2Box . 70

5.2 Parameter Sensitivity of the Box Smoothing Parameter 70

5.3 Initial Memory Storage Requirements (Vertical Bar Plot) 78

5.4 Plot of the RL Performances of PathletRL 79

5.5 Pathlet Length Distribution Plots . 80

ix

5.6 Partial Trajectory Reconstruction Plots . 81

5.7 Parameter Sensitivity Analysis Plots for the Pd Construction Problem . . . 82

B.1 Example of a Pathlet Tree . 124

D.1 Tp Method Example . 131

Abbreviations

Abbreviation Definition

St2Box
Spatiotemporal Trajectories to Box Embeddings for Similarity

Learning
Seg2Vec Segments to Vector Representation
SegSrl Segment-based Spatial Representation Learning
SegTrl Segment-based Temporal Representation Learning
Seg2Box Segments to Box Representation

Tp Two-Phase Algorithm
Dita Distributed In-Memory Trajectory Analytics
Lcrs Longest Common Road Segments

NetErp Network-aware Edit Distance with Real Penalty
Pd Pathlet Dictionary
Dqn Deep Q Network
Drl Deep Reinforcement Learning
Mdp Markov Decision Process

PathletRL
Pathlet Dictionary Construction using Trajectories with Reinforcement

Learning
Poi Point of Interest

SotA State-of-the-art

xi

Chapter 1

Introduction

The development of technology for gathering and tracking location data has led to the

accumulation of vast amounts of trajectory data, consisting of spatial and temporal information

of moving objects, such as persons or vehicles, that can be used in a variety of trajectory data

analytics [153, 119]. Mining trajectory data to find interesting patterns is of increased research

interest due to a broad range of practical applications relating to domains in transportation

systems [92, 82], urban planning [55, 83], security [33, 47, 95], spatiotemporal epidemics

[5, 4, 110], behavioral animal ecology [24, 117], among others. There are several technical

problems in trajectory data mining that researchers and practitioners have focused on in

recent years, including trajectory classification [108, 88, 73], clustering [81, 1, 52], prediction

[192, 60, 183, 113, 168], simplification [161], recovery [32] and anomaly detection [114, 71]. A

few comprehensive surveys on the topic can be found in Zheng [194], Alturi et al. [10], and

Hamdi et al. [50].

In this research, we focus on the trajectory similarity problem, where given a trajectory set

T and a query trajectory τq, we want to discover (and rank) the top k trajectories in T that are

most similar to τq. Efficient methods for trajectory similarity are well sought-after due to their

utility in several real-world applications, such as route planning [169], travel time estimation

1

[86, 160], and recommending trips [159] or points of interest (Pois) [151]. Moreover, we also

address another problem of interest that is fairly new and is also related to trajectory data

mining. It involves the construction of a small set of basic building blocks that can represent

a wide range of trajectories, known as a (trajectory) pathlet dictionary (Pd). The term pathlet

appears in the literature by many names, such as subtrajectories, trajectory segments, or

fragments [26, 1, 86, 192, 120, 108]. For consistency, we will use the term pathlets to denote

these building blocks. Effectively constructing pathlet dictionaries is of increased research and

practical interest due to a broad range of tasks and applications that can use it, such as route

planning [26, 174], travel time prediction [54], personalized destination prediction [192, 167,

36], trajectory prediction [168, 60], and trajectory compression [26, 193]. For instance, storing

massive trajectory datasets in smaller, limited resources such as mobile devices may require

the need for compressing trajectories that preserves important spatiotemporal features while

minimizing information loss; in such a case, a pathlet dictionary that could represent as many

trajectories possible in the dataset could be useful. In another example, pathlet dictionaries

can be beneficial in answering user queries such as path recommendations, particularly in

cases for when navigation service apps are not readily available (e.g., lack of internet coverage,

weak mobile signals, etc.). Appendix A provides an in-depth discussion of these applications.

1.1 The State of the Art and Limitations

To maintain focus on the two problems of interest we intend to address, we split this Chapter

into two parts. The first part discusses the state-of-the-art models (and their limitations) for

the trajectory similarity search problem, while the second covers the state-of-the-art methods

for constructing pathlet dictionaries (Pd), together with their inherent limitations.

2

1.1.1 SotA and Their Limitations for Similarity Search Tasks

Traditional metrics for measuring the similarity of two trajectories such as Dtw [173], Lcss

[147], Hausdroff [9], and Erp [27] exist as free-space measures – that consider the geometric

aspect of trajectories on the continuous (e.g., Euclidean) space. Others such as Tp [126],

Dita [128], Lcrs [177] and NetERP [72] are called network-aware measures – that take into

account the properties of the underlying road network (e.g., network structure, connectivity,

etc.). The problem with these metrics lie on their computational overhead when measuring

similarity; their expensive runtimes [53, 85] is due to their dependence on quadratic O(n2)

time pointwise matching schemes (for average trajectory length n), and can be a severe

bottleneck when working with larger datasets [171, 185].

To address the concerns regarding computational complexity, several learning-based models

[85, 171, 185, 170, 53] have been proposed that represent trajectories as embedding vectors

while preserving their similarity relations in the latent space. These methods avoid operating

directly on the original trajectories and have demonstrated significant computational savings.

However, Yao et al. [172] and Li et al. [85] both treat their trajectories as ordinary sequence

data and as a result are unable to capture the spatial semantic information of trajectories

when represented as vectors. Yao et al.’s [171] NeuTraj focuses only on calculating similarity

between two complete trajectories and thus ignores the rich information of sub-trajectories

and the interrelationships among them. Zhang et al.’s [185] Traj2SimVec is designed

mostly for learning similarity metrics on the Euclidean space only and thus fails to learn

spatial information on the road network. Han et al.’s [53] Gts is only designed for Poi-based

trajectory similarity computation and disregards actual travel paths on the road network.

All these works moreover ignore the temporal aspect of trajectories and can be sub-optimal

in contexts where real-time information is required (e.g., personalized trip recommendations).

To address this limitation, Fu et al. [45] has proposed Trembr, an Rnn-based encoder-

3

decoder that takes the temporal information into account. It considers timestamps in the

decoding process, but is unable to capture the temporal regularities and periodic patterns in

trajectories. Fang et al.’s [39] St2Vec learns the temporal features of trajectories by also

capturing the periodic behaviors and the temporal dependence of the trajectories.

1.1.2 SotA and Their Limitations for Pd Construction

Many existing works frame the problem of analyzing and deriving pathlets as a (sub)trajectory

clustering problem, where (sub)trajectory clusters represent popular paths (the pathlets) [81,

74, 1]. A few works considered an integer programming formulation with constraints to solve

the problem [26, 86]. Some works designed their pathlets based on a route “representativeness”

criterion [108, 156]. Unfortunately, these existing works suffer some limitations. For example,

Chen et al. [26] assumes that the datasets used are noise-free. Zhou et al.’s [195] bag-of-

segments method requires that trajectory segments are of fixed length. Van Krevald et al.

[74] demands input trajectories to have the same start/endpoints. The cluster centroids in

(sub)trajectory clustering methods [81, 74, 1, 155] do not necessarily reflect real roads in the

road network. In addition, Wang et al. [156] demonstrated empirically that these clustering

methods are computationally slow. In spite of runtime improvements, [156] also requires

the user to provide some budget constraint B in the route representative discovery task, a

domain-specific parameter that requires domain expert knowledge. Another related method

is Traculus [81] that requires pathlets to be straight line segments, which is not always

the case in real road maps. In addition, all these works do not constraint pathlets to be

edge-disjoint ; two pathlets are said to be edge-disjoint if they don’t share any edge. Therefore,

existing works allow pathlets in the dictionary to (partially) overlap. These methods, by

design, follow a top-down approach in constructing a dictionary. This involves forming all

possible pathlet candidates first, by considering pathlets of various configurations and sizes,

4

Figure 1.1: (a) A small road network; (b) The path of some trajectory τ ; (c) The road-based
representation of τ ; (d) The spatiotemporal embedding vector for each road of τ ; (e) All
trajectories represented as the set of road embedding vectors.

and then eliminating candidates to form a smaller-sized dictionary that consists of only the

most important ones (e.g., the most popular). While simple and intuitive, its main limitation

is the need for a large memory to initially store the large number of pathlets, most of which

are redundant. This also limits its applicability in real-world settings, particularly when

dealing with large road networks and trajectory data, as the number of initial candidates can

quickly become overwhelming.

1.2 The Proposed Approach

Similar to Chapter 1.1, we also split this Chapter into two parts. The first (second) part

gives a brief overview of the proposed approach for addressing the trajectory similarity search

task (pathlet dictionary construction) problem.

5

Figure 1.2: This illustrates a toy road network in the form of a graph and the edge-disjoint
pathlets1(different colors represent different pathlets).

1.2.1 The Proposed Approach for Similarity Search Tasks

Our work aims to address the limitation of works that ignore the temporal similarity. But

even for those that do consider it, we also target to improve model performance. In this

work on trajectory similarity, we leverage the set data structure – which to the best of our

knowledge is the first to do so due to the approach being not too popular. Indeed, trajectories

have a preserved inherent ordering and sets are permutation-invariant in nature. However,

we demonstrate that our method that learns the spatiotemporal information of the road

segments (as elements) traversed by these trajectories (as sets) suffices to ignore the ordering

of the road segments. By expressing each trajectory as a set of (time-enabled) road segments

(i.e., decomposing trajectories as sets of the traversed roads, with timestamps), learning the

spatiotemporal embedding vectors of each road of the trajectory (see Figure 1.1), and then

collectively feeding them to a neural network that respects various set properties, then we

can learn effective spatiotemporal representations of trajectories while preserving similarity

relations. Similarities of trajectories with these learned representations (called box embeddings)
1Note that in this specific toy example, all the pathlets here have pathlet length of 1 but in theory could

be of longer lengths. See Definition 3.2.3 for more details.

6

Figure 1.3: The memory required by top-down (existing) methods that use overlapping
pathlets can be reduced by our proposed bottom-up solution that use edge-disjoint pathlets.

can be quickly computed, and then we return the top k trajectories in the trajectory set

that are most similar to the query trajectory. In other words, the (spatiotemoral) trajectory

similarity problem is framed as a road segment-based set similarity problem.

1.2.2 The Proposed Approach for Pd Construction

To address these limitations, we propose a bottom-up approach for constructing a pathlet

dictionary that complies with edge-disjoint pathlets (see Figure 1.2) and reduces memory

storage requirement. In Figure 1.3 for instance, we illustrate how our proposed approach

saves up to ∼24K× less memory space than existing methods for storing the initial pathlets

(see Experiment (RQ 2.2) for full details, with Appendix B.2 presenting a more theoreotical

proof). The key idea of our approach is to initialize unit-length pathlets and iteratively merge

them to form longer, higher-order ones, while maximizing utility [3, 94]. Longer pathlets

are preferred (over shorter ones) as they hold more spatiotemporal information, such as

mobility patterns in trajectories [26]. A deep reinforcement learning method is proposed to

approximate the utility function.

7

1.3 Contributions

We collectively summarize the list of all contributions this thesis paper has to offer:

• To the best of our knowledge, our work is the first to treat trajectories as sets that

can be fed into neural networks for learning set similarity relations and supporting set

operations in vector space. In particular, the trajectories are expressed as sets of road

segments before passing them to the set-specific neural network. Thus, our work is the

first to treat the trajectory similarity problem as a set similarity problem.

• We introduce a deep representation learning method Seg2Vec for projecting road

segments onto the spatiotemporal embedding space. In particular, we adapt a similar

framework as the work of Fang et al. [39] for learning latent representations of road

segments instead of trajectories.

• We propose St2Box, for retrieving (and ranking) the top k trajectories in our dataset

that are most similar to a query trajectory. The approach finds sets of road segments

in the network that are most similar to the segment-based set representation of the

query trajectory using a set-to-box architecture [79], specifically for trajectory’s road

segments.

• We demonstrate through experiments that our method is able to outperform SotA

baselines, by as much as ∼38%.

• We revisit the relatively new problem of interest, pathlet dictionary construction, where

we introduce a more strict definition of a pathlet than in previous works to comply with

edge-disjoint pathlets. This enables a bottom-up approach for constructing pathlet

dictionaries that reduces memory storage needs.

8

• We introduce two novel metrics, namely trajectory loss and trajectory representability,

which allow us to more comprehensively evaluate the utility of a pathlet and the overall

quality of a constructed pathlet dictionary.

• We formulate the problem of pathlet dictionary construction as a utility maximization

problem, where shorter pathlets are merged to form a set of longer ones with higher

utility.

• We propose PathletRL, a deep reinforcement learning method that utilizes a Deep Q

Network (Dqn) policy to approximate the utility function of constructing a pathlet

dictionary. To the best of our knowledge, this is the first attempt to employ a deep

learning method for the problem.

• We demonstrate empirically that the dictionary constructed by our PathletRL is of

superior quality to those constructed by traditional non-learning-based methods. Our

method reduces the size of the the dictionary by up to 65.8% compared to other methods.

Moreover, using only half of the pathlets in the dictionary suffices to reconstruct 85%

of the original trajectory data.

• We make our source code publicly available to encourage the reproducibility of our

work (see Appendix F for more details).

1.4 Thesis Organization

For the remainder of this thesis, we first provide in Chapter 2 a thorough review of related

works in the literature that are relevant to the study of interest. Then, in Chapter 3, we

introduce some preliminary background, including the common notations and definitions

throughout this thesis. In the same chapter, we also formalize the problems that we aim to

9

address. Chapter 4 gives a more in-depth discussion on the proposed methods, and then

evaluate the performances of these methods in Chapter 5. More specifically, we describe the

design of the experimental study – including the datasets used, the evaluation metrics, the

various baseline models, the results of the experiments, insightful discussions based on the

observed results, and other details relevant to the experimental design. Finally, we end the

thesis with some concluding remarks in Chapter 6.

10

Chapter 2

Literature Review

Research interest on mobility data and their applications has grown over the years, and we

discuss in this chapter some of the most notable efforts towards this area. For instance, surveys

from [194, 41, 10, 50] have compiled and highlighted the most significant and substantial

contributions in the area of trajectory data mining. As deep learning have become hot these

days, surveys [152, 154] emphasized works in trajectory data mining that have seen success

in the use of deep learning methods.

We organize the following literature review as follows. We begin by conducting an

extensive review on works related to trajectory similarity in Chapter 2.1. We then cover

works relevant to mining pathlets in Chapter 2.2. Next, we provide some review on a related

area of graph mining in Chapter 2.3, and finally cover some related works that are relevant

to deep learning methods in general in Chapter 2.4.

2.1 Trajectory Similarity

A popular problem in trajectory data mining is known as the trajectory similarity problem;

refer to [141, 135, 139] for some relevant surveys. As this thesis also aims to provide some

11

contribution towards this problem of interest, we provide some discussion as well on some

of the related existing works – both on traditional [44, 173, 147, 27, 9, 126, 128, 177, 72]

and learning-based [172, 85, 171, 186, 45, 185, 170, 53, 39, 61] methods. We first review

traditional-based measures and then go over the learning-based ones.

2.1.1 Traditional Methods

Traditional metrics for measuring the similarity of two trajectories such as the Dtw (Dynamic

Time Warping) [173], Lcss (Longest Common Subsequence) [147], Hausdroff distance [9],

and Erp (Edit Distance with Real Penalty) [27] exist as free-space measures. There are also

those such as Tp (Two-Phase Algorithm) [126], Dita (Distributed In-Memory Trajectory

Analytics) [128], Lcrs (Longest Common Road Segments) [177] and NetErp (Network-

aware Edit Distance with Real Penalty) [72] are network-based measures. The problem with

these similarity measures lies on their computational overhead when measuring similarity.

Running times are computationally expensive due to their dependence on quadratic O(n2)

time pointwise matching schemes, where n is the average trajectory length. This can quickly

become a severe bottleneck when working with larger trajectory datasets [171, 186].

2.1.2 Learning-based Methods

To address the main limitations of traditional-based methods, we turn our attention to learning-

based models [172, 85, 171, 186, 45, 186, 170, 53, 39, 61], where some deep architecture

learns representations of these trajectories in the low-dimensional embedding space while

preserving the trajectories’ similarity relations. Clearly, two similar trajectories are found

proximate each other in the latent space; and moreover, dissimilar trajectories are found

farther apart each other. These learning-based methods tend to avoid operating directly on the

original trajectories, and as a result have demonstrated significant computational savings. For

12

example, Yao et al. [172] used sliding windows to extract spatial and temporal characteristics

that are invariant in trajectories, which provides some information on the trajectories’ object

movements. Li et al. [85] uses a recurrent neural network-based architecture to preserve the

sequential feature in trajectories; they demonstrated that their technique is robust to noisy

and non-uniform trajectory points while presenting a fast, efficient approach for similarity

calculations in O(n + |v|) time (with n as the average trajectory length and |v| as the

embedding vector dimension).

Another important work was Yao et al.’s NeuTraj [171], that used a seed number to

sample from a set of trajectories, and then followed by some pairwise-similarity guided loss

enhanced by a neural network framework. This architecture is composed of a spatial attention

module and a distance-weighted rank loss function to effectively extract information from

the seed-sampled trajectories. Zhang et al. [186] proposed Traj2SimVec that is robust

and scalable in trajectory similarity learning. The model utilizes a simple, fast trajectory

simplification approach [31] with indexing to obtain triplet samples for training: ⟨Ia, In, If⟩

comprising of an anchor input Ia, a near input In and a far input If , which are randomly

sampled from the k nearest neighbors of Ia. These are indexed by the k-d tree [14] and thus

yields an efficient O(log n) running time. Han et al. [53] also introduced a novel framework

called Gts that is able to capture the spatial and topological features of trajectories on

the road network using Graph Neural Networks to identify neighboring points of interests

(Pois) that belong to the same trajectory. A final Lstm layer extracts the trajectory’s

sequential information. However, this state-of-the-art model is best designed mostly for Pois;

but however, real world trajectories do not necessarily follow the path of Poi sequences.

Moreover, all these works mentioned so far ignore the temporal features of trajectories and

can be sub-optimal in contexts when the time dimension is essential, such as in personalized

trip recommendation applications [151] when real-time information of trajectories is required.

Fu et al. [45] incorporates an encoder-decoder component for extracting the time-based

13

features of trajectories (i.e., the timestamps), in addition to the Road2Vec framework

for finding representations of road segments for modelling co-relationships between these

segments in the road network. Their Trembr model however does not take temporal

dependence, regularities and patterns into account. As such, there is a need for a framework

that can model these temporal features. For example, Fang et al. [39] proposed St2Vec

that consists of a novel temporal modeling module for representing the time component in

trajectories. This also includes any periodic patterns and temporal regularities in trajectories.

St2Vec also uses a Unified Fusion scheme for allowing interactions between spatial and

temporal representations in trajectories. It has been proven to be effective and efficient

against state-of-the-art baselines. As we shall see later in our methods, we also adapt a

similar architecture in our work to integrate the temporal dimension, but this we do for

the road-based representation of trajectories instead of trajectories as a whole as a way of

obtaining more refined levels of representations for trajectories. In another work, Jiang et

al. [61] also introduced the Start model for trajectory representation learning based on

temporal regularities and travel semantics in trajectories. While it has demonstrated superior

results, their model is trained under self-supervised means (does not utilize ground truth

labels).

2.2 Pathlet Mining

There is a number of works related to pathlet mining. One of the original works in this

direction is the work of Chen et al. [26], where they formulated the problem of pathlet

dictionary construction as an integer programming problem with optimization constraints;

they also provided a solution based on dynamic programming. Their constructed dictionary

was also tested in various use cases such as trajectory compression and route planning.

However, their work assumes that the datasets used are noise-free. Zhou et al. [195] designed

14

a bag of segments representation for motion trajectories, where each trajectory segment

is projected onto the codeword space and clustering using the Expectation Maximization

(Em) algorithm is applied. Although, they have showed that their method is compact and

expressive on trajectory classification and similarity search tasks, the algorithm requires that

trajectory segments are of fixed size. Panagiotakis et al. [108] proposed a method for finding

representative subtrajectories through global voting, segmentation and sampling methods.

However, their methodology partitions trajectories into subtrajectories that is based on local

density – without regard to the trajectories that contribute to the global density. Wang et al.

[156] solves the problem of finding top k representative routes that cover as many trajectories

as possible under some specific distance threshold. They also proposed three near-optimal

solutions (maximum-weight, coverage-first, and connect-first algorithms) that can address

the problem efficiently. Despite the efficiency their methods offer, they still require the user

to provide some budget constraint B in the route representative discovery task, which is a

domain-specific parameter that requires domain expert knowledge.

2.2.1 Subtrajectory Clustering

One common approach to pathlet mining is framed as a subtrajectory clustering problem. Lee

et al. [81] proposed the Traculus algorithm that partitions trajectories into line segments,

and then groups those partitions that lie in a similar dense region to form a cluster. In

particular, they present a two-staged method: (1) the partition phase that is based on the

minimum description length (Mdl) principle, and (2) the grouping phase, a clustering-based

algorithm that relies on the density of line segments. However, Traculus assumes pathlets

are straight line segments, which is not always the case in real road maps. Van Krevald et al.

[74] designed a novel measure for mining median trajectories, similar to the method of Wang

et al. [156], that serves as the cluster centroid of (sub)trajectories. More specifically, the

15

methodology aims to find what is known as majority medians that is based on useful trajctory

edges. The limitation however in their work assumes that input trajectories have the same

starting and ending points – which is not always the case for real world trajectories. Agarwal

et al. [1] addressed the problem of subtrajectory clustering using the pathlet cover method

that is motivated from the popular set cover algorithm. In addition, they have demonstrated

a theoretical proof for the np-hardness of the problem and have proposed this approximate

algorithm for fast, efficient solution. In all these subtrajectory clustering methods, the cluster

centroids are seen as popular segments traversed by many trajectories and can alternatively

be seen as the pathlets. However, Wang et al. [156] have demonstrated that the cluster

centroids in these (sub)trajectory clustering methods [81, 74, 1, 155] do not necessarily reflect

real roads in the road network, and moreover are computationally slow in general.

2.3 Graph Mining

This work is also related to graphs and mining patterns in graphs; surveys from [65, 13] have

summarized and compiled together substantial contributions towards this effort. A plethora

of works have been focused on this area of research, particularly in popular graph mining

tasks such as ones related to frequent graph mining [143], link prediction [188], community

detection [43], anomaly detection [2], recommendation systems [100], and mining dynamic

temporal graphs [118, 166] among others. Closer to our work is on problems related to edge

contraction [8, 48]. We provide some discussion on this topic.

2.3.1 Edge Contraction

Related to our method is edge contraction. In edge contraction in graphs, an edge in the

graph is elected to be removed, and then consequently merge the two nodes that connect this

edge; moreover, the neighbors of the merged node are updated accordingly [8, 48]. While our

16

proposed method as one will see in Chapter 4 has a similar resemblance, it is not necessarily

the same as edge contraction. Edge contraction deals with the removal of an edge in the

graph to merge the two nodes connecting that removed edge. However in our method, two

edges/pathlets are required for merging and they will not be removed in the network.

A related algorithm involving edge contraction goes as follows: (1) compute for the (edge)

betweenness centrality of all edges in the pathlet graph, (2) remove (via edge contraction) the

edge with the highest centrality to shorten paths of trajectories on the graph, and (3) repeat

the procedure until some termination criterion has been reached (say when the graph has

shrunk by at least 20% of the original for instance). While this in theory is a viable baseline

model to compare with our methods, it suffers extensively from computational overhead.

Calculating the betweenness centrality score is a computationally intensive task, with a

O(|V||E|) time complexity under the Brandes’ algorithm [19]. As there is a need to do so for

all edges in the graph to identify the edge with the highest betweenness score, not to mention

of dense large graph datasets with many edges, then the aforementioned scheme does not

scale and may not even be feasible to implement.

2.3.2 Machine Learning with Graphs

With the prominence of graphs and their numerous applications, it is important to also gain

some understanding on the different methodologies for working with graphs. More recently,

learning-based methods has become a popular paradigm in problems involving various data

types including but not limited to text [96, 21, 149, 66], images [77, 75, 57, 28, 15], audios

[112, 142, 98] and videos [184, 17, 124]. As such, it is only logical that popular machine

learning algorithms are also tried on graphs. See [165, 25] for some comprehensive surveys.

Graphs are considered to be unstructured data. Hence, one must perform some prepro-

cessing on these graphs to be able to perform some task such as node classification [93], edge

17

prediction [188], or graph clustering [150]. Usually, graphs are first represented using vector

embeddings, and then use these as features to train a model of a particular task of interest.

It is more common to learn the representations of nodes in a graph. If one requires learning

edge representations, one can simply concatenate the embeddings of the two nodes that are

adjacent to the edge. If one however requires representations of the sub/full graph, then one

can simply perform some pooling or aggregation, such as AveragePool or SumPool, of

all embeddings of the nodes to capture the graph’s vector representation.

Walk-based methods for graphs have become one of the first learning-based approaches

for learning graph representations. Take the PageRank method for example, where each node

receives an "importance score" based on its connectivity with other nodes (usually evaluated

based on the number of times the node has been visited throughout the random walk process)

[20]. Sarma et al. [121] however exposed that traditional style matrix-vector multiplications

in PageRank calculations do not adapt well in a distributed setting. Moreover, they first

introduced a distributed random walk-based algorithm for calculating PageRank scores in

O(log n/ϵ) rounds with high probability for directed graphs, and a faster O(
√
log n/ϵ) for

undirected graphs – with n as the number of nodes in the graph and ϵ as the fixed reset

probability constant. Grover et al. [49] also proposed a random-walk simulator among

the nodes in the graph, which is then processed with a Skip-Gram – as we do in words

of a sentence [96]. The proposed Node2Vec architecture basically learns the structural

information by capturing the co-occurrences of adjacent nodes in the graph; i.e., Node2Vec

approximates the conditional probability of nodes in each of its neighborhoods [49].

Convolutional Neural Networks (Cnns) are powerful artificial feedforward networks

designed to work well with large-scale image tasks [78]. However, unlike images, graphs do

not have a fixed ordering and as such, Cnns do not do well when working with graph data.

To handle graphs, a neural network capable of permutation-invariance (i.e., a graph and its

permutations mapping to the same representation in the latent space) such as Graph Neural

18

Networks (Gnns) is required. For instance, Scarselli et al. [122] has shown some promising

direction on the use of graph neural networks for computing PageRank scores. Scarselli et

al. [123] on this work proposed supervised learning algorithms to learn the architecture’s

parameters, whilst demonstrating that Gnn scales to larger datasets.

More specialized Gnns come with the form of playing around with the aggregation and

transformation functions of its message-passing mechanisms. For example, Kipf et al.’s

[67] used the mean function to aggregate the representations information from each node’s

neighborhood, and then a non-linear activation function (an mlp) for transforming this aggre-

gation. Their proposed Graph Convolution Networks (Gcn) uses a convolution architecture,

inspired by a localization of first-order approximation of spectral graph convolutions. Being

one of the most influential works in this area, it is able to scale to large graph datasets and

outperform state of the art competitors. Hamilton et al. [51] improves on this by proposing

GraphSAGE that samples neighbors at different hops and pools them together through a

MaxPool aggregation. In addition, this architecture also learns from node features (e.g.,

node degrees, node text attributes, etc.) to easily generalize to unseen nodes. Transductive

learning from Gcns are extended to inductive learning setting in GraphSAGE, much like in

Veličković’s Gat [145] method. This architecture uses a self-attention strategy and weighs

neighbor nodes according to importance.

Meanwhile, graph transformers have also become popular methods. Yun et al.’s [181]

Gtns for example extends from the popular Gnns by constructing new graphs from original

ones, where it aims to learn useful relationships between linked nodes in the generated graph

that would have been absent in the original graph. The algorithm can also learn effective

node representations in the generated graph through multi-hop connections called meta-paths.

Other popular transformer-based architectures specifically designed for graph data include

Cai et al.’s [23] model for graph to sequence data, and Ying et al.’s [175] Graphormer from

Microsoft. Both these works had used datasets from the well-known Ogb (Stanford’s Open

19

Graph Benchmark)2, a diverse collection of realistic, large-scale benchmark datasets, loaders

and evaluators for graph machine learning.

2.4 Deep Learning

In the recent years, deep learning has become a prominent approach for many successful

research works due to their effectiveness as demonstrated by their promising results, in various

domains and applications in vision [29, 115, 176], natural language processing [12, 22, 69],

healthcare [191, 116], recommendation systems [104, 91, 151, 159], and so forth (see Pouyanfar

et al. [111] and Dargan et al. [34] for some relevant surveys). Of interest are deep learning

methods geared towards trajectory data and spatiotemporal-based architectures. We begin

this review with a brief discussion on some popular works on deep representation learning

for spatiotemporal data. This is followed up by a literature review on deep reinforcement

learning works for spatiotemporal data. And then finally, we end the literature review chapter

with a brief discussion on deep learning for sets – that are much closer to this work.

2.4.1 Deep Representation Learning for Trajectories

In recent years, deep learning based methods have been proposed for learning representations

of spatiotemporal data. These representations are a good fit for several trajectory data

mining downstream tasks. A comprehensive review can be found in Wang et al. [152]. As we

have mostly touched on works related to deep representation learning for trajectory similarity

learning in Chapter 2.1.2, then we omit them here and focus instead on works that use deep

representation learning on other tasks.

For example, Shrivastava et al. [130] have designed an Lstm architecture for analyzing the

temporal dimension of trajectories to infer missing trajectory points. They optimized their
2https://ogb.stanford.edu/

20

https://ogb.stanford.edu/

method for faster speedups by applying clustering schemes on similarly-detected trajectories

to reduce the search space – thus allowing scalability to larger datasets. Wang et al. [162]

has also used a deep representation learning approach for detecting outlier trajectories that

exemplify anomalous behaviors. The unsupervised model utilizes an auto-encoder model with

deep feature fusion architecture to extract the spatiotemporal characteristics in trajectories.

Finally, an unsupervised clustering method is used to identify any anomaly trajectories not

belonging to any trajectory clusters. Meanwhile, Chen et al. [30] introduced MainTul that

is composed of Rnns for trajectory-user linking tasks. This architecture, enhanced with

a temporal-aware transformer, is used to encode trajectories with guidance from a mutual

distillation of information. Liu et al. [89] also proposed a graph-based model for identifying

individual travel activities based on Pois and spatiotemporal information from trajectories.

Their proposed Gstp2Vec architecture utilizes a series of deep feedfoward networks that

can generate accurate representations of Pois and trajectory features in the low-embedding

space. More recently is Park et al.’s [109] method for future trajectory prediction in vehicles,

that centralizes on the idea of "two vehicles passing by in adjacent lanes are likely to interact

at a future timepoint". In light of this, they utilized a Graph Convlution Neural Network

with message passing mechanisms to approximate these probabilities and to predict future

interactions in trajectories.

2.4.2 Deep Reinforcement Learning

There are several works dedicated to reinforcement learning [64, 138, 7, 137, 157]. For

instance, some surveys have summarized and compiled together notable contributions in the

area of reinforcement learning [64, 7, 157]. Mnih et al. [97] have developed a Q-learning-based

convolutional neural network architecture to learn control policies taken from sensory inputs

with the use of deep reinforcement learning. The novel methodology is applied to several

21

Atari 2600 games from the Arcade Learing Environment. Deep neural networks of AlphaGo

have been trained on both human-expert expert games (supervised means) and from self-play

games (reinforcement learning), as it uses value networks to assess board positions and

policy networks to decide on its moves [131]. The novel search algorithm that is based

on a combination of Monte Carlo simulations, value networks and policy networks, have

demonstrated a 99.8% win rate against other Go programs and moreover can win against a

human European champion on a 5-0 score. Silver et al. [132] takes it further by generalizing

their algorithm and showcase its significant performance in other games such as Shoji and

Chess. Other works focused on evaluating their reinforcement learning models on more

sophisticated video games such as Minecraft, Dota2, and Candy Crush [62, 105, 42, 136, 11].

There are also certain works that directed their attention to tie deep reinforcement learning

with game theory [129, 56]. Multi-agent reinforcement learning has also gained interest in the

recent years, where the model takes into account multiple agents, instead of a single agent

[187, 158].

Of particular interest are works related to the spatiotemporal domain. Now while

reinforcement learning methods are often evaluated on agents playing a specific game, the

research community on trajectory data mining and mobility data in the recent years has

actually gained some interest in adapting RL methods and moreover has yielded great

success. For example, deep reinforcement learning has been used in route planning [46];

more specifically, Geng et al. devised a dynamically adjusted route planning method called

Darp that employs a dueling network that is based on deep Q learning policies to refrain

from electing congested roads in learning the most optimal paths. The method was seen to

have been able to save travel time by as much as 52% under road congested conditions in

several test simulations. Wang et al. [161] addresses the Min-Error problem in trajectory

simplification tasks, where the problem of interest is modelled as a sequential decision process

that is based on a Markov Decision Process (Mdp). Their proposed data-driven Rlts

22

algorithm can effectively minimize the error function ϵ(τ ′) while at the same time running

efficiently in both online and offline settings, compared to existing works that are mostly

heuristics-based in nature. Arasteh et al. [6] uses a multi-agent network aware reinforcement

learning model to solve the adaptive vehicle navigation problem; the proposed model can

adapt to real-time traffic conditions on the road network while achieving a 17.3% improvement

on the average travel time compared to existing greedy shortest path first (Spf) methods.

2.4.3 Deep Learning for Sets

In this work where sets are deemed important data structures and set-based neural networks

being crucial, we provide some literature review on deep learning methods that can specifically

handle sets. One of the earliest works that trains a deep network that is of Zaheer et al.’s

[182]. Their proposed model called DeepSets obeys both the permutation invariance and

equivariance properties (to be discussed in more detail in Chapter 4.1.3), while offering

flexibility to both regression and classification tasks. They demonstrate its effectiveness in a

variety of supervised and unsupervised tasks including population statistics estimation, point

cloud classification, text concept set retrieval, image tagging and anomaly detection.

Despite DeepSets outperforming its baseline competitors, it suffers in the inherent

assumption that all sets in the dataset have a fixed input size, which is not the case in real

world scenarios. To improve on this, Zhang et al. [189] proposes a general architecture for

predicting sets given variable-sized input sets; it is based on the idea of the permutation

equivariance property exhibited by the gradient of a set encoder with respect to its input set.

As such, gradient descent was utilized in the decoder to find a set that encodes to the feature

vector in the decoder. The method was seen to respect set structure, avoid discontinuity

issues3 altogether, and prove to be effective in various tasks such as point set auto-encoding,
3Discontinuity here refers to small changes in the input set space requires the need for a significant change

in the neural network outputs [190].

23

state predictions, and bounding box predictions for object detection. Meanwhile, Skianis et al.

[133] also introduced a novel neural network that can handle arbitrary-sized sets of vectors.

In particular, the model computes correspondences between the input set and the hidden

sets via a series of network flow problems, which then in turn is fed to a fully-connected layer

to generate the set representation. Their proposed RepSet has been shown to demonstrate

powerful results against baseline methods on text categorization and graph classification

tasks. Moreover, Lee et al. [79] presents an accurate, concise, generalizable, versatile, and

fast approach for embedding sets that can preserve various set similarity measures, including

overlapping coefficient, cosine similarity, jaccard index, and the dice index. In particular,

sets are represented as a d-dimensional hyper-rectangle (the box) whose objective is to

approximate the volumes of boxes in relation to the set sizes in order to capture and preserve

relations with other sets in the latent space. Integrating this method to our proposed model,

these desirable characteristics are thereby inherited and makes our method effective.

On a theoretical perspective, Wagstaff et al. [148] demonstrated how arbitrary functions

on sets on a finite latent space has some limitations. For instance, they have shown that under

the continuity constraint, it suffices (and is necessary) for the dimension of a latent space

to be at least as large the maximum size of the input set in order to universally represent

functions on sets.

24

Chapter 3

Preliminaries

In this chapter, we introduce some definitions used throughout the work. See Table 3.1 for a

table listing these notations. At the end of the chapter, we formalize the problems of interest.

3.1 Preliminary Definitions

A few of the most primary definitions include the trajectory and the road network, which

serves as the most used terminologies in this work.

Definition 3.1.1 (Trajectory). Let O = {o1, o2, ..., o|O|} be a set of moving objects in a

certain geographic mapM⊂ R2. A trajectory τ of a single object o ∈ O can be represented

as a sequence of time-enabled geo-coordinate points:

τ =
〈
(x1, y1, t1) , ..., (x|τ |, y|τ |, t|τ |)

〉
(3.1)

where each xi and yi represents o’s longitudinal and latitudinal coordinates at a specific time

instance ti ∈ [0, T]. Here, |τ | denotes the length of a trajectory, or the number of time-enabled

points for the trajectory of o.

25

Symbol Definition

O Set of moving objects
o A single object; i.e., o ∈ O
M Geographic area of interest (map)

τ
The trajectory of a single object o; a sequence of time-enabled geocoordi-

nates: τ =
〈
(x1, y1, t1) , ..., (x|τ |, y|τ |, t|τ |)

〉
T Set of trajectories (trajectory data set)
r A road segment
R A set of road segments

G⟨V , E⟩ Road network represented as a graph with node set V (road intersections)
and edge set E (road segments)

R(τ) The road segment-based representation of trajectory τ
ρ A pathlet
P A pathlet set; i.e., ρ ∈ P

ρ.s, ρ.e The starting and ending points of a pathlet ρ
ℓ(ρ) The pathlet length of ρ
χ The maximum pathlet length in pathlet set P ; i.e., the χ-order pathlet set

Gp⟨Vp, Ep⟩
The pathlet graph with node set Vp (road intersections) and edge set Ep

(road segments)
Φ(τ) The pathlet-based representation of a trajectory τ
Λ(ρ) The trajectory traversal set of a pathlet ρ
ω(ρ) The weight of pathlet ρ in the road network
µ(τ) The trajectory representability of trajectory τ
µ̄ The average trajectory representability of all trajectories τ ∈ T
µ̂ The average trajectory representability threshold

Ltraj The trajectory loss
M The maximum trajectory loss

S The extracted pathlet dictionary (PD); keys – candidate pathlets,
values – the trajectory traversal set of the pathlets

ϕ
The average number of pathlets representing each trajectory in the trajec-

tory set
αi Objective weights for the pathlet dictionary construction problem
γ Discount rate factor

S, S(s), S(t) The spatiotemporal, spatial, and temporal similarity functions
τ (s) and τ (t) The spatial and temporal aspects of trajectory τ

θ The spatiotemporal weight parameter for S
x and z Embedding representations for trajectory τ and pathlet ρ

k The top k trajectory similarity search task
β Box smoothing parameter

Table 3.1: Summary table of notations used in this work

26

Figure 3.1: Toy example of map-matching on the road network

Definition 3.1.2 (Trajectory Set). The trajectory (data) set, denoted as T , consists of all

the trajectories of all objects o ∈ O, which is represented as:

T =
⋃

∀o∈O

To (3.2)

with To as the set of all o’s trajectories.

Definition 3.1.3 (Road Segment). Let r denote a road segment4 that connects two road

intersections on the mapM, and denote the collection of all road segments to be R.

Definition 3.1.4 (Road Network). We denote by G⟨V , E⟩ the road network within the

boundaries of some map M, where V represents its set of road intersections (nodes) and

E = R ⊆ V × V represents its set of road segments (edges).

Trajectory points (Gps traces) outside map M are automatically filtered out as a

preprocessing step; in addition, the remaining trajectories require to be map-matched, a

common preprocessing task that identifies the path on the road an object has taken given

a sequence of Gps locations [87, 102] (see Figure 3.1 for an illustrative example). Ideally,

highly accurate map-matched data from Gps trajectory traces are preferred; however, this
4We will refer to this object as either a road, a segment, or a road segment and use these terms inter-

changeably throughout the thesis.

27

task is itself very involved and is outside the scope of the thesis; thus, some existing methods

[90, 180, 106, 63] have been utilized to handle map-matching. Provided the map-matched

trajectories, we now describe a special representation for a trajectory in the context of a road

network.

Definition 3.1.5 (Road Segment-based Representation of a Trajectory). A trajectory τ ∈ T

can be represented as a set of road segments Rs ⊆ R, the elements of which can be

concatenated in a sequence that forms the path τ on G:

R(τ) = {r(1), ..., r(|Rs|)}

where r(i) ∈ Rs is the ith segment in the sequence that represents the (road) segment-based

representation for τ .

3.2 Problem Statements

This thesis aims to solve the main problem, trajectory similarity learning, based on the

context of a road network. We first describe what does similarity entail in trajectories, then

formalize our main problem of interest in Chapter 3.2.1. In addition, we also attempt to

address a related problem in trajectory data mining that is still a fairly new area called

trajectory pathlet dictionary construction, which we formalize in the succeeding chapter.

3.2.1 Trajectory Similarity Learning

Definition 3.2.1 (Similarity). The (spatiotemporal) similarity5 S of two trajectories τi and

τj can be measured based on the dot product of their (spatiotemporal) vector representations
5The terms trajectory similarity and spatiotemporal similarity are used interchangeably in this thesis.

28

Figure 3.2: (a) Five different trajectories in the form of taxi trips in a small road network
labelled with times of departure and arrival from their origins to their destinations; (b) A
visualization of a possible 2D embedding space for the trajectories in (a) that preserves
spatiotemporal similarity.

xi and xj in the spatiotemporal embedding space, i.e.,

S(τi, τj) = x⊤
j xi (3.3)

Clearly, any two similar (dissimilar) trajectories have trajectory embeddings that are close

(distant) in the spatiotemporal embedding space.

Example 3.2.1 Figure 3.2(b) provides a potential example of the 2D latent space that

can preserve similarity in the taxi trajectories of Figure 3.2(a). As an example, consider the

trajectories of the red and green taxis. They are temporally similar because they relatively

departed/arrived their origins/destinations at the same time. Moreover, they are spatially

similar because they both took the same route; as a result, it can be said that the red and

green trajectories are spatiotemporally similar and that their embeddings appear closest in

29

the embedding space. The orange and purple trajectories are only spatially similar, because

while they share the same route, their trips are twelve hours apart; as such their embeddings’

distance in the latent space is not as close as the red and green’s. Meanwhile, the red and

orange trajectories are only temporally similar; while their trip times are relatively close in

time, they clearly do not have the same travel paths, origins and destinations. Finally, the

trajectory of the blue taxi is the farthest because it is not spatially nor temporally similar

with any of the other four trajectories.

Since this work focuses on network-aware spatiotemporal similarity of trajectories, it is

natural to measure S(·, ·) in the context of network-aware evaluation metrics, such as Tp

[126], Dita [128], Lcrs [177], and NetErp [72]. These metrics serve as the various similarity

measures that we would like our method to estimate accurately, or otherwise serve as the

“ground truth(s)” of our problem. Note as well that while these measures are spatially-inherent

in nature, they are still able to support temporal similarity [39]. As this work aims to provide

support to both spatial and temporal domains, we make use of a spatiotemporal weight

parameter θ ∈ [0, 1] to determine the importance of the spatial/temporal aspects in the

similarity measures:

S(τi, τj) = θ · S(s)
(
τ
(s)
i , τ

(s)
j

)
+ (1− θ) · S(t)

(
τ
(t)
i , τ

(t)
j

)
(3.4)

with superscript ∗(s) and ∗(t) denoting spatial and temporal aspects respectively.

Now, the similarity of two trajectories τi and τj can be calculated by aggregating the

similarities of the road segments that represent these trajectories in the embedded space:

S(τi, τj) = agg ({S(ri, rj) | (ri, rj) ∈ R(τi)×R(τj)}) (3.5)

This approach aligns with previous works that are based on point-wise similarity computation

30

[85, 53]. However, this approach is computationally expensive, where we expect a quadratic

running time in the average number of road segments that represent each trajectory. To avoid

this limitation, in our research, we treat the trajectory similarity problem as a set similarity

problem. The set similarity occurs at the embedded spatiotemporal vector space and utilizes

a method for similarity-preserving set representations of trajectories, as we will describe in

Chapter 4.

We are now in position to formally define the problem of interest. Note that while there

are many flavors for the problem of trajectory similarity computation, we instead focus on

the top k trajectory similarity search task.

Problem 3.2.1 (Top-k Similarity Search) Given a trajectory set T in the road network

G⟨V , E⟩, a query trajectory τq, and a positive integer k ≥ 1, find the ranked list of the top

k trajectories {τ (1), τ (2), ..., τ (k)} ⊆ T that are the most spatiotemporally similar to τq. In

other words:

S(τq, τ (k)) ≤ S(τq, τ (k−1)) ≤ ... ≤ S(τq, τ (1)) (3.6)

where τ (i) is the ith trajectory in T that is most similar to τq.

3.2.2 Trajectory Pathlet Dictionary Construction

While the main problem of interest in this thesis is the retrieval of similar trajectories to a given

query based on learned spatiotemporal similarities, we also tackle another related trajectory

data mining problem that involves the construction of a data structure that can widely

represent trajectories in the dataset. This data structure, particularly a dictionary, consists

of abstract, ubiquitous objects in the context of the road network, known as (trajectory)

pathlets. These pathlets serve as the fundamental building blocks in this second problem of

interest. We first formalize these definitions in brief before formally defining this fairly new

problem of interest.

31

Figure 3.3: (a) A small area of the map in Downtown Toronto7, (b) Graph representation
of the road network of the map in (a), (c) Discrete pathlets of various lengths based on the
graph representation in (b).

Definition 3.2.2 (Pathlet). A pathlet ρ is defined as any sub-path in the road network G,

with P being the set of all such pathlets.

In our work, we consider edge-disjoint pathlets, such that no two ρ1, ρ2 ∈ P share any edge.

For simplicity, we assume discrete pathlets – meaning they begin and end at an intersection

(a node in the graph, with either start/endpoints at ρ.s/ρ.e), but the work can easily be

generalized to include continuous pathlets that drop this restriction.

Definition 3.2.3 (Pathlet Length). The (pathlet) length6 of a pathlet ρ ∈ P , denoted by ℓ,

represents its path length in the road network.

The smallest unit of the pathlet has length ℓ = 1. Moreover, we restrict all pathlets ρ ∈ P

to be of length ℓ ≤ χ, for some user-defined parameter χ. In this case, we say that P is an

χ-order pathlet set. Now given these pathlets, one can well-define a pathlet graph Gp that

is derived from a road network G.

Definition 3.2.4 (Pathlet Graph). The pathlet graph Gp⟨Vp, Ep⟩ of a road network G⟨V , E⟩

depicts the road network’s pathlets, where the road intersections represent the nodes Vp ⊆ V

and the road segments connecting road intersections as the edges Ep ⊆ E .
6Not to confuse with a road segment’s length that represents the measure depicting its actual physical

distance, the pathlet length can be derived based on graph context.
7Map taken from https://www.mapquest.com/

32

https://www.mapquest.com/

To illustrate a simple example, see Figure 3.3 that depicts (a) a picture of a road network

(a small area in Downtown Toronto), (b) its graph representation, and (c) some pathlets of

various lengths. In this work, the pathlet graph was initialized to have each pathlet to be of

the smallest possible unit, i.e., a pathlet length ℓ = 1. In other words, all road segments are

initially considered as the initial pathlets as they all have pathlet length ℓ = 1. Now that we

consider a pathlet graph, it may be useful to also properly define the neighbors of a pathlet.

Definition 3.2.5 (Pathlet Neighbors). Given a pathlet ρ ∈ P, its neighbor pathlets, de-

noted by set Ψ(ρ), is the collection of all other pathlets ρ′ ∈ P \ {ρ} who share the same

starting/ending points with that of ρ:

Ψ(ρ) =
⋃

ρ′∈P\{ρ}
ρ.s∈{ρ′.s,ρ′.e}∨ρ.e∈{ρ′.s,ρ′.e}

ρ′ (3.7)

Example 3.2.2 To give an illustrative example of what it means for two pathlets to be

neighboring, consider Figure 3.3(c). Here, the grey pathlet is a neighbor of the orange pathlet

as they share the same start/end node. The same can be said for the grey and blue pathlet.

Thus in this example, the grey pathlet has a total of two neighbors. The yellow and the blue

pathlets, despite intersecting at some node or road intersection, are not neighboring pathlets

because none of their starting/ending points coincide.

Similar to the road segment-based representation of a trajectory, a trajectory can also be

expressed in terms of pathlets through the pathlet-based representation of a trajectory that

follows a similar idea.

Definition 3.2.6 (Pathlet-based Representation of a Trajectory). A trajectory τ ∈ T can be

represented based on some subset of pathlets Psub ⊆ P. Moreover, the pathlets in Psub can

33

be concatenated in some sequence resulting into the path traced by τ on the road network G.

We denote this by:

Φ(τ) = {ρ(1), ρ(2), ..., ρ(|Psub|)} (3.8)

where ρ(i) ∈ Psub denotes the ith pathlet in the sequence that represents the pathlet-based

representation for τ .

Now based on Defintion 3.2.6, it is also possible to define a trajectory’s pathlet length.

This is initially set up before constructing the pathlet graph. Each trajectory τ ∈ T would

have a pathlet length equal to

ℓ(τ) =
∑

∀ρ∈Φ(τ)

ℓ(ρ) (3.9)

whose value remains static for the rest of our algorithm, i.e., the trajectory’s pathlet length is

the sum of the pathlet lengths of each of the pathlet it traversed throughout the observation

period [0, T].

We now define the trajectory traversal set of a pathlet, which is a related concept to the

pathlet-based representation of a trajectory.

Definition 3.2.7 (Trajectory Traversal Set of a Pathlet). Let Λ(ρ) be the set of all trajectories

τ ∈ T that pass or traverse pathlet ρ ∈ P , which can also be written as:

Λ(ρ) = {τ | ∀τ ∈ T , ρ ∈ Φ(τ)} (3.10)

We can also assign weights ω to pathlets. In the unweighted case, all pathlets are weighed

equally; while in the weighted version, pathlets are weighed equal to the number of trajectories

traversing a pathlet, i.e., ω(ρ) = |Λ(ρ)|, or |Λ(ρ)|
|T | when normalized. These weights indicate

each pathlet’s importance in the road network/pathlet graph.

Next, we introduce two novel metrics related to trajectories, namely the trajectory repre-

sentability and the trajectory loss, allowing for a better and more comprehensive evaluation

34

of our pathlets and pathlet dictionaries.

Definition 3.2.8 (Trajectory Representability). The (trajectory) representability µ ∈

[0%, 100%] of a trajectory τ denotes the percentage of trajectory τ that can be represented

using pathlets in pathlet set P .

Now clearly, the pathlet-based representation of τ is directly related to its representability,

i.e.,

µ(τ) =
|Φ(τ)|∑

∀ρ∈Φ(τ) ℓ(ρ)
=
|Φ(τ)|
ℓ(τ)

(3.11)

However, in the weighted case, some pathlets are weighed more important than others. Thus,

a trajectory’s representability may need to be redefined based on those weights, i.e.,

µ(τ) =
∑

∀ρ∈Φ(τ)

ω(ρ) (3.12)

Definition 3.2.9 (Trajectory Loss). We define the trajectory loss Ltraj to be the number of

trajectories ∀τ ∈ T that have representability value µ = 0%, i.e.,

Ltraj = |{τ |τ ∈ T , µ(τ) = 0}| (3.13)

We can also describe these trajectories as "lost" or "discarded" from the given trajectory set

T , and we may also depict this number as a percentage.

See Example 4.2.1 of Chapter 4.2.1 for an example that depicts how trajectory repre-

sentabilities and trajectory loss metrics are calculated. The relevance and impact of these

two metrics will become clear as we go over the methodology in finer details.
7Not to be confused with representativeness that describes the capability of a trajectory to represent other

similar nearby trajectories, representability depicts how much a trajectory can be reconstructed given our
pathlets.

35

Figure 3.4: An illustrative example of a pathlet dictionary, with pathlets as keys and the
trajectory traversal set as the values. The number on the upper left of each pathlet denotes
its pathlet length.

Now that we have introduced the basic concepts of pathlets, we now formalize the problem

of constructing trajectory pathlet dictionaries after describing this specialized data structure.

Definition 3.2.10 (Pathlet Dictionary). A (trajectory) pathlet dictionary (Pd) is a data

structure that stores pathlets ρ ∈ P (keys), and their associated trajectory traversal set Λ(ρ)

(values).

See Figure 3.4 for an illustrative example of a pathlet dictionary. However, what we are

interested in is the construction of a Pd that aims to achieve one or a combination of the

following objectives where their mathematical expressions are depicted in Table 3.2:

(O1) Minimal size of candidate pathlet set S, or the candidate set with the least possible

number of pathlets

(O2) Minimal ϕ, or the average number of pathlets representing each trajectory τ ∈ T

(O3) Minimal trajectory loss Ltraj

36

Objective Mathematical Notation Associated Weight

(O1) min |S| α1

(O2) minϕ = min
1

|T |
∑
τ∈T

|Φ(τ)| α2

(O3) minLtraj α3

(O4) max µ̄ = max
1

|T |
∑
τ∈T

µ(τ) α4

Table 3.2: Mathematical notations and the associated weights for each of the terms in the
objective function for the trajectory pathlet dictionary construction problem

(O4) Maximal µ̄, or the average representability values of the remaining trajectories in T

In other words, the objective function that we aim to optimize is based on the four

objectives above – which can be modelled by:

min

(
α1|S|+ α2

1

|T |
∑
τ∈T

|Φ(τ)|+ α3Ltraj − α4
1

|T |
∑
τ∈T

µ(τ)

)
(3.14)

where {α1, α2, α3, α4}, are user-defined parameters depicting the weights of our four objectives,

with
∑4

i=1 αi = 1.

Problem 3.2.2 (Pathlet Dictionary Construction) Given a road network G⟨V , E⟩ of a

specific mapM, a trajectory set T , the maximum pathlet length χ, the maximum trajectory

loss M , and the average trajectory representability threshold µ̂, construct a χ-order pathlet

dictionary S. The dictionary S consists of edge-disjoint pathlets with lengths of at most χ,

and achieves the maximum possible utility according to some utility function as depicted

in Equation (3.14), such that the constraints on trajectory loss (Ltraj < M) and trajectory

representability (µ̄ ≥ µ̂) are satisfied.

37

Chapter 4

Methodology

In this chapter, we split the discussion into two parts: (1) the discussion for the St2Box

model (Spatiotemporal Trajectories to BOX embeddings for similarity learning), that

captures the representations of trajectories for learning the (ranked) list of top k trajectories

that are spatiotemporally similar with the query trajectory; and (2) the details of the

proposed PathletRL architecture (Pathlet dictionary construction using trajectories with

Reinforcement Learning), that is responsible for learning trajectory pathlet dictionaries.

4.1 St2Box: Similarity Learning for Trajectories

To address the problem of interest for learning trajectory similarities, we propose St2Box

(Spatiotemporal Trajectories to BOX embeddings for similarity learning), that is designed

for using edges of the road network (the road segments) in retrieving the (ranked) list of top k

trajectories that are spatiotemporally similar with the query trajectory. More specifically, our

algorithm (1) learns the spatiotemporal vector representation for each road segment in the

network and expresses each trajectory as a set of these vectors, (2) uses box architecture to

represent these sets of spatiotemporal vectors in a low-dimension embedding space that can

38

Figure 4.1: The overall architecture of St2Box.

preserve set similarity relations, and (3) returns the top k trajectories whose box embeddings

possess the highest similarity scores with that of the query trajectory’s embeddings. Figure 4.1

illustrates the architecture of St2Box, Algorithm 4.1 provides its pseudocode, and Chapter

4.1.1 for its algorithmic details.

Overall Picture. The method first extracts the road-based representation set R(τ) of each

trajectory τ . Then it utilizes a method similar to St2Vec [39], but instead of learning

spatiotemporal representations of whole trajectories, it learns representations of road segments.

In other words, we learn more refined spatiotemporal representations of trajectories using

their decompositions (the road segments). We call this architecture Seg2Vec as it learns

road-segment based representations of trajectories. Once a trajectory is expressed as a set of

learned representations of road segments, it is fed into Seg2Box. Seg2Box is an architecture

that is based on Set2Box [79] – an architecture that can learn set representations that

preserve set (similarity) relationships by using (smoothed) box embeddings. Seg2Box returns

the box representations of trajectories that are used for similarity learning.

Example 4.1.1 In Figure 4.1 for example, we can see that trajectories τ1 and τ2 share some

common road segments in their road-based representations and so their box representations

B1 and B2 in the latent space are overlapping. However, τ3 does not share any road segment

with any of the other two trajectories; thus, its box embedding in the latent space is not

39

overlapping with the box embeddings of the other trajectories.

Organization. We first provide the algorithmic details of St2Box in Chapter 4.1.1. We

then discuss how the representations of the road segments traversed by trajectories can be

learned in Chapter 4.1.2. Chapter 4.1.3 then provides a brief explanation on how trajectories

can be viewed as sets – in preparation for Chapter 4.1.4, where we finally cover the details of

the box architecture.

4.1.1 Algorithmic Details of St2Box

We now provide the algorithmic details of our method (see Algorithm 4.1). We first begin by

initializing some empty dictionaries for easy lookups on demand: (1) Dvec, which will store

for each road segment, its spatiotemporal vector representation; (2) S, which will keep sets of

trajectories, and for each one of those the set of their segment-based representations (expressed

as their spatiotemporal representations); (3) Sscore, which will maintain the similarity scores

of each trajectory and the query trajectory (line 1). Next, we adapt the method of Fang

et al. [39] for representing road segments (instead of trajectories) as their spatiotemporal

embeddings and store them in Dvec (lines 2-4). Following this, we express each trajectory

in the trajectory dataset T as a set of road segments; more specifically, these segments are

to be expressed in terms of their spatiotemporal representation obtained from line 3 and

are easily accessible from Dvec. Moreover, we store these in dictionary S for easy access on

demand (lines 5-9). Then, we train a model Bmodel (see Chapter 4.1.4 for details on this

model [79]), where the output of lines 5-9 is taken as the input set of this model (line 10).

We then use this trained Bmodel for finding a box embedding for the query trajectory τq using

the set of its roads as input (line 11). Next, we can simply encode each of the trajectories

in the box embedding space, and then compute the similarity score of such encoding with

the box embedding of the query trajectory; the scores are stored in Sscore (lines 12-14).

40

Algorithm 4.1: Spatiotemporal Trajectories to Box Embeddings for Similarity
Learning (St2Box)

Input : The road network G⟨V, E⟩, a trajectory set T , a query trajectory τq, and an
integer 1 ≤ k ≤ |T |

Output : A list of top k trajectories in T ranked according to their spatiotemporal
similarity scores with τq

/* Initialization */
1 Dvec ← Dict() ; S ← Dict() ; Sscore ← Dict()

/* Learn the embeddings of each road segment in E, and store these in the dict
Dvec */

2 foreach r ∈ E do
3 z← Seg2Vec(r)
4 Dvec[r]← z

/* Retrieve the embeddings of the roads that represent each traj τ, and store
them in a dict S */

5 foreach τ ∈ T ∪ {τq} do
6 R← ∅
7 foreach r ∈ R(τ) do
8 R← R ∪ {Dvec[r]}
9 S[τ]← R

/* Train a neural network for representing sets as box embeddings */
10 Bmodel ← Seg2Box(S \ {τq})

/* Encode the query traj’s road-based set representation based on the trained
Bmodel */

11 q← encode(Bmodel, S[τq])

/* Encode all other τ ∈ S based on trained Bmodel for sim. comp. Store results
in the dict Sscore */

12 foreach τ ∈ S \ {τq} do
13 t← encode(Bmodel, S[τ])
14 Sscore[τ]← S(t,q)

/* Return the top k trajectories with the highest similarity scores in the dict
Sscore */

15 sort(Sscore.items(),key = lambda x : x[1])
16 return list(zip(∗Sscore))[0][−k :]

41

Finally, we can simply return the top k trajectories in Sscore that achieve the highest similarity

with the query trajectory τq, as determined by the degree of their box overlaps in the box

embedding space (lines 15-16).

4.1.2 Spatiotemporal Representation Learning of Road Segments

We introduce the Seg2Vec module, a deep learning framework for representing road segments

as embedding vectors that capture their spatiotemporal characteristics. This component in

St2Box follows a similar approach to Fang et al.’s St2Vec module [39], but operates at the

level of road segments instead of trajectories as a whole. In other words, we split trajectories

to road segments, and then learn the spatiotemporal representations of each of the road

segments; each trajectory is formed by its set of associated road segment representations.

The Spatial Dimension. To capture the spatial features of road segments representing

the trajectories, we introduce the (road) Segment-based Spatial Representation Learning

(SegSrl) module. SegSrl utilizes Node2Vec [49] to model co-occurrence of adjacent

locations (roads) on the road network. More precisely, we can assign a “representative point”

in each of these road segments (either one of the two endpoints/intersections of a road on

the road network) to serve as the “location points” and then employ Node2Vec on each of

those. After such transformation, we obtain the following location embedding: r → r, for all

our road segments. Moreover, we apply a graph convolutional network (Gcn) [68] for local

smoothing of these location embeddings:

r̃ = Gcn(r) = σ

 ∑
r′∈N (r)

a ·Wdr
′

⊗ r


where σ(·) is a non-linear activation function, a ∈ A is an adjacency weight value, Wd ∈ Rd×d

is a learnable weight matrix, ⊗ is the concatenator operator, and N (r) are the neighbors

42

of r (i.e., adjacent edges/road segments of r). Finally, these embeddings are passed on to

an Lstm [58] with self-attention [144], which serves as the spatial embedding of our road

segments: r̃→ z(s). Note that this final step is necessary as different location points or roads

in trajectories have different contributions towards similarity computations.

The Temporal Dimension. To capture the rich temporal features of trajectories based on

their road-based representation (i.e., the time embedding of these trajectories traversing the

road segments), we introduce the (road) Segment-based Temporal Representation Learning

(SegTrl). SegTrl employs a Bert-based architecture [149] to model the periodic behaviors

of the trajectories on the road network. More specifically, the model learns a time embedding

vector t̂ ∈ R(T+1)×1 for each timepoint t ∈ [0, T]:

t̂[i] =


ξit+ ζi if i = 0

cos (ξit+ ζi) if 1 ≤ i ≤ T

(4.1)

where {ξi}Ti=0 and {ζi}Ti=0 are learnable parameters and cos(·) is the periodic activation

function. The output embeddings t̂ is passed onto an Lstm [58], where each step t of the

Lstm layer represents a point in time from [0, T]. Its recurrent procedure at ht takes the

result of the last step ht−1, the current time embedding t̂t, the input gate it, forget gate ft,

output gate ot, and the memory cell mt, to produce the output of the current step as follows:

ht = Lstm
(
t̂t,ht−1, it, ft,ot,mt

)
(4.2)

Now, the output of the final step hT serves as the temporal representation of the trajectories’

road segments. Moreover, as with SegSrl, attention mechanisms [144] were utilized on this

temporal representation (i.e., hT → h̃T = z(t)) to capture correlations between trajectory

points (roads) and further enhance its representation.

43

Spatiotemporal Fusion. The (road) Segment-based Spatio-Temporal Fusion (SegStf)

module allows the interaction of the spatial and temporal features for fusing, resulting

into a spatiotemporal representation. To be more precise, in this module, some weighted

transformation is applied on the spatial and temporal vector representations (z(s) and z(t)

respectively) of our roads separately: Z(s) = WFz
(s) and Z(t) = WFz

(t). Then, if we let:

w(i, j) =
exp

(
WQZ

(i) ·WKZ
(j)
)∑

∗∈{s,t} exp (WQZ(i) ·WKZ(∗))
(4.3)

where i and j are either s and/or t (that denote the spatial and temporal dimensions),

WF is a feature matrix, WQ and WK are learnable matrices, and then apply a specialized

spatiotemporal interaction on these representations to obtain enhanced spatial and temporal

vector representations (ẑ(s) and ẑ(t) respectively):

ẑ(s) = Norm
(
Ffn

(
w(s, t)Z(t) ⊗ w(s, s)Z(s)

)
⊗ z(s)

)
ẑ(t) = Norm

(
Ffn

(
w(t, t)Z(t) ⊗ w(t, s)Z(s)

)
⊗ z(t)

) (4.4)

Finally, ẑ(s) and ẑ(t) are concatenated together and fed to an Lstm for the final spatiotemporal

representation for each road segment at some specific point in time:

z = Lstm
(
ẑ(s) ⊗ ẑ(t)

)
(4.5)

Given the spatiotemporal representations of road segments (along with a data structure

to store them for easy lookups), we now turn into how the trajectory similarity problem can

be addressed as a set similarity problem. More specifically, we describe how trajectories can

be viewed as sets, with traversed road segments as elements.

44

4.1.3 From Trajectories to Sets

Many works focused on representing trajectories as a sequence of raw points [37], disjoint cells

[85], and visited Pois [53]. In this work, we demonstrate how the ordering of these elements

can be disregarded when searching for similar trajectories based on their representations on

the latent space. In other words, trajectories in theory, can be represented instead as a set of

such elements. And because trajectories can be well-represented by road segments as per

Definition 3.1.5, we can instead view this road-based representation of a trajectory R(τ) as a

set (instead of a sequence) of roads.

Intuition. Two similar trajectories will map to the same set representation as they both

compose of the same sets of time-enabled road segments, without regard to ordering (of which

road comes first in the trajectory’s traversal). Whereas two dissimilar trajectories can be

seen to have dissimilar set representations regardless of elements’ permutation. What is then

required is an architecture that respects these properties.

Neural Networks for Sets. Typical machine learning algorithms are designed mostly for

datasets which have a fixed ordering. However, such models do not necessarily generalize

when elements of the input set-like data are scrambled, i.e., permuting the input elements

would result into an output that is completely different. This relates to what is known as

the responsibility problem [189], where small changes in the input set space results in a large

change in the neural network’s output space [190], which can result in major discontinuity

issues [189]. As such, there is a need for a permutation-invariant [182] architecture that can

handle the unordered set property. Moreover, the said architecture must also be permutation-

equivariant [182], which describes that the permutation applied to the input set space retains

the same permutation on the neural network output. So then, for some function f : X 7→ Y,

χ ∈ X and some permutation p̃ ∈ Pn, with Pn being the set of all permutations of indices

45

{1, ..., n}, these desired properties are summarized by:


① f(χ) = f(p̃χ) permutation-invariance

② f(p̃χ) = p̃f(χ) permutation-equivariance
(4.6)

Now, while there has been significant research efforts towards this direction of designing

these desirable models for sets [182, 189, 190, 133], it is important to keep in mind that we

aspire learning-based models that can represent sets that also preserve the similarity relation.

In other words, two similar (dissimilar) sets A and B ought to have similar (dissimilar)

representations in the latent space. In our case, we want our similar (dissimilar) trajectories

to have similar (dissimilar) segment-based representations. Lee et al.’s model [79] known as

Set2Box can accurately preserve the similarity relations of sets by representing them as

hyper-rectangles called boxes. Thus, we adapt a similar method, customized specifically for

road elements – with the goal of preserving the similarity (dissimilarity) relations of our road

segment-based set representations of trajectories.

4.1.4 The Box Architecture

The resulting spatiotemporal vectors obtained from Seg2Vec in Chapter 4.1.2 are then

passed as set elements to Seg2Box, a Set2Box architecture that takes in road segments

as elements and trajectories as sets. In general, this architecture based from Lee et al. [79]

characterized for its accurate, versatile, and generalizable representations, specifically takes

as input road-based representations of trajectories (the sets) and their road segments (the

entities or elements of the sets). This architecture is able to represent the sets as boxes,

while able to learn each of the sets, their structure and their relationships (i.e., similarity)

with other sets. In particular, these box (lattices) are axis-aligned hyper-rectangles on a

46

d-dimensional space that can be represented by B = (c, ε) [146]:

B = {p |p ∈ Rd and c− ε ⪯ p ⪯ c+ ε} (4.7)

for centre c ∈ Rd and offset ε ∈ Rd
+. Now the intersection B1 ∩B2 of two boxes B1 = (c1, ε1)

and B2 = (c2, ε2) can be represented:

{p |p ∈ Rd ; max
(
pmin
1 ,pmin

2

)
⪯ p ⪯ min (pmax

1 ,pmax
2)} (4.8)

where pmin = c− ε and pmax = c+ ε are the minimum and maximum vectors of B at each

dimension respectively.

The Target. Seg2Box aims to approximate the volume V of the box embedding BX of

some trajectory τX ’s segment-based representation set R(τX) to the relative size of R(τX),

i.e., V(BX) ∝ |R(τX)|; moreover, preserving similarity relations with other segment-based

representation sets meant that Seg2Box also targets to approximate the volume V of the

box intersection BX ∩BY to the size of the intersection of two sets R(τX) and R(τY), i.e.,

V(BX ∩BY) ∝ |R(τX) ∩R(τY)|. Note that the volume of a box B can be calculated by:

V(B) =
d∏

i=1

ReLU
(
pmax[i]− pmin[i]

)
(4.9)

while the volume of the union of two boxes BX and BY is V(BX) + V(BY)− V(BX ∩BY).

The Objective Function. To preserve elemental relations between (triplets of) trajectories

(through their road-based representation set), then consider the cardinalities as seen in

Table 4.1 for triplet set {R(τX),R(τY),R(τZ)} for trajectories {τX , τY , τZ} that contain

singleton, pairwise, and triplet-wise set information [79]. Then we sample trajectory triplets

({τX , τY , τZ}) from our trajectory set T : positive triplets T + (trajectories that share some

47

Cardinalities Measures

C1(R(τX),R(τY),R(τZ)) |R(τX)|
C2(R(τX),R(τY),R(τZ)) |R(τY)|
C3(R(τX),R(τY),R(τZ)) |R(τZ)|
C4(R(τX),R(τY),R(τZ)) |R(τX) ∩R(τY)|
C5(R(τX),R(τY),R(τZ)) |R(τX) ∩R(τZ)|
C6(R(τX),R(τY),R(τZ)) |R(τY) ∩R(τZ)|
C7(R(τX),R(τY),R(τZ)) |R(τX) ∩R(τY) ∩R(τZ)|

Table 4.1: Cardinality measures for the objective function

common road segments) and negative triplets T − (chosen uniformly at random), where each

trajectory τi in each triplet is expressed as a set of road segments through its segment-based

representation set R(τi). The goal is then to minimize the following objective function:

∑
{τX ,τY ,τZ}∈T +∪T −

7∑
i=1

(
Ci(τX , τY , τZ)∑7
j=1Cj(τX , τY , τZ)

− V̂i(BX ,BY ,BZ)∑7
k=1 V̂k(BX ,BY ,BZ)

)2

(4.10)

where BX , BY and BZ are the box embeddings for the segment-based representation sets of

trajectory τX , τY and τZ , and V̂i is the approximated volume of the boxes corresponding to

Ci for i = {1, ..., 7}.

Generalizing to Unseen Trajectories. We first derive the box embedding of the road-

based representation set of some trajectory via learnable embedding matrices Q(c) ∈ R|S|×d

and Q(ε) ∈ R|S|×d
+ that would represent the centre and offset for some entity/road r ∈ R;

from here, simply aggregate the centre and offset embeddings of the road segments in R(τ)

to obtain Bτ = (cτ , ετ). And then use attention mechanisms [144] to emphasize on important

entities (roads) for obtaining box centre and offset embeddings through a termed set-context

pooling layer (scp), a pooling defined by [79]:

scp
(
R(τ),Q(∗)) = ∑

ri∈R(τ)

 exp
(
u⊤
R(τ)Q

(∗)
i

)
∑

rj∈R(τ) exp
(
u⊤
R(τ)Q

(∗)
j

)
Q

(∗)
i (4.11)

48

for context vector uR(τ) containing information on R(τ):

uR(τ) =
∑

ri∈R(τ)

 exp
(
U⊤Q

(∗)
i

)
∑

rj∈R(τ) exp
(
U⊤Q

(∗)
j

)
Q

(∗)
i (4.12)

and global vector U that is shared by all trajectories. Note that Q(∗) here would represent

either Q(c) or Q(ε).

Smoothing Boxes. The boxes we saw so far are hard boxes, and gradient-based optimization

is not possible when these are disjoint; to fix this, smoothing using SoftPlus to approximate

ReLU of the volume function may be needed [84]:

V(B) =
d∏

i=1

SoftPlus
(
pmax[i]− pmin[i]

)
(4.13)

where SoftPlus(x) = 1
β
log(1+eβx) for box smoothing parameter β > 0, with SoftPlus(x)

approaching ReLU(x) function as β increases.

Scalability. Seg2Box inherits this desired characteristic from Set2Box [79] as their model

is generic to any kind of sets/elements. Their constant O(d) running time for computing

pairwise similarities between sets (through their theoretical proof and conducted experiments)

allows Seg2Box to also perform such computation between trajectories in a short amount of

time, enabling for the method to scale.

Overall Desired Characteristics. Ideally, our St2Box method, as we will see later in

the experimental section, is characterized by its (i) accuracy (i.e., similar trajectories that

have similar road-based representation sets have embeddings that are close in the latent

space), (ii) versatility (i.e., the representations can be used to approximate a wide variety of

similarity measures and applicable to various trajectory set elements), (iii) generalizability

(i.e., embeddings of unseen trajectories, specifically their road-based representation sets, are

49

Figure 4.2: The overall architecture of the proposed PathletRL model

obtainable), (iv) robustness (i.e., in terms of spatiotemporal similarity that is based on any

weight parameter θ), and (v) speed (i.e., able to estimate trajectory similarity quickly, and as

result can therefore scale to larger datasets, as inherited from St2Box [79]).

4.2 PathletRL: A Solution for Pd Construction

In the trajectory pathlet dictionary construction, the model consists of two main components:

(1) the method responsible for extracting the candidate pathlet sets through a merging-

based process (Chapter 4.2.1), and (2) a deep reinforcement learning-based architecture for

approximating the utility function of the merging process of (1) (Chapter 4.2.2). Refer to

Figure 4.2 for an illustration of the architecture.

50

4.2.1 Extracting Candidate Pathlets

In this chapter, we describe the algorithmic details for merging edge-disjoint pathlets. The

high-level idea of the algorithm is based on the theory of maximal utility [94, 3], i.e., iteratively

merging (neighboring) pathlets until this brings forth little to no improvement on the utility

(details of the utility function are given later). The algorithm takes in as input a road network

G, a trajectory set T operating within G, the maximum threshold for the trajectory loss M ,

the trajectory representability threshold µ̂, and a positive integer χ denoting the desired

χ-order pathlet graph. As output, it returns a pathlet dictionary (Pd) that holds pathlet

information as described in Definition 3.2.10. The extracted Pd aims to satisfy the four

objectives (O1)-(O4) discussed in Chapter 3.2.2. See Algorithm 4.2 for the pseudocode.

Initialization. The algorithm first initializes the pathlet graph Gp, extracted from G – and

more importantly are the initial (length 1) pathlets Ep (lines 1-2). Then, we make a copy of

all the input trajectories in T ∗, which keeps track of the current trajectories that we currently

have; and further initialize an empty set for the candidate pathlet set we intend to build

(line 3). We also set up other important variables such as the ϕ and the µ̄ as defined in the

preliminaries, as well as empty dictionaries for the the trajectory loss and utility that will

be useful for later (lines 4-5). Moreover, a pathlet from Ep is chosen uniformly at random

(line 6).

An Iterative Algorithm. The basic idea behind the while loop is that we iteratively merge

pathlets until merging brings little to no improvement on Gp’s utility. Once a pathlet cannot

be further merged with any of its neighbors, due to no further gain in utility, we add it to

our candidate set and randomly select the next pathlet.

We set the utility of Gp associated with pathlet ρ to be 0, i.e., not merging ρ with any of its

neighbors brings zero utility (line 8). We then consider each of the unprocessed neighbors

ρ̂ of pathlet ρ; compute the utility of merging ρ with each of its neighbors ρ̂, and then also

51

Algorithm 4.2: Candidate Pathlet Set Extraction Algorithm
Input : The road network G⟨V, E⟩, the trajectory set T , integer χ, the maximum

trajectory loss M and the average trajectory representability threshold µ̂.
Output : The χ-order candidate pathlet set S of merged pathlets with a trajectory loss not

exceeding M
/* Initialization */

1 Gp⟨Vp, Ep⟩ ← ExtractPathletGraph(G⟨V, E⟩)
2 ℓ← 1 // Size of the initial length 1 pathlets
3 T ∗ ← T ; S← ∅

4 ϕ← 1

|T ∗|
∑
τ∈T ∗

|Φ(τ)| ; µ̄← 1

|T ∗|
∑
τ∈T ∗

µ(τ)

/* Setup traj loss and utility dictionaries */
5 TD ← Dict(); UD ← Dict()
6 ρ← Rand(Ep) // Uniformly pick ρ ∈ Ep at random

/* Repeat until all pathlets are processed */
/* Or when traj loss exceeds the maximum */

7 while Ep ̸= S or sum(TD.Values()) < M or µ̄ ≥ µ̂ do
/* Initially set Gp’s utility associated to the curr pathlet ρ to be 0 */

8 UD[ρ] = 0
/* For each of ρ’s unprocessed neighbors */

9 foreach ρ̂ in Ψ(ρ) \ S do
10 UD[ρ̂]← ComputeUtil(Merge(ρ, ρ̂))
11 TD[ρ̂]← GetAllTrajLost (Merge(ρ, ρ̂), T ∗)

/* Find the one with the highest utility */
12 ρ∗ ← argmax

ρ∈key
UD[key]

13 if ρ∗ = ρ or ℓ > χ then // Merge not necessary
14 S← S ∪ {ρ}
15 ρ← Rand(Ep \ S) // Pick new pathlet
16 if ρ = ∅ then // All pathlets processed
17 break
18 ℓ← 1 // Reset pathlet length
19 else // Merge recommended
20 ρmerged ←Merge(ρ, ρ∗)
21 Ep ← (Ep \ {ρ, ρ∗}) ∪ {ρmerged}
22 T ∗ ← T ∗ \ TD[ρ

∗]

23 ϕ← 1

|T ∗|
∑
τ∈T ∗

|Φ(τ)| ; µ̄← 1

|T ∗|
∑
τ∈T ∗

µ(τ)

24 ρ← ρmerged; ℓ← ℓ+ 1

25 return S

52

Figure 4.3: Pathlet dictionary construction (initial – top; final – bottom) based on the
initial and final road network environments of the deep reinforcement learning architecture
(refer to the yellow and blue boxes in Figure 4.2).

the set of all trajectories that could be lost for when the pair of candidate pathlets do end

up merging (lines 9-11). More specifically, these lines maintain a record of how much the

merge of this candidate pair will impact the representabilities and losses of the trajectories.

The algorithm then finds a pathlet ρ∗ that is a candidate for merging with current pathlet ρ;

this candidate achieves the highest utility when merged with the current pathlet (line 12).

There are then two cases for where merging is not recommended (line 13): (1) when ρ∗ = ρ

(i.e., the algorithm deems that merging with another neighboring pathlet contributes little to

no improvement on the utility of Gp), and (2) when ℓ > χ (i.e., merging the two pathlets ρ

and ρ∗ would violate the χ-order constraint). In either of these cases, we add current pathlet

ρ to our candidate pathlet set, and then randomly select another unprocessed pathlet in

the pathlet graph; if all pathlets have already been processed, then we immediately end the

loop and return the candidate pathlet set S (lines 14-18). Otherwise, we immediately take

out the two pathlets that are candidate for merging and then add the newly merged pathlet

to our current pathlet set Ep in our pathlet graph (lines 20-21). Moreover, we remove

53

(a) (b) (c) (d)

Figure 4.4: An illustrative example of Example 4.2.1: (a) A toy example of a simple
road network; (b) A grid representation of (a); (c) The initial pathlet graph representation
(of length-1 pathlets) for the road network in (a); (d) The final (merged) pathlet graph
representation after the completion of the pathlet-merging algorithm in Algorithm 4.2.

Figure 4.5: An illustrative example of the paths (road segments) traversed by six trajectories
{τ1, τ2, τ3, τ4, τ5, τ6} (highlighted by maroon) from the road network of Example 4.2.1 as seen
in Figure 4.4; see Table 4.3 that lists the sequential pathlet-based representations of each
trajectory.

the collected lost trajectories from line 11 from our current trajectory set T ∗ (line 22).

The method also updates ϕ, µ̄, the current pathlet processed and its current length (lines

23-24). The iterative procedure ends when one of the following occurs: (1) all pathlets have

been processed, (2) the trajectory loss has exceeded the threshold M , or (3) the average

representability µ̄ falls below the threshold µ̂.

The Utility Function. To complete the description of the algorithm, we discuss the

formulation of the utility function that we approximated using a learning-based method. In

particular, a reinforcement learning method is utilized to learn the (sequence of) actions (i.e.,

merge or don’t merge pathlets) that would yield the highest possible utility. Specifically, we

frame the utility function as a reward function that we aim to optimize (i.e., maximize). We

discuss the details of this design in Chapter 4.2.2.

54

Figure 4.6: Pathlet labels for the initial
and final pathlet graph representations

With the pathlet dictionary constructed

following this process of pathlet merging

based on the utility theory, we can attain

something like the one depicted in Figure 4.3

(bottom figure). Now we provide a simple

toy example of the algorithm.

Example 4.2.1 As edge-disjoint pathlets are non-overlapping, then a decision would have

to be made when a pathlet is about to merge with one of its neighbor pathlets. As such,

there is some advantages or gains by merging with a certain pathlet, but such action also

comes with some cost. This is where trajectory representabilities and losses come in. More

specifically, a trajectory’s representability will drop when a portion of its trajectory cannot

be represented due to a pathlet merging with one of its neighbors. To give a more concrete

example, consider the snippet of a road network in Figure 4.4(a). Figure 4.4(b) illustrates its

grid representation, and Figure 4.4(c) the (initial) pathlet graph representation, where we

highlighted using various colors the nine pathlets in question. See the left image of Figure

4.6 for the labels of these pathlets and their color code in Table 4.2. Initially, our pathlet

dictionary is composed of the following based on the six trajectories as highlighted by the

maroon color on the grid graph in Figure 4.5 (their pathlet-based representations in Table

4.3):

ρ1 : {τ5} ρ2 : {τ2, τ3} ρ3 : {τ2, τ3, τ5} ρ4 : {τ2, τ4, τ5} ρ5 : {τ1, τ4}

ρ6 : {τ4} ρ7 : {τ1, τ6} ρ8 : {τ1, τ4, τ6} ρ9 : {τ1, τ6}

After the entire merging process, the algorithm returns the following final dictionary – with

its illustration in Figure 4.4(d), with their labels in Figure 4.6, their color codes in Table 4.2

and the trajectories’ updated representabilities and pathlet-based representations in Table

4.3:

55

Pathlet Color

ρ1 red
ρ2 purple
ρ3 orange
ρ4 yellow
ρ5 blue
ρ6 pink
ρ7 brown
ρ8 green
ρ9 grey
ρ134 tangerine
ρ58 aquamarine

Table 4.2: Color coding of
the pathlets for the toy ex-
ample in Example 4.2.1

Traj
Pathlet-based representation

set Φ (Representability µ)

(Before merge) (After merge)

τ1 {ρ5, ρ8, ρ9, ρ7} (100%) {ρ58, ρ9, ρ7} (100%)

τ2 {ρ2, ρ3, ρ4} (100%) {ρ2} (33%)

τ3 {ρ3, ρ2} (100%) {ρ2} (50%)

τ4 {ρ4, ρ6, ρ8, ρ5} (100%) {ρ6, ρ58} (75%)

τ5 {ρ4, ρ3, ρ1} (100%) {ρ134} (100%)

τ6 {ρ7, ρ9, ρ8} (100%) {ρ7, ρ9} (67%)

Table 4.3: Pathlet-based representation set (and tra-
jectory representabilities) of the provided toy example
in Example 4.2.1

ρ134 : {τ5} ρ2 : {τ2, τ3} ρ58 : {τ1, τ4} ρ6 : {τ4} ρ7 : {τ1, τ6} ρ9 : {τ1, τ6}

Note that pathlets ρ1, ρ3, and ρ4 from initial pathlet graph merged to become pathlet ρ134 in

the final pathlet graph (it is irrelevant in this example whether pathlet ρ3 merged with ρ1 or

ρ4 first). The same can be said for pathlets ρ5 and ρ8 to form pathlet ρ58.

Initially, all trajectories have µ = 100% representatbility values because all six trajectories

can be represented by pathlets in the initial pathlet dictionary. However, after the entire

merging process, we are left with some of the original six trajectories to have a lower µ value

than the original representability value. Notice for example trajectory τ1; its µ value did

not drop because all the pathlets in its original pathlet-based representation Φ either have

never merged, or have merged with a neighboring pathlet that also belongs to Φ(τ1). In

other words, the entirety of trajectory τ1 can still be represented by the pathlets in the final

pathlet dictionary; this results into its representability being maintained at 100%. A similar

story can be told for trajectory τ5. For the rest of the trajectories, the representabilities are

lower. Looking at trajectory τ2 for example whose Φ(τ2) = {ρ2, ρ3, ρ4}. However, after the

algorithm, we only have Φ(τ2) = {ρ2} left; the reason being is that pathlets ρ1, ρ3, and ρ4

56

have all merged together to form ρ134. But note that since ρ1 does not represent τ2, then the

merged ρ134 is not part of the Φ(τ2) after completing the iterative algorithm. As a result,

it is expected for its trajectory representability to drop. The same story can be said for

trajectories τ3, τ4 and τ6.

Remark 4.2.1 One can imagine that the representabilities of the trajectories can potentially

drop at each step of the iterative algorithm, until it drops to zero. In the event that a

trajectory’s representabilty reaches zero, it is removed from the trajectory set and counted as

a trajectory loss. Now this is a soft version of what is considered to be a trajectory loss. There

is a harder, stricter variation, where the notion of trajectory representability is eliminated

from the picture, (i.e., a trajectory losing only a small portion of its representability due to a

pathlet merge action meant that the entire trajectory is considered lost), entails throwing

excessive trajectories and can be fatal to the performance of the model and the algorithm.

Intuitively, one might not desire discarding an entire trajectory when (say only 1% of the

trajectory) cannot be represented due to the pathlet merge. The experimental evaluations

later will demonstrate the essence of this soft version that takes trajectory representability

into account.

Theorem 4.2.1 (Trajectory Representability Theorem) At any step i of the

iterative Algorithm 4.2, then the trajectory representability µ of some trajectory τ ∈ T

by the end of that iteration i is equal to:

µi(τ) =

∑
ρ′∈Φi(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(4.14)

where Φ0 and Φi are the pathlet-based representation of trajectory τ in the initial

(iteration 0) and iteration i of the iterative algorithm respectively.

57

The above theorem provides a formula for how to compute a trajectory’s representability

value µ at some iteration i of the algorithm. We refer the reader to Appendix B.1 where we

provide a complete proof for this theorem.

4.2.2 Reinforcement Learning Framework

In reinforcement learning (RL), desirable actions lead to higher rewards while unfavorable

actions result in punishment (lower-valued rewards) – a trend analogous to what we desire.

RL methods have seen success in solving decision-based problems in an attempt to maximize

rewards [97, 132]. As this aligns with our goal to maximize utility, we motivated the use of

RL to merge pathlets. We briefly go over its components here (see the (left) gray panel of

Figure 4.2).

The Environment. RL models are designed for an agent to learn the most optimal actions,

commonly in games [97, 131, 132, 129, 136, 11]. In this context, we consider the entire pathlet

graph Gp to be the environment; it is where our deep RL algorithm will be operating on.

The Agent. RL is often designed for training robotic agents, or some AI [70]. In our case,

our agent is trained to learn which pathlets in the pathlet graph are to be merged/kept

unmerged. In particular, we train the agent to learn the most optimal sequence of actions

that would yield the highest possible utility (reward).

The States. The reinforcement learning paradigm is based on the Markov decision process

(Mdp) [107], that requires specification of states. In this case, the state st ∈ S is depicted

by the current state of the pathlet graph environment. In particular, the pathlet graph’s

state can be represented as a 4-tuple (S1, S2, S3, S4), where S1 denotes the number of pathlets

in the current pathlet graph, S2 denotes the average number of pathlets to represent the

trajectories, S3 is the trajectory loss and S4 is the average trajectory representability.

The Actions. At each time t, the agent has a choice of two discrete actions on the currently

58

processed pathlet ρ, as expressed by the action space A = {keep,merge}. In other words,

keep action suggests that the current pathlet ρ should be kept and not be merged with any

one of its neighbors. As a result, Algorithm 4.2 puts the current pathlet ρ in the processed

set and then selects a new pathlet to process, performing one of the two actions in the action

space on that new pathlet. The merge action should however merge the current pathlet ρ

with one of its |Ψ(ρ)| neighbors. For that, the agent would need to decide on which neighbor

in the set Ψ(ρ) to merge with. Thus, the action space can succinctly be written as:

A =
⋃

∀ρ̂∈Ψ(ρ)

merge(ρ, ρ̂) ∪ {keep(ρ)} (4.15)

The Reward Function. We formulate our reward function R based on the optimization

equation defined in Equation (3.14):

max
at

E

[(
−α1|S| − α2

1

|T |
∑
τ∈T

|Φ(τ)| − α3Ltraj + α4
1

|T |
∑
τ∈T

µ(τ)

)]
(4.16)

Whenever the RL agent performs an action at in the pathlet graph environment, the environ-

ment provides back feedback to it in the form of instantaneous rewards {rt}Tt=0:

rt = −α1∆|S| − α2∆ϕ− α3∆Ltraj + α4∆µ̄ (4.17)

where ∆⊙ represents the change of ⊙’s value in the previous and current timesteps. In the

end, the agent receives the total sum of these instantaneous rewards, plus the final reward as

depicted in Equation (4.16). Note that in order for the agent to realize the importance of

both immediate and long-term future rewards, a user-defined discounted rate factor γ ∈ [0, 1]

was introduced.

The Policy and Dqn Networks. The policy π imposed on an agent is one that maximizes

59

the future expected reward from the environment. A state-action pair at time t, denoted

by (st, at) can be mapped to some quality index Qπ function represented as Qπ(st, at). In

other words, Qπ possess the maximum possible future expected reward in the environment

for state-action pair (st, at):

Qπ(st, at) = max [E (Rt | st, at)] (4.18)

Therefore, the agent’s goal is to learn the most optimal policy π, through the selection of the

action at while in state st that maximizes the Q-index. The idea of this Q-learning method

is for the agent to record and keep track of all possible state-action (st, at) pairs and the

Q-values they map to in a lookup table. In other words, it maintains a Q-table of values with

|S| states and |A| actions. The Q-table is then updated at each timestep recursively:

Qπ(st, at)← Qπ(st, at) + αlr

[
γmax

at+1

Qπ(st+1, at+1)−Qπ(st, at)

]
(4.19)

where αlr is the learning rate. In fact, this Q-learning paradigm has seen significant success

in the reinforcement learning community [137]. However, it can be observed that while our

action space A is discrete, the state space S is continuous. As a result, the agent is unable to

maintain large state-action spaces and therefore a nonlinear function approximator such as

neural networks is necessary to estimate these Q-values. In particular, a deep reinforcement

learning (Drl) architecture was employed, specifically a Deep Q-Network (Dqn) algorithm

was utilized as the proposed solution to this end (see Appendix C for other reinforcement

learning policies and why Dqn has been chosen over these other policies).

The Experience Replay Buffer. As there are no generated data for where the agent can

learn the optimal actions, it would have to learn based on prior experience. More specifically,

the agent (collects data of) keeps track of all state-action pairs and state-transitions it has

60

had in the past so it can learn from them at a later time. The Epsilon-Greedy method

was used to determine the most optimal action at while the agent collects the data; i.e., this

Epsilon-Greedy policy is the data collection policy used by the agent and should not be

confused with the Q-policy that the agent uses for evaluation and deployment. Moreover, the

experience tuple records (st, at, rt, st+1) are stored in a memory buffer called the experience

replay buffer [40]. The agent samples a memory minibatch from this replay buffer and then

calculates the (Huber) loss function. Note that this particular loss function is distinct from

our proposed trajectory loss metric, where the former is calculated based on the agent’s

actions while the latter is based on the number of trajectories that cannot be represented by

the pathlets in the pathlet set.

4.2.3 Space Complexity Analysis

One of the main motivations for why edge-disjoint pathlets have been used together with

bottom-up approaches is due to the reduced memory storage requirements that is necessary

to initialize pathlets, in contrast with previous works that utilize top-down schemes with

overlapping, redundant pathlets. In fact, we provide a space complexity analysis of top-down

approaches and compare this with the proposed bottom-up methods through the following

theorem (see Appendix B.2 for the proof).

Theorem 4.2.2 (Initial Memory Storage Requirement Theorem) The memory

space that is required by top-down methods for initializing a pathlet dictionary has

a quadratic Θ(n2) bound, with n as the number of segments of the road network.

Bottom-up schemes on the other hand, such as the proposed PathletRL, requires

only an initial Θ(n) amount of memory space, with n as the number of initial length-1

pathlets.

61

Chapter 5

Evaluation

In this chapter, we go over the experimental design, including information about the datasets,

the evaluation metrics, the baseline methods, numerical results and insightful discussions. To

keep the organization, as in Chapter 4, the entire chapter is split into two sections: Chapter

5.1 discusses the evaluation for the St2Box method, while Chapter 5.2 covers the evaluation

for the proposed PathletRL.

5.1 Evaluating St2Box

5.1.1 Research Questions

To evaluate St2Box, we consider the following research questions:

(RQ 1.1) How does St2Box compare with the SotA methods, in terms of accuracy

performance?

(RQ 1.2) What spatial element is best to use for expressing trajectories as sets (i.e., sets of

points, cells or road segments)?

62

Feature T-Drive Nyc

nodes ∼75K ∼78K
edges ∼165K ∼121K
trajectories ∼348K ∼634K
Observation period 1 week 1 month

Table 5.1: Attributes of the datasets used in the top k similarity search problem

(RQ 1.3) How robust is St2Box when varying the values of the spatiotemporal weight

θ ∈ [0.0, 0.1, ..., 1.0]?

(RQ 1.4) What impact does varying the values of the box smoothing parameter β bring to

the performance of St2Box?

5.1.2 Datasets

To measure the effectiveness of St2Box, we utilize two popular taxi trajectory datasets on

two large metropolitan urban cities of Beijing and New York. One is the T-Drive dataset8

[179, 178] on the Beijing road network, while the other is Nyc9 taxi dataset on the New York

City road network. We initially preprocess the datasets (the procedure includes map-matching

trajectories and filtering out those having less than 10 sampling points), which results into

∼348K trajectories in T-Drive and ∼634K trajectories for Nyc. See Table 5.1 for complete

statistics of the datasets used.

5.1.3 Experimental Parameters

In comparing our methods with the baselines, we use the spatiotemporal weight parameter

θ = 0.5 (i.e., spatial and temporal aspects are equally important). The dimensions for the

spatial and temporal embeddings are both set to 128. Moreover, the batch size is set to 512.
8https://www.microsoft.com/en-us/research/publication/t-drive-trajectory/
9https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

63

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory/
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

The number of positive and negative training samples is both set to 10. Adam with learning

rate of 0.001 was used for optimization. The box smoothing parameter β was set to 1.0.

5.1.4 Baselines

There are two main classifications of baseline methods that St2Box will be compared

with: (1) deep learning baselines, that have some sort of learning component in their model

architectures, and (2) box-based architecture baselines, that mainly use the Set2Box [79]

architecture with varying type of set element.

Deep Learning Baselines. We introduce the following baselines for evaluating St2Box.

The first three deep learning models have been chosen, as they are popular methods that

have yet to be compared with the state-of-the-art St2Vec. Note that among all these

deep learning baselines, only St2Vec captures both the spatial and temporal features of

trajectories; while all others capture the spatial aspect only.

• CssRnn [164]. An extension to the traditional Rnn that integrates topological

constraints into the model.

• Traj2Vec [172]. Based on sliding windows and autoencoders to learn the fixed-length

trajectory representations.

• T2Vec [85]. A sequence-based model for learning representations of trajectories that

is robust to non-uniform, low sampling rates and noisy sample points.

• St2Vec [39]. The current SotA model that fuses spatial and temporal characteristics

of trajectories.

Box-based Architecture Baselines. We also experiment on which type of element is best

to pass onto Set2Box [79] (only the spatial aspects are captured in the following baselines):

64

• Pts2Box. In this baseline, we pass geo-coordinate points of trajectories to the

architecture for capturing similarity among trajectories based on trajectory points.

• Hex2Box. Instead of points, we express trajectories as a set of cells/hexagon blocks

that the trajectories traverse10.

• Rds2Box. Each trajectory is expressed as the set of all road segments from the road

network traversed by that trajectory.

5.1.5 Evaluation Metrics

Ten percent of the preprocessed trajectory datasets T have been initially withheld as a query

set Tq. Then the remainder have been split into 50% training, 20% validation and 30%

testing sets. Now to measure the effectiveness of the proposed method, we first pick a query

trajectory τq selected uniformly at random from Tq and then choose the top k = 100 most

similar trajectories to τq from the testing set Ttest using the following similarity measures as

ground truth(s), namely Tp [126], Dita [128], Lcrs [177], NetERP [72] and Fréchet [44]

(while also ranking all other trajectories in Ttest based on their similarity to τq). We refer the

reader to Appendix D that provides more details on these five similarity measures. From the

model’s predictions and the ground truth(s), we consider the following evaluation metrics,

where [↓] and [↑] denotes better performance with lower and higher values, respectively:

• Hr [↑]. The top k hitting ratio captures the degree of overlap of the model’s predicted

top k most similar trajectories with that of the corresponding ground truth’s.

• Mae [↓]. The mean absolute error can be calculated by computing the average of all
10More formally, the map where the trajectories reside is first tessellated into regular disjoint hexagon

blocks (called polygon objects in the context of computational geometry). Then the trajectory points are then
map-matched onto the road network to form linestrings that represent the paths taken by the trajectories.
And finally, trajectories are expressed as sets of hexagon blocks based on the intersection of these linestrings
that they represent and the polygon (hexagons) objects from the tesselated map.

65

differences of the similarity rankings between the prediction and the ground truth. So

if R(τ) and R̂(τ) denote the function for the ground truth and predicted rankings of

τ ’s similarity with τq, then the Mae can be computed as:

1

|Ttest|
∑

τ∈Ttest

|R(τ)− R̂(τ)| (5.1)

• Kt [↑]. The kendall-tau metric measures the ordinal association of the predicted

rankings versus the ranking of the ground truth. So then the Kt measure is calculated

as follows:

2

|Ttest|(|Ttest| − 1)

∑
i<j

sgn(R(τi)−R(τj)) sgn(R̂(τi)− R̂(τj)) (5.2)

5.1.6 Results and Discussion

In this Chapter, we go over each of the four research questions, present the experimental

results and provide some discussion.

(RQ 1.1) Accuracy Performance. We evaluate the proposed method against four baselines,

with St2Vec [39] being the SotA. Table 5.2 shows the numerical results. Notice two key

observations. (i) Firstly, St2Vec [39] and St2Box consistently outperform the three other

baseline models (CssRnn [164], Traj2Vec [172], and T2Vec [85]) in all five ground truth

similarity measures for both T-Drive and Nyc trajectory datasets. This is due to the fact

that both St2Vec [39] and St2Box take into account the temporal dimension in addition

to the spatial aspect; while the other models only consider the spatial similarity. This

demonstrates the importance of temporal features when learning the similarity in trajectories.

(ii) Secondly, St2Box consistently outperforms St2Vec [39] in terms of accuracy with the

gain ranging between 0.6%-37.5% (T-Drive) and 1.2%-28% (Nyc). Also, St2Box performs

66

M
od

el
T

p
D

it
a

L
c
r
s

N
et

E
R

P
F
r
ec

h
et

H
r

M
a
e

K
t

H
r

M
a
e

K
t

H
r

M
a
e

K
t

H
r

M
a
e

K
t

H
r

M
a
e

K
t

T-Drive

C
ss

R
n
n

0.
61

8
17

99
0.

00
4

0.
71

4
16

67
0.

22
8

0.
64

2
25

58
0.

18
9

0.
66

9
17

46
0.

10
7

0.
70

5
17

38
0.

00
4

T
r
a
j2

V
ec

0.
65

1
17

74
0.

03
7

0.
69

5
16

42
0.

27
2

0.
63

6
25

70
0.

16
8

0.
68

3
17

32
0.

11
1

0.
67

9
17

19
0.

11
0

T
2V

ec
0.

64
0

17
83

0.
01

0
0.

73
0

16
50

0.
25

9
0.

62
9

25
64

0.
18

2
0.

65
4

17
60

0.
04

6
0.

72
8

17
23

0.
00

9
ST

2V
ec

0.
74

5
17

05
0.

23
2

0.
82

2
15

65
0.

41
3

0.
78

1
24

88
0.

31
3

0.
76

0
16

83
0.

21
0

0.
82

6
16

56
0.

24
4

P
t
s2

B
o
x

0.
67

9
17

66
0.

09
6

0.
78

2
16

24
0.

32
0

0.
65

6
25

51
0.

20
3

0.
69

8
17

19
0.

12
8

0.
75

3
17

02
0.

13
1

H
ex

2B
o
x

0.
70

9
17

44
0.

15
7

0.
80

3
16

09
0.

35
0

0.
68

7
25

48
0.

24
5

0.
71

1
17

04
0.

16
7

0.
79

2
16

89
0.

16
5

R
d
s2

B
o
x

0.
71

8
17

29
0.

20
1

0.
81

0
15

98
0.

38
7

0.
72

2
25

34
0.

28
3

0.
74

9
16

97
0.

19
5

0.
81

3
16

61
0.

20
7

ST
2B

o
x

0.
82

3
16

82
0.

31
9

0.
86

2
15

56
0.

46
6

0.
81

4
24

65
0.

35
0

0.
78

6
16

48
0.

23
1

0.
84

2
16

35
0.

26
9

%
Im

p
r.

10
.5

%
1.

4%
37

.5
%

4.
9%

0.
6%

12
.8

%
4.

2%
0.

9%
11

.8
%

3.
4%

2.
1%

10
.0

%
1.

9%
1.

3%
10

.2
%

Nyc

C
ss

R
n
n

0.
64

9
26

19
0.

10
3

0.
67

2
24

91
0.

02
7

0.
62

1
22

07
0.

08
6

0.
61

6
20

69
0.

10
1

0.
67

9
16

73
0.

14
4

T
r
a
j2

V
ec

0.
61

1
26

08
0.

11
4

0.
66

9
24

70
0.

03
9

0.
65

9
21

79
0.

11
8

0.
64

9
20

90
0.

08
9

0.
72

0
16

40
0.

17
1

T
2V

ec
0.

67
8

26
28

0.
09

7
0.

66
5

24
53

0.
06

0
0.

64
0

21
92

0.
10

5
0.

68
6

20
41

0.
12

2
0.

70
7

16
02

0.
19

7
ST

2V
ec

0.
84

2
25

50
0.

27
4

0.
82

7
23

48
0.

20
7

0.
74

9
21

17
0.

23
0

0.
80

1
19

36
0.

24
3

0.
82

0
14

92
0.

34
8

P
t
s2

B
o
x

0.
72

5
26

02
0.

12
0

0.
69

0
24

17
0.

10
8

0.
68

2
21

65
0.

13
6

0.
71

6
20

09
0.

16
6

0.
74

8
15

78
0.

25
3

H
ex

2B
o
x

0.
75

1
25

84
0.

19
8

0.
74

1
24

01
0.

13
9

0.
70

3
21

46
0.

18
8

0.
74

1
19

86
0.

18
3

0.
77

5
15

61
0.

28
6

R
d
s2

B
o
x

0.
76

0
25

61
0.

22
5

0.
78

4
23

67
0.

17
4

0.
71

6
21

30
0.

20
2

0.
76

3
19

58
0.

20
7

0.
79

1
15

39
0.

30
4

ST
2B

o
x

0.
87

9
24

98
0.

33
3

0.
88

3
23

19
0.

26
5

0.
81

7
20

85
0.

28
3

0.
83

5
18

93
0.

27
2

0.
89

3
14

63
0.

39
9

%
Im

p
r.

4.
4%

2.
0%

21
.5

%
6.

8%
1.

2%
28

.0
%

9.
1%

1.
5%

23
.0

%
4.

2%
2.

2%
11

.9
%

8.
9%

1.
9%

14
.7

%

T
ab

le
5.

2:
N

um
er

ic
al

re
su

lt
s

fo
r

si
m

ila
ri

ty
se

ar
ch

ta
sk

;
bo

ld
/u

nd
er

lin
ed

nu
m

be
rs

in
di

ca
te

be
st

/s
ec

on
d

be
st

m
et

ho
d

re
sp

ec
ti

ve
ly

.
T

he
la

st
ro

w
sh

ow
s

th
e

%
im

pr
ov

em
en

t
at

ta
in

ed
by

St
2B

o
x

fr
om

th
e

st
at

e-
of

-t
he

-a
rt

St
2V

ec
.

67

significantly better in the Hr and Kt metrics. The proposed method, in addition to the

SegStf for incorporating spatial and temporal dimensions, comes with an architecture for

representing sets (road-based representations of trajectories) as boxes – which could explain

its superiority. This special architecture is both permutation-invariant and equivariant for

the road-based set representation of the trajectories, thus enhancing model performance;

moreover, the box architecture is characterized by its accuracy, versatility, and generalizability

[79] for representing sets while preserving similarity.

In addition, the improvement in performance offered by St2Box can be attributed

to its ability to learn more refined levels of spatiotemporally-enriched information; first

with Seg2Vec’s architecture that is designed to capture the trajectory’s road segments’

spatiotemporal features. And then with Seg2Box that can maintain this information

while preserving similarities among trajectories using box representations of road-based

representation sets with desirable characteristics.

(RQ 1.2) Spatial Experiment. Next, we would like to know what the best spatial

component to represent trajectories is (see Table 5.2 for the results). The most common

is through raw gps points (longitude/latitude) which are often collected by digital sensors,

smart devices and other geo-tracking technologies. Another way to represent trajectories is

through the use of block cells. In our case, we utilize hexagon-shaped grid tessellations11

as they are known to be the most circular-shaped polygon that can minimally reduce bias

in mobility data [16]. Lastly, trajectories can be represented as road segments. Each of

these three representations is passed to the box architecture, and the output models are

named as Pts2Box, Hex2Box, and Rds2Box, respectively. In all ground truth measures

and in both datasets for all evaluation metrics, it can be observed how Rds2Box yields

the best performance. Pts2Box does not seem to do well, likely due to raw Gps traces

containing noisy data, many of which are not map-matched and do not align with the
11Data source: https://github.com/alifa98/point2hex

68

https://github.com/alifa98/point2hex

road network. Hex2Box is also outperformed by Rds2Box, likely because the hexagon-

based representations of trajectories tend to underestimate and/or overestimate the exact

paths/roads traversed by trajectories. In addition, the choice of resolution for hexagon

tessellation on the map could also affect the overall results, and knowing the most suitable

one can be challenging. In the end, we see that the best representation for these trajectories

is that of the road segments. With St2Box, we improve the performance of Rds2Box by

incorporating the temporal dimension, as explained in (RQ 1.1).

(RQ 1.3) Robustness Study. We evaluate St2Box’s robustness for varying values of the

spatiotemporal weight θ ∈ [0.0, 0.1, ..., 1.0], where higher (lower) θ indicates more importance

towards the spatial (temporal) aspect (refer back to Equation (3.4) for the spatiotemporal

similarity equation). Figure 5.1 shows that the performance of St2Box remains stable

on all three evaluation metrics for both datasets across all θ’s, which indicates that it can

provide support to a variety of applications as discussed in the Chapter 1. Only plots for

θ ∈ [0.2, 0.4, 0.6, 0.8] are included but the same results hold for any other θ.

(RQ 1.4) Parameter Sensitivity. We also conduct a parameter sensitivity experiment on

the box smoothing parameter β that can take any positive floating number. However, there

appears to be no substantial changes to the results for values larger than 4.0 or smaller than

1.0. Hence, we only show the plots for β ∈ [1.0, 2.0, 3.0, 4.0]. Again, higher Hr and Kt values,

as well as lower Mae numbers, indicate better performance. It can be observed that the best

β parameter in both datasets for all ground truth measures based on these four values is

β = 1.0. In fact, Figure 5.2 shows that for both datasets on the five ground truth measures,

we observe higher Hr and Kt (similarly, seeing lower Mae values) by lowering β values.

This is due to the fact that the β parameter controls the smoothing of the boxes, which also

impacts the calculation for the boxes’ volume. In particular, harder boxes (generated by

higher β values) approximate the ReLU function (instead of the SoftPlus) when computing

69

F
ig

u
re

5.
1:

R
ob

us
tn

es
s

st
ud

y
of

St
2B

o
x

fo
r

va
ry

in
g

va
lu

es
of

th
e

sp
at

io
te

m
po

ra
lw

ei
gh

t
θ
∈
[0
.2
,0
.4
,0
.6
,0
.8
]
fo

r
th

e
fiv

e
gr

ou
nd

tr
ut

h
m

ea
su

re
s

on
th

e
T

-D
r
iv

e
(t

op
)

an
d

N
y
c

(b
ot

to
m

)
da

ta
se

ts
.

F
ig

u
re

5.
2:

P
ar

am
et

er
se

ns
it

iv
it
y

an
al

ys
is

of
th

e
bo

x
sm

oo
th

in
g

pa
ra

m
et

er
β
∈
[1
.0
,2
.0
,3
.0
,4
.0
]
fo

r
th

e
fiv

e
gr

ou
nd

tr
ut

h
m

ea
su

re
s

on
th

e
T

-D
r
iv

e
(t

op
)

an
d

N
y
c

(b
ot

to
m

)
da

ta
se

ts
.

70

box volumes. As a result, hard boxes pose a challenge in gradient-based optimization for

disjoint boxes, as discussed in Chapter 4.1.4; this can explain St2Box’s poorer performance

with higher β values.

Summary of Key Observations. There are a few key insights that can be derived based

on the results that can be observed from the experiments conducted in the four research

questions above. The most important being, is that StBox outperforms all its baseline

models. Indeed, while StVec outperforms other deep learning baselines due to its temporal

learning and fusion modules, the proposed St2Box can offer a more enhanced improvement

to the model thanks to its highly-accurate, versatile and generalizable box representations of

the trajectories’ road-based representation sets. It was also observed that the model is robust

to spatiotemporal weight θ, and that the box smoothing parameter β tends to have better

smoothing, and thus more improved results with lower parametric values. It was also shown

how the road segments turned out to be the most effective spatial element in set-to-box

representations, compared to points and hexagon cells. Computation of similarity values is

moreover fast (as inherited from the Set2Box architecture [79]) and therefore is scalable.

5.2 Evaluating PathletRL

5.2.1 Research Questions

To evaluate PathletRL, we consider the following six research questions:

(RQ 2.1) How does PathletRL compare with the SotA methods, in terms of the quality

of the extracted Pds?

(RQ 2.2) How much memory does the bottom-up approach save compared to top-down

methods?

71

Feature Toronto Rome

ro
ad

m
ap # nodes ∼1.9K ∼7.5K

edges / initial pathlets ∼2.5K ∼15.4K

tr
aj

ec
to

ri
es

Trajectory type realistic synthetic real-world
Object cars taxis
Total trajectories ∼169K ∼3.8M
Observation period 3.7 hours 1 week

Table 5.3: Attributes of the datasets used in the pathlet dicitonary construction problem

(RQ 2.3) How much improvement and how much more effective is the proposed PathletRL

model against its ablation variations?

(RQ 2.4) What is the distribution of pathlet lengths in the obtained dictionary in our

PathletRL model?

(RQ 2.5) How effective is the constructed Pd in reconstructing the original trajectories?

(RQ 2.6) What is the sensitivity of the user-defined parameters {α1, α2, α3, α4} in the

performance of our PathletRL model?

5.2.2 Datasets

Two datasets that each depict a different map scenario have been utilized to evaluate

PathletRL (see Table 5.3 for its complete statistics)12. More specifically, we used real world

maps of two metropolitan cities, Toronto13 and Rome through the OpenStreetMaps14. A

realistic synthetic vehicular mobility datasets for the Toronto map was generated using

the Sumo (Simulation of Urban MObility) mobility app simulator15 (3.7 hours). Moreover,
12The datasets used to evaluate St2Box can definitely be used to evaluate PathletRL, however we opted

to use other datasets for variety purposes and for effective testing on both realistic synthetic and real-world
datasets.

13https://www.toronto.ca/city-government/data-research-maps/open-data/
14https://www.openstreetmap.org/
15https://www.eclipse.org/sumo/

72

https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.openstreetmap.org/
https://www.eclipse.org/sumo/

PathletRL-Nr ✗ ✓ ✓

PathletRL-Rnd ✓ ✓ ✗

PathletRL-Unw ✓ ✗ ✓

PathletRL (ours) ✓ ✓ ✓

PathletRL
Algorithm

Representability
Measure

Weighted
Networks

Deep Learning
Policy

Table 5.4: Features of the proposed PathletRL models, alongisde its ablation baselines.

larger-scale, real-world taxi cab trajectories (first week of February 2014) were taken from

Crawdad16 [18], an archive site for wireless network and mobile computing datasets, to form

the Rome dataset. We split our trajectory sets into 70% training and 30% testing, where the

training data was used to construct our pathlet dictionaries and the remainder for evaluation.

5.2.3 Experimental Parameters

To implement the RL architecture, a deep neural network that consists of the following

parameters have been utilized. It comprises of three hidden fully-connected layers of 128, 64

and 32 hidden neurons. The ReLU activation function has been employed, optimized by

Adam with a learning rate of 0.001. A 0.2 dropout in the network, together with the Huber

loss function, have also been used.

More specific to the Dqn’s parameters, there are a total of m = 5 episodes for each of

the n = 100 iterations. The size of the experience replay buffer is 100,000 and the memory

minibatch size is 64. The agent also uses a discount factor γ = 0.99. Moreover, the value

χ = 10 for the χ-order candidate set, M = 25% maximum trajectory loss and µ̂ = 80%

average representability threshold, were set. Then αi =
1
4
,∀i, denoting equal importance for

each of the four objectives as depicted in Equation (4.16).
16https://crawdad.org/

73

https://crawdad.org/

5.2.4 Baselines

The proposed PathletRL models will compete against the following baseline methods

(see Appendix E as to why the following specific baselines are selected). The first two are

SotA baselines that utilize top-down approaches, while the last three are ablation versions

of our proposed model (see Table 5.4 for a summary of each ablation model and the features

withheld in each version to demonstrate the importance and effectiveness of such features).

• Chen et al. [26]. The very first paper that introduces the notion of pathlets. This

method frames the problem as an integer programming formulation, that is solvable

using dynamic programming.

• Agarwal et al. [1]. Framing Pd extraction as a subtrajectory clustering problem,

where subtrajectory clusters are treated as pathlets, they use pathlet-cover inspired

from the popular set-cover algorithm.

• Sgt. The Singleton baseline considers all initial length-1 pathlets (the original road

map), without merging any pathlets.

• PathletRL-Rnd. This version of PathletRL does not support Deep Q Networks

and does not utilize a Dqn agent. Actions at each episodic timestep are taken uniformly

at random.

• PathletRL-Nr. Trajectory representability is absent under this ablation. If a

pathlet traversed by some trajectory τ merges with another pathlet that is not traversed

by this τ , then there no longer exists a subset of pathlets in the pathlet set that can

represent τ ; as a result, immediately discard trajectory τ . Recall Remark 4.2.1 for

details on a PathletRL model that withhelds the representability feature.

74

• PathletRL-Unw. This version of PathletRL is applied to a pathlet graph

environment where all pathlets are equally weighted.

5.2.5 Evaluation Metrics

To evaluate model performance, we consider the following metrics that will measure the

quality of the extracted pathlet dictionaries. Note that [↓] ([↑]) indicate that lower (higher)

values are better.

(1) |S|, the size of the pathlet dictionary [↓]

(2) ϕ, the average number of pathlets that represent each trajectory [↓]

(3) Ltraj, the average number of trajectories discarded (expressed in percentage) [↓]

(4) µ̄, the average representability across the remaining trajectories (expressed in percentage)

[↑]

Note that the third and fourth metrics above do not apply to Chen et al.’s [26] and

Agarwal et al.’s [1] methods as such measures are only applicable to pathlet-merging methods.

Moreover, the fourth metric does not apply to PathletRL-Nr. Under this model, all

remaining trajectories in the dataset (and hence the average) are always 100% representable,

which is not so interesting.

5.2.6 Results and Discussion

In this Chapter, we go over each of the six research questions, present the experimental

results and provide some discussion.

(RQ 2.1) Quality of the Extracted Pds. We evaluate the pathlet dictionary extracted

by our PathletRL algorithm against the Pds extracted by SotA baselines. See Table 5.5

75

Baselines Null PathletRL % Impr.
[26] [1] Sgt Rnd Nr Unw (ours)

T
o
ro

n
to

|S| 13,886 7,982 2,563 2,454 1,896 1,801 1,743 +3.22%
ϕ 7.02 5.97 4.76 3.77 2.89 3.98 3.75 –22.9%
Ltraj n/a n/a 0% 19.7% 17.6% 15.1% 15.2% –0.66%
µ̄ n/a n/a 100% 79.9% n/a 80.0% 83.9% +4.88%

R
o
m
e

|S| 59,396 31,017 15,465 9,718 7,003 5,804 5,291 +8.84%
ϕ 202.91 188.33 230.15 173.04 158.18 146.39 139.89 +4.44%
Ltraj n/a n/a 0% 24.9% 21.1% 22.9% 20.4% +3.32%
µ̄ n/a n/a 100% 82.7% n/a 86.2% 85.6% –0.70%

Table 5.5: Numerical results showing the attributes of the pathlet dictionaries extracted by
each method for each dataset.

for the numerical results, where the bold numbers indicate the result of the most superior

model for the given Pd metric and the underlined number is the result of the second-best

performing model (note that we do not boldface or underline the numbers of Sgt as such

model serves as the null model where nothing is done to the pathlet graph). The last column

of this table also highlights how much improvement the proposed model has on the quality of

its extracted Pd versus that of the best baseline model in the given evaluation metric; ’+’

indicates a better and ’–’ indicates lesser performance.

Although the nature of the pathlet definition and the approaches are not necessarily

the same, the algorithms of Chen et al. [26] and Agarwal et al. [1] are still comparable.

We ultimately show that their top-down approaches are not as effective as our bottom-up

strategies. First, we look at the size of the pathlet dictionary, |S|, where the smaller the

number the better is the result. Our PathletRL model was able to improve from Sgt

by ∼32.0% (∼65.8%) for the Toronto (Rome) dataset. These numbers are an ∼87.4%

(∼91.1%) improvement from Chen et al.’s [26] model on the Toronto (Rome) dataset.

Our model also improves by ∼78.2% (∼82.9%) from Agarwal et al.’s [1] method on the

Toronto (Rome) dataset. These two observations indicate how superior our method is

76

against the state of the art; i.e., bottom-up methods being better than top-down schemes.

Note as well that Chen et al.’s [26] and Agarwal et al.’s [1] Pds are larger than the initial

number of length-1 pathlets, as their methods are top-down – which initially considers all

possible pathlet sizes and configurations (including overlaps). Clearly, they do not exhibit

ideal results, compared to our proposed PathletRL model, as well as in all of the ablation

versions of PathletRL.

Then, we focus on the metric of the average pathlet number that represents each trajectory

(which can go up or down at each step of the iterative algorithm). Similar to |S|, a smaller ϕ

indicates a more ideal dictionary. Our PathletRL model was able to extract dictionaries

that improve from Sgt by ∼21.2% (∼39.2%) on the Toronto (Rome) dataset. Meanwhile,

Chen et al.’s [26] Pd has ϕ quality ∼47.4% higher than Sgt for Toronto dataset, and

only ∼11.8% lower than Sgt on Rome dataset. A similar trend can be seen in Agarwal et

al.’s [1] dictionary, with ∼25.4% higher and ∼18.2% lower than the initial number in the

Toronto and Rome datasets respectively. Clearly, our proposed PathletRL (and its

ablation variations) outperforms these SotA baselines.

Our PathletRL also improves from Sgt based on the |S| and ϕ metrics. Because no

action is taken on the pathlet graph in Sgt, only the original numbers are shown; thus,

Ltraj and µ̄ remains as 0% and 100% for both datasets. However, we can see the benefits

of PathletRL by trading off these values to obtain smaller dictionaries with much less ϕ

scores – as controlled by the α parameters.

(RQ 2.2) Memory Efficiency. Figure 5.3 (in log scale) demonstrates how much more

memory-efficient PathletRL is compared to the baselines [26, 1]. As can be seen in Figure

5.3, our method gets as input a set of trajectories that requires ∼900 MB (∼30+ GB) to be

stored in memory, and builds a trajectory pathlet dictionary that requires a mere ∼100 KB

(∼1 MB) for the Toronto (Rome) dataset. In fact, this represents a ∼7.4K× (∼24K×)

saving. This considerable improvement can be attributed to the fact that our method uses

77

Figure 5.3: The initial memory required by top-down (existing) methods that use overlapping
pathlets can be significantly reduced by the proposed bottom-up solution that use edge-
disjoint pathlets, none of which are overlapping.

a bottom-up approach where only edge-disjoint pathlets are considered. In contrast, the

current baselines follow a top-down approach, where the trajectory pathlet dictionary consists

of overlapping pathlets of various sizes and configurations, most of which are redundant. The

results of this empirical study well-supports the claim made in Theorem 4.2.2 of Chapter

4.2.3.

(RQ 2.3) Ablation Study. Next, we perform an ablation experiment to see how well

our proposed PathletRL model performs. Figure 5.4 displays the average returns of

PathletRL and its ablations across n iterations on the two datasets. We can observe

similar trends on both datasets. Notice that PathletRL-Rnd has the poorest performance,

exhibiting a random RL policy that shows no learning at all. Meanwhile, all other models

demonstrate that their average return value converges after some iterations (for example,

15 and 20 iterations for PathletRL on the Toronto and Rome datasets), and then

fluctuating slightly within a small range. PathletRL-Nr, while it demonstrates some level

of learning due to the Dqn policy, does not perform well compared to PathletRL-Unw –

78

Figure 5.4: Performance evaluation of proposed and ablation PathletRL models, measured
using the average return metric of m = 5 episodes across n = 100 iterations (run 10 times)

which suggests that representability is an essential component. This unweighted version of

PathletRL can be seen as a runner up to our (weighted) proposed model, which indicates

that there is some value to assigning pathlet weights than simply weighing all pathlets equally.

Besides comparing the trends of PathletRL models’ performance evaluation, we can

also look at the quality of their Pds (see Table 5.5 for the results). Generally speaking, our

proposed PathletRL’s Pd is superior than the Pds extracted by its ablation variations (i.e.,

the |S| metrics for both the Toronto and Rome datasets, the µ̄ metric for the Toronto

dataset, and the ϕ and Ltraj metrics for the Rome dataset). In other cases that PathletRL

did not rank first, it was a runner up but this can be explained. For instance, consider the ϕ

metric in the Toronto dataset. The reason for the higher quality of PathletRL-Nr’s

Pd than that of PathletRL’s in terms of the ϕ metric is that because trajectory counts

easily shrink faster in PathletRL-Nr; the average ϕ can easily go down should the number

of pathlets representing each trajectory also dwindle in number. The µ̄ metric for the Pd

of PathletRL-Unw is higher than that of the Pd of PathletRL on the Rome dataset,

which could be because PathletRL-Unw has fewer trajectories remaining in its trajectory

set and that it just so happened that those that remained have high representability µ values.

79

Figure 5.5: The pathlet length distribution of pathlet dictionaries obtained by PathletRL
model and its ablation versions on the Toronto (top) and Rome (bottom) datasets.

Regardless, the differences in numbers between the Pds of PathletRL and PathletRL-

Unw in terms of the µ̄ metric is small and still comparable. The same can be said for the

Ltraj metric of the Pds of PathletRL-Unw and PathletRL on the Toronto dataset,

which differs by only a measly ∼0.1% – demonstrating that PathletRL is still competitive.

(RQ 2.4) Pathlet Length Distribution. We also analyze the length distribution of

the pathlets in our dictionaries. The trend is similar for both datasets (Figure 5.5 shows

the pathlet length distribution, with the y-axis in log scale). The PathletRL-Rnd has a

decreasing number for longer pathlets, which is intuitive as the random policy blindly keeps

and merges pathlets. It is harder to maintain longer pathlets in this random probabilistic

manner as pathlets that terminate their growth are already considered “processed” and cannot

grow further. As a result, it is more rare to see higher-ordered pathlets than shorter pathlets

in PathletRL-Rnd’s Pd. The rest of the other RL models utilizing Dqn policy have

longer-length pathlets as expected (with more length-9 and 10 pathlets in the dictionary).

Our proposed Pd can capture more of these higher-ordered pathlets – indicating a smaller

pathlet dictionary, as reflected by the results in Table 5.5. Meanwhile, we can still observe

80

Figure 5.6: The percentage of evaluation trajectories reconstructable from a sample set
taken from extracted pathlet dictionaries.

a large number of length-1 pathlets, which may be due to a number of reasons. One could

be that some of the length-1 pathlets are still unprocessed (as a result of early stopping

caused by the various termination criteria in our algorithm). It could also be that some of

the length-1 processed pathlets are unmerged due to the algorithm’s recommendation based

on the utility, or perhaps based on pathlets losing all neighbor pathlets to merge with. The

latter case depicts a scenario for where a length-1 processed pathlet ρ may have lost all its

neighbor pathlets as a result of these neighbors merging amongst one another, leaving no

way for ρ to merge with any of these formed merged pathlets.

(RQ 2.5) Partial Trajectory Reconstruction. See Figure 5.6 for a plot that displays the

results of this experiment, where we determine how much of the dictionary is adequate enough

to reconstruct most of our trajectories in our testing set. Here, we say that a trajectory

is reconstructable if its representability value µ ≥ 0.75 (i.e., 75% of the trajectory can be

represented by the Pd). Anything less would mean that the trajectory is not reconstructable

due to an excessive number of gaps. Ideally, we would like to take the top x% of the pathlets

in the Pd that are the most traversed by the trajectories in the training set. However,

we can further remove the bias in the experiment by choosing instead a random sample

of x ∈ [10%, 20%, ..., 100%] pathlets in the extracted Pd, and measuring how much of the

81

Figure 5.7: Parameter sensitivity experiment: the impact of α’s on the quality of Path-
letRL’s pathlet dictionary

trajectories in the testing set are reconstructable by this pathlet sample set. As shown in

the results, by using around half of the pathlets in PathletRL’s Pd, a good ∼80% (∼85%)

of the trajectories in the Toronto (Rome) testing set can be reconstructed; and by using

the whole dictionary, almost all trajectories in the set can be reconstructed. This shows

that our proposed model is able to extract a high-quality pathlet dictionary. Comparing

this with our ablation versions, they all follow a similar trend for both datasets – i.e., the

amount of trajectories that the dictionaries of the ablation models can reconstruct is less

than the amount that our proposed PathletRL’s dictionary can do so. The worst being

is PathletRL-Rnd’s dictionary that can reconstruct up to only ∼50% (∼65%) of the

trajectories in Toronto (Rome) given the entire dictionary.

(RQ 2.6) Parameter Sensitivity Analysis. We then discuss how the values of the four

α values (α1, α2, α3, α4) affect the output Pd’s quality in terms of its four attributes: |S|,

82

ϕ, Ltraj, µ̄ respectively17. There are four stacked plots, as seen in Figure 5.7. The first one

depicts the changes to the Pd’s |S| as we vary α1 = [0.0, 0.1, ..., 1.0] (while keeping the other

α terms equal α2 = α3 = α4 =
1−α1

3
). We notice, as expected, a decreasing trend; larger α1

values indicate higher importance to a smaller dictionary size. By varying α2 and keeping

the other terms equal, we can also observe a decreasing trend; higher α2 values imply a

stronger emphasis on lower ϕ scores – that is, lower average number of pathlets representing

trajectories. Then when term α3’s value is varied, while keeping other α terms the same,

it also shows a trend that decreases as we increases α3. The greater the α3 is, the more

importance we put into keeping the trajectory loss low. Finally, varying α4 while keeping

the other α terms equal, shows an opposite trend than the other α terms. Here, we can

observe that larger α4 values are indicative of greater importance towards possessing higher

representability values.

Summary of Key Observations. The results of the experiments as guided by the six

research questions above have led us to a few key conclusions about the proposed methods.

For one, the proposed PathletRL has demonstrated superior performance in terms of

constructing a high-quality pathlet dictionary, in contrast with previous works. The deep

reinforcement learning in its architecture has also helped in improving its performance, as

existing works do not have a learning component in their method. The ablation experiments

seem to also agree with this remark as withhelding deep learning from PathletRL can cause

poorer performance. In addition, the other PathletRL ablation versions seem to perform

suboptimally compared to PathletRL, which indicates that trajectory representability and

pathlet weights are important assets to PathletRL. Further proof that PathletRL is

superior against its baselines in the trajectory reconstruction experiment, when PathletRL

only requires half of the dictionary it generates to reconstruct a good amount ∼85% of the
17Note: the goal here is not to find an optimal value for αi, but intends on showing the trend of how |S|,

ϕ, Ltraj , µ̄ changes with varying values of α1, α2, α3, α4 respectively.

83

trajectory set (that is in contrast with the random model that only reconstructs ∼65% of

the trajectories but requires the entirety of the dictionary it produces). Moreover, it was

shown empirically that the proposed method also have significant amount of memory savings

compared to previous works.

84

Chapter 6

Conclusions

6.1 Summary and Contributions

The abundance of location-based tracking technologies brought forth huge amounts of

mobility data, and as such mining interesting patterns in trajectories has become a hot

area among researchers and practioners alike. Of particular interest is the search and

retrieval of trajectories in a dataset that are most similar to a given query, i.e., the top k

trajectory similarity search task. We first recognize that trajectories can be expressed as

sets (of road segments), and then use this fact to represent these special kinds of sets as

box representations (Seg2Box). The spatiotemporally-enriched information, thanks to the

architecture specifically for road segments known as Seg2Vec, have allowed enhancement

to the proposed model performance. Overall, our proposed method St2Box is (i) accurate:

achieving as much as ∼11%, ∼3% and a ∼38% improvement from the state-of-the-art

baseline using the Hr, Mae, and Kt evaluation metrics respectively on two popular real

world trajectory taxi datasets T-Drive and Nyc, (ii) versatile: diverse to various similarity

measures and applicable to various trajectory set elements (i.e., trajectory points, hexagon

cells, road segments), (iii) generalizable to unseen trajectories as demonstrated by the

85

improvement of model performance, (iv) robust to any spatiotemporal weight parameter

θ ∈ [0, 1], and (v) fast : rapidly estimating trajectory similarity (as inherited from Set2Box

[79]) and can therefore scale to larger datasets. The development of these more refined

similarity search models can potentially offer greater improvements to various real world

applications such as route planning, travel time prediction, and Poi recommendations.

We are also interested in this related, but fairly relatively new problem in the area of

trajectory data mining, called the trajectory pathlet dictionary construction problem. The

construction of these small sets of building blocks that are able to represent large numbers

of trajectories, have become an important problem due to a number of applications such as

route planning, travel time estimation, and trajectory compression. This work offers a deep

(reinforcement) learning solution to the problem of interest, that can generate a dictionary

that is 65.8% much smaller than the original dictionary, in contrast to non-learning-based

methods. Further, only half of the pathlets in the proposed PathletRL’s dictionary is

necessary to reconstruct 85% of the original trajectory dataset; with baselines requiring the

entirety of its dictionary to reconstruct only 65% the trajectories. Moreover, PathletRL

also demonstrates a significant amount of memory savings by as much as ∼24K× in contrast

with existing methods. This is due to the initial amount of memory required to store the

initial pathlets of the dictionary, that was shown empirically and theoretically. The deep

reinforcement learning component, representability and pathlet weights are all important

assets to the PathletRL, as proven by the inferiority of its ablation variations.

6.2 Future Research Directions

Looking ahead, there are several directions for future work. This work introduced strong

motivations as to how useful trajectory pathlet dictionaries are for representing several

trajectories on the map, and moreover has presented a deep (reinforcement) learning-based

86

method for constructing pathlet dictionaries. To bridge this with the work done related to

trajectory similarity learning, we can use the dictionary generated by PathletRL to express

trajectories as sets of pathlets (instead of points, hexagon cells or roads).

In addition, while our work has been mainly interested in finding and proposing solutions

to trajectory similarity learning and trajectory pathlet dictionary construction, what has

been left out are demonstrations of the importance in addressing these problems of interest.

Therefore, another direction for future work involves conducting case studies, such a route

planning or trajectory compression, using our proposed deep learning methods to emphasize

the essence of these problems in the area of trajectory data mining.

87

Bibliography

[1] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan,

and Erin Taylor. “Subtrajectory Clustering: Models and Algorithms”. In: Proceedings

of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems. PODS ’18. Houston, TX, USA: Association for Computing Machinery, 2018,

pp. 75–87. isbn: 9781450347068.

[2] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. “Oddball: Spotting Anoma-

lies in Weighted Graphs”. In: Advances in Knowledge Discovery and Data Mining.

Vol. 6119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 410–421. isbn:

9783642136719.

[3] Fuad Aleskerov, Denis Bouyssou, and Bernard Monjardet. Utility Maximization, Choice

and Preference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[4] Gian Alix, Nina Yanin, Tilemachos Pechlivanoglou, Jing Li, Farzaneh Heidari, and

Manos Papagelis. “A Mobility-based Recommendation System for Mitigating the Risk

of Infection during Epidemics”. In: 2022 23rd IEEE International Conference on Mobile

Data Management (MDM). 2022, pp. 292–295.

[5] Chrysovalantis Anastasiou, Constantinos Costa, Panos K. Chrysanthis, Cyrus Shahabi,

and Demetrios Zeinalipour-Yazti. “ASTRO: Reducing COVID-19 Exposure through

Contact Prediction and Avoidance”. In: 8.2 (Oct. 2022). issn: 2374-0353.

88

[6] Fazel Arasteh, Soroush SheikhGarGar, and Manos Papagelis. “Network-Aware Multi-

Agent Reinforcement Learning for the Vehicle Navigation Problem”. In: Proceedings

of the 30th International Conference on Advances in Geographic Information Systems.

SIGSPATIAL ’22. Seattle, Washington: Association for Computing Machinery, 2022.

isbn: 9781450395298.

[7] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.

“Deep Reinforcement Learning: A Brief Survey”. In: IEEE Signal Processing Magazine

34.6 (2017), pp. 26–38.

[8] Takao Asano and Tomio Hirata. “Edge-contraction problems”. In: Journal of Computer

and System Sciences 26.2 (1983), pp. 197–208. issn: 0022-0000.

[9] Stefan Atev, Grant Miller, and Nikolaos P. Papanikolopoulos. “Clustering of Vehicle

Trajectories”. In: IEEE Transactions on Intelligent Transportation Systems 11.3 (2010),

pp. 647–657.

[10] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. “Spatio-Temporal Data Mining:

A Survey of Problems and Methods”. In: ACM Computing Surveys 51.4 (Aug. 2018).

issn: 0360-0300.

[11] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal

Piot, Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel,

Andrew Bolt, and Charles Blundell. “Never Give Up: Learning Directed Exploration

Strategies”. In: International Conference on Learning Representations. 2020.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation

by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

89

https://arxiv.org/abs/1409.0473

[13] Hayat Dino Bedru, Shuo Yu, Xinru Xiao, Da Zhang, Liangtian Wan, He Guo, and

Feng Xia. “Big networks: A survey”. In: Computer Science Review 37 (2020), p. 100247.

issn: 1574-0137.

[14] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative

Searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782.

[15] Ying Bi, Bing Xue, Pablo Mesejo, Stefano Cagnoni, and Mengjie Zhang. “A Survey on

Evolutionary Computation for Computer Vision and Image Analysis: Past, Present,

and Future Trends”. In: IEEE Transactions on Evolutionary Computation 27.1 (Feb.

2023), pp. 5–25.

[16] Colin PD Birch, Sander P Oom, and Jonathan A Beecham. “Rectangular and hexagonal

grids used for observation, experiment and simulation in ecology”. In: Ecological

modelling 206.3-4 (2007), pp. 347–359.

[17] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Optimal

Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[18] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici,

and Antonello Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded

from https://crawdad.org/roma/taxi/20140717. July 2014.

[19] Ulrik Brandes. “A Faster Algorithm for Betweenness Centrality”. In: Journal of

Mathematical Sociology. Vol. 25. 2001, pp. 163–177.

[20] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale Hypertextual Web

Search Engine”. In: Computer Networks 30 (1998), pp. 107–117.

[21] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

90

https://arxiv.org/abs/2004.10934
https://crawdad.org/roma/taxi/20140717

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language Models

are Few-Shot Learners”. In: Advances in Neural Information Processing Systems. Ed.

by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran

Associates, Inc., 2020, pp. 1877–1901.

[22] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language Models

are Few-Shot Learners”. In: Advances in Neural Information Processing Systems.

Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901.

[23] Deng Cai and Wai Lam. “Graph Transformer for Graph-to-Sequence Learning”. In:

Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI).

2020.

[24] Eren Cakmak, Manuel Plank, Daniel S. Calovi, Alex Jordan, and Daniel Keim. “Spatio-

Temporal Clustering Benchmark for Collective Animal Behavior”. In: Proceedings of

the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology

and Human Mobility. HANIMOB ’21. Beijing, China: Association for Computing

Machinery, 2021, pp. 5–8. isbn: 9781450391221.

[25] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher RÃ©, and Kevin Murphy.

“Machine Learning on Graphs: A Model and Comprehensive Taxonomy”. In: Journal

of Machine Learning Research 23.89 (2022), pp. 1–64.

91

[26] Chen Chen, Hao Su, Qixing Huang, Lin Zhang, and Leonidas Guibas. “Pathlet

Learning for Compressing and Planning Trajectories”. In: Proceedings of the 21st

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems. SIGSPATIAL’13. Orlando, Florida: Association for Computing Machinery,

2013, pp. 392–395. isbn: 9781450325219.

[27] Lei Chen and Raymond Ng. “On the Marriage of Lp-Norms and Edit Distance”. In:

Proceedings of the Thirtieth International Conference on Very Large Data Bases -

Volume 30. VLDB ’04. Toronto, Canada: VLDB Endowment, 2004, pp. 792–803. isbn:

0120884690.

[28] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and

Ilya Sutskever. “Generative Pretraining From Pixels”. In: Proceedings of the 37th

International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti

Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 13–18 Jul 2020,

pp. 1691–1703.

[29] Shu-Yu Chen, Wanchao Su, Lin Gao, Shihong Xia, and Hongbo Fu. “DeepFaceDrawing:

Deep Generation of Face Images from Sketches”. In: ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2020) 39.4 (2020), 72:1–72:16.

[30] Wei Chen, Shuzhe Li, Chao Huang, Yanwei Yu, Yongguo Jiang, and Junyu Dong.

“Mutual Distillation Learning Network for Trajectory-User Linking”. In: Proceedings

of the Thirty-First International Joint Conference on Artificial Intelligence. 2022.

[31] Yukun Chen, Kai Jiang, Yu Zheng, Chunping Li, and Nenghai Yu. “Trajectory Sim-

plification Method for Location-Based Social Networking Services”. In: Proceedings

of the 2009 International Workshop on Location Based Social Networks. LBSN ’09.

Seattle, Washington: Association for Computing Machinery, 2009, pp. 33–40. isbn:

9781605588605.

92

[32] Yuqi Chen, Hanyuan Zhang, Weiwei Sun, and Baihua Zheng. RNTrajRec: Road

Network Enhanced Trajectory Recovery with Spatial-Temporal Transformer. 2022.

[33] Yu-Zhong Chen, Zi-Gang Huang, Shouhuai Xu, and Ying-Cheng Lai. “Spatiotemporal

Patterns and Predictability of Cyberattacks”. In: PLOS ONE 10.5 (May 2015). Ed. by

Zhong-Ke Gao, e0124472. issn: 1932-6203.

[34] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. “A

Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning”.

en. In: Archives of Computational Methods in Engineering 27.4 (Sept. 2020), pp. 1071–

1092. issn: 1134-3060, 1886-1784.

[35] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numer.

Math. 1.1 (Dec. 1959), pp. 269–271.

[36] Patrick Ebel, Ibrahim Emre Göl, Christoph Lingenfelder, and Andreas Vogelsang.

Destination Prediction Based on Partial Trajectory Data. 2020.

[37] Ahmed Elragal and Nada El-Gendy. “Trajectory data mining: Integrating semantics”.

In: Journal of Enterprise Information Management 26.5 (2013), pp. 516–535. issn:

1758-7409.

[38] Michael R. Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. “Fast and Exact

Network Trajectory Similarity Computation: A Case-Study on Bicycle Corridor Plan-

ning”. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban

Computing. UrbComp ’13. Chicago, Illinois: Association for Computing Machinery,

2013.

[39] Ziquan Fang, Yuntao Du, Xinjun Zhu, Danlei Hu, Lu Chen, Yunjun Gao, and Christian

S. Jensen. “Spatio-Temporal Trajectory Similarity Learning in Road Networks”. In:

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data

93

Mining. KDD ’22. Washington DC, USA: Association for Computing Machinery, 2022,

pp. 347–356. isbn: 9781450393850.

[40] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo La-

rochelle, Mark Rowland, and Will Dabney. “Revisiting Fundamentals of Experience

Replay”. In: Proceedings of the 37th International Conference on Machine Learning.

ICML’20. JMLR.org, 2020.

[41] Zhenni Feng and Yanmin Zhu. “A Survey on Trajectory Data Mining: Techniques and

Applications”. In: IEEE Access 4 (2016), pp. 2056–2067.

[42] Max Fischer. “Using Reinforcement Learning for Games with Nondeterministic State

Transitions”. MA thesis. 2019.

[43] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3 (2010),

pp. 75–174. issn: 0370-1573.

[44] M. Maurice Fréchet. “Sur quelques points du calcul fonctionnel”. it. In: Rendiconti del

Circolo Matematico di Palermo 22.1 (Dec. 1906), pp. 1–72. issn: 0009-725X, 1973-4409.

[45] Tao-Yang Fu and Wang-Chien Lee. “Trembr: Exploring Road Networks for Trajectory

Representation Learning”. In: ACM Trans. Intell. Syst. Technol. 11.1 (Feb. 2020). issn:

2157-6904.

[46] Yuanzhe Geng, Erwu Liu, Rui Wang, and Yiming Liu. “Deep Reinforcement Learning

Based Dynamic Route Planning for Minimizing Travel Time”. In: CoRR (2020). arXiv:

2011.01771.

[47] Balakrishna Gokaraju, Rajeev Agrawal, Daniel Adrian Doss, and Sambit Bhattacharya.

“Identification of Spatio- Temporal Patterns in Cyber Security for Detecting the

Signature Identity of Hacker”. In: SoutheastCon 2018. 2018, pp. 1–5.

94

https://arxiv.org/abs/2011.01771

[48] Jonathan L. Gross, Jay Yellen, and Mark Anderson. Graph Theory and Its Applications.

3rd ed. Chapman and Hall/CRC, Nov. 2018. isbn: 9780429425134.

[49] Aditya Grover and Jure Leskovec. “Node2vec: Scalable Feature Learning for Networks”.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD ’16. San Francisco, California, USA: Association

for Computing Machinery, 2016, pp. 855–864. isbn: 9781450342322.

[50] Ali Hamdi, Khaled Shaban, Abdelkarim Erradi, Amr Mohamed, Shakila Khan Rumi,

and Flora D. Salim. “Spatiotemporal data mining: a survey on challenges and open

problems”. In: Artificial Intelligence Review 55.2 (Feb. 2022), pp. 1441–1488. issn:

0269-2821, 1573-7462.

[51] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learning

on Large Graphs”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran

Associates Inc., 2017, pp. 1025–1035. isbn: 9781510860964.

[52] Nan Han, Shaojie Qiao, Kun Yue, Jianbin Huang, Qiang He, Tingting Tang, Faliang

Huang, Chunlin He, and Chang-An Yuan. “Algorithms for Trajectory Points Clustering

in Location-Based Social Networks”. In: ACM Trans. Intell. Syst. Technol. 13.3 (Mar.

2022). issn: 2157-6904.

[53] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. “A Graph-Based

Approach for Trajectory Similarity Computation in Spatial Networks”. In: Proc. of

the 27th ACM SIGKDD Conf. on Knowledge Discovery & Data Mining. KDD ’21.

Virtual Event, Singapore: Assoc. for Comp. Machinery, 2021, pp. 556–564. isbn:

9781450383325.

[54] Qingwen Han, Yu Lei, Lingqiu Zeng, Guangyan He, Lei Ye, and Lingfeng Qi. “Research

on Travel Time Prediction of Multiple Bus Trips Based on MDARNN”. In: 2021 IEEE

95

International Intelligent Transportation Systems Conference (ITSC). 2021, pp. 3718–

3725.

[55] Marwa Ibrahim Hassan and Sami Mustafa M. Elhassan. “Modelling of Urban Growth

and Planning: A Critical Review”. In: Journal of Building Construction and Planning

Research 08.04 (2020), pp. 245–262. issn: 2328-4889, 2328-4897.

[56] Tanmoy Hazra and Kushal Anjaria. “Applications of game theory in deep learning: a

survey”. In: Multimedia Tools and Applications 81.6 (Mar. 2022), pp. 8963–8994. issn:

1380-7501, 1573-7721.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning

for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 770–778.

[58] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667.

[59] Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li. “Searching for Similar Trajecto-

ries on Road Networks Using Spatio-Temporal Similarity”. In: ADBIS’06. Thessaloniki,

Greece: Springer-Verlag, 2006, pp. 282–295. isbn: 3540378995.

[60] Huatao Jiang, Lin Chang, Qing Li, and Dapeng Chen. “Trajectory Prediction of

Vehicles Based on Deep Learning”. In: 2019 4th International Conference on Intelligent

Transportation Engineering (ICITE). 2019, pp. 190–195.

[61] Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, and Jingyuan Wang.

“Self-supervised Trajectory Representation Learning with Temporal Regularities and

Travel Semantics”. In: 2023 IEEE 39th international conference on data engineering

(ICDE). IEEE. 2023.

96

[62] Peter Jin, Kurt Keutzer, and Sergey Levine. “Regret Minimization for Partially

Observable Deep Reinforcement Learning”. In: Proceedings of the 35th International

Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.

Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 2342–2351.

[63] Zhixiong Jin, Jiwon Kim, Hwasoo Yeo, and Seongjin Choi. “Transformer-based map-

matching model with limited labeled data using transfer-learning approach”. In:

Transportation Research Part C: Emerging Technologies 140 (2022), p. 103668. issn:

0968-090X.

[64] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A

Survey”. In: Journal of Artificial Intelligence Research 4 (May 1996), pp. 237–285.

issn: 1076-9757.

[65] D. Kavitha, B.V. Manikyala Rao, and V.Kishore Babu. “A Survey on Assorted

Approaches to Graph Data Mining”. In: International Journal of Computer Applications

14.1 (Jan. 2011), pp. 43–46. issn: 09758887.

[66] Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. “Natural language

processing: state of the art, current trends and challenges”. en. In: Multimedia Tools

and Applications 82.3 (Jan. 2023), pp. 3713–3744. issn: 1380-7501, 1573-7721.

[67] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-

lutional Networks”. In: International Conference on Learning Representations (ICLR).

2017.

[68] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Con-

volutional Networks”. In: International Conference on Learning Representations. 2017.

[69] Nikita Kitaev, Thomas Lu, and Dan Klein. “Learned Incremental Representations

for Parsing”. In: Proceedings of the 60th Annual Meeting of the Association for Com-

97

putational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for

Computational Linguistics, May 2022.

[70] Jens Kober and Jan Peters. “Reinforcement Learning in Robotics: A Survey”. In: Learn-

ing Motor Skills: From Algorithms to Robot Experiments. Cham: Springer International

Publishing, 2014, pp. 9–67. isbn: 978-3-319-03194-1.

[71] Christian Koetsier, Jelena Fiosina, Jan N. Gremmel, Jörg P. Müller, David M.

Woisetschläger, and Monika Sester. “Detection of anomalous vehicle trajectories using

federated learning”. In: ISPRS Open Journal of Photogrammetry and Remote Sensing

4 (2022), p. 100013. issn: 2667-3932.

[72] Satoshi Koide, Chuan Xiao, and Yoshiharu Ishikawa. “Fast Subtrajectory Similarity

Search in Road Networks under Weighted Edit Distance Constraints”. In: Proc. VLDB

Endow. 13.12 (July 2020), pp. 2188–2201. issn: 2150-8097.

[73] Ioannis Kontopoulos, Antonios Makris, and Konstantinos Tserpes. “TraClets: A tra-

jectory representation and classification library”. In: SoftwareX 21 (2023), p. 101306.

issn: 2352-7110.

[74] Marc van Kreveld and Lionov Wiratma. “Median Trajectories Using Well-Visited

Regions and Shortest Paths”. In: Proceedings of the 19th ACM SIGSPATIAL In-

ternational Conference on Advances in Geographic Information Systems. GIS ’11.

Chicago, Illinois: Association for Computing Machinery, 2011, pp. 241–250. isbn:

9781450310314.

[75] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing

Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger. Vol. 25.

Curran Associates, Inc., 2012.

98

[76] Doi Thi Lan and Seokhoon Yoon. “Trajectory Clustering-Based Anomaly Detection in

Indoor Human Movement”. In: Sensors 23.6 (2023).

[77] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to

document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[78] Yann LeCun. “Generalization and network design strategies”. In: 1989.

[79] Geon Lee, Chanyoung Park, and Kijung Shin. “Set2Box: Similarity Preserving Repre-

sentation Learning for Sets”. In: 2022 IEEE International Conference on Data Mining

(ICDM). 2022, pp. 1023–1028.

[80] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. “Trajectory Outlier Detection: A Partition-and-

Detect Framework”. In: 2008 IEEE 24th International Conference on Data Engineering.

2008, pp. 140–149. doi: 10.1109/ICDE.2008.4497422.

[81] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. “Trajectory Clustering: A Partition-

and-Group Framework”. In: Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data. SIGMOD ’07. Beijing, China: Association for

Computing Machinery, 2007, pp. 593–604. isbn: 9781595936868.

[82] Li Li, Rui Jiang, Zhengbing He, Xiqun (Michael) Chen, and Xuesong Zhou. “Trajectory

data-based traffic flow studies: A revisit”. In: Transportation Research Part C: Emerging

Technologies 114 (2020), pp. 225–240. issn: 0968-090X.

[83] Tang Li, Jing Gao, and Xi Peng. “Deep Learning for Spatiotemporal Modeling of

Urbanization”. In: Proceedings of the 35th Conference on Neural Information Processing

Systems (NeurIPS 2021). Sydney, Australia, 2021.

[84] Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum.

“Smoothing the Geometry of Probabilistic Box Embeddings”. In: International Confer-

ence on Learning Representations. 2019.

99

https://doi.org/10.1109/ICDE.2008.4497422

[85] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. “Deep

Representation Learning for Trajectory Similarity Computation”. In: 2018 IEEE

34th International Conference on Data Engineering (ICDE). 2018, pp. 617–628. doi:

10.1109/ICDE.2018.00062.

[86] Yang Li, Dimitrios Gunopulos, Cewu Lu, and Leonidas J. Guibas. “Personalized Travel

Time Prediction Using a Small Number of Probe Vehicles”. In: ACM Trans. Spatial

Algorithms Syst. 5.1 (May 2019). issn: 2374-0353.

[87] Yang Li, Qixing Huang, Michael Kerber, Lin Zhang, and Leonidas Guibas. “Large-Scale

Joint Map Matching of GPS Traces”. In: Proceedings of the 21st ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems. SIGSPA-

TIAL’13. Orlando, Florida: Association for Computing Machinery, 2013, pp. 214–223.

isbn: 9781450325219.

[88] Yuxuan Liang, Kun Ouyang, Yiwei Wang, Xu Liu, Hongyang Chen, Junbo Zhang,

Yu Zheng, and Roger Zimmermann. “TrajFormer: Efficient Trajectory Classification

with Transformers”. In: Proceedings of the 31st ACM International Conference on

Information amp; Knowledge Management. CIKM ’22. Atlanta, GA, USA: Association

for Computing Machinery, 2022, pp. 1229–1237. isbn: 9781450392365.

[89] Xinyi Liu, Meiliu Wu, Bo Peng, and Qunying Huang. “Graph-based representation for

identifying individual travel activities with spatiotemporal trajectories and POI data”.

en. In: Scientific Reports 12.1 (Sept. 2022), p. 15769. issn: 2045-2322.

[90] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. “Map-

Matching for Low-Sampling-Rate GPS Trajectories”. In: the Proceedings of the 17th

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems. GIS ’09. Seattle, Washington: Association for Computing Machinery, 2009,

pp. 352–361. isbn: 9781605586496.

100

https://doi.org/10.1109/ICDE.2018.00062

[91] Jeffrey Lund and Yiu-Kai Ng. “Movie Recommendations Using the Deep Learning Ap-

proach”. In: 2018 IEEE International Conference on Information Reuse and Integration

(IRI). 2018, pp. 47–54.

[92] Nikola Marković, Przemyław Sekuła, Zachary Vander Laan, Gennady Andrienko,

and Natalia Andrienko. “Applications of Trajectory Data From the Perspective of a

Road Transportation Agency: Literature Review and Maryland Case Study”. In: IEEE

Transactions on Intelligent Transportation Systems 20.5 (2019), pp. 1858–1869.

[93] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. “Simplifying approach to node

classification in Graph Neural Networks”. In: Journal of Computational Science 62

(2022), p. 101695. issn: 1877-7503.

[94] Ken McCormick. “An Essay on the Origin of the Rational Utility Maximization

Hypothesis and a Suggested Modification”. In: Eastern Economic Journal 23.1 (1997),

pp. 17–30. issn: 00945056, 19394632. (Visited on 12/16/2022).

[95] Thibaud Mérien, Xavier Bellekens, David Brosset, and Christophe Claramunt. “A

Spatio-Temporal Entropy-Based Approach for the Analysis of Cyber Attacks (Demo

Paper)”. In: SIGSPATIAL ’18. Seattle, Washington: Association for Computing Ma-

chinery, 2018, pp. 564–567. isbn: 9781450358897.

[96] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of

Word Representations in Vector Space”. In: 1st International Conference on Learning

Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop

Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2013.

[97] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. “Playing Atari With Deep Reinforcement

Learning”. In: NIPS Deep Learning Workshop. 2013.

101

[98] Mashrur M. Morshed, Ahmad Omar Ahsan, Hasan Mahmud, and Md. Kamrul Hasan.

Learning Audio Representations with MLPs. 2022. arXiv: 2203.08490 [cs.SD].

[99] Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. “Algo-

rithms for Compressing GPS Trajectory Data: An Empirical Evaluation”. In: Proceed-

ings of the 18th SIGSPATIAL International Conference on Advances in Geographic

Information Systems. GIS ’10. San Jose, California: Assoc. for Comp. Machinery, 2010,

pp. 402–405.

[100] M Viswa Murali, T G Vishnu, and Nancy Victor. “A Collaborative Filtering based

Recommender System for Suggesting New Trends in Any Domain of Research”. In:

2019 5th International Conference on Advanced Computing & Communication Systems

(ICACCS). 2019, pp. 550–553.

[101] Mark E. J. Newman. Networks. Second edition. Oxford, United Kingdom; New York,

NY, United States of America: Oxford University Press, 2018.

[102] Paul Newson and John Krumm. “Hidden Markov Map Matching through Noise and

Sparseness”. In: Proceedings of the 17th ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems. GIS ’09. Seattle, Washington:

Association for Computing Machinery, 2009, pp. 336–343. isbn: 9781605586496.

[103] Peter J. Olver and Chehrzad Shakiban. Applied Linear Algebra. 2nd ed. 2018. Under-

graduate Texts in Mathematics. Cham: Springer International Publishing: Imprint:

Springer, 2018. isbn: 9783319910413.

[104] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. “Deep content-

based music recommendation”. In: Advances in Neural Information Processing Systems.

Vol. 26. Curran Associates, Inc., 2013.

102

https://arxiv.org/abs/2203.08490

[105] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-

mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael

Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy

Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and

Susan Zhang. “Dota 2 with Large Scale Deep Reinforcement Learning”. In: (2019).

[106] Takayuki Osogami and Rudy Raymond. “Map Matching with Inverse Reinforcement

Learning”. In: Proceedings of the Twenty-Third International Joint Conference on

Artificial Intelligence. IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 2547–2553.

isbn: 9781577356332.

[107] Martijn van Otterlo and Marco Wiering. “Reinforcement Learning and Markov Decision

Processes”. In: Reinforcement Learning: State-of-the-Art. Ed. by Marco Wiering and

Martijn van Otterlo. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–42.

isbn: 978-3-642-27645-3.

[108] Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ramasso, and

Yannis Theodoridis. “Segmentation and Sampling of Moving Object Trajectories Based

on Representativeness”. In: IEEE Transactions on Knowledge and Data Engineering

24.7 (2012), pp. 1328–1343.

[109] Daehee Park, Hobin Ryu, Yunseo Yang, Jegyeong Cho, Jiwon Kim, and Kuk-Jin Yoon.

“Leveraging Future Relationship Reasoning for Vehicle Trajectory Prediction”. In: The

Eleventh International Conference on Learning Representations. 2023.

[110] Tilemachos Pechlivanoglou, Gian Alix, Nina Yanin, Jing Li, Farzaneh Heidari, and

Manos Papagelis. “Microscopic Modeling of Spatiotemporal Epidemic Dynamics”. In:

SpatialEpi ’22. Seattle, Washington: Association for Computing Machinery, 2022,

pp. 11–21. isbn: 9781450395434.

103

[111] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa

Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. “A Survey on Deep Learning:

Algorithms, Techniques, and Applications”. In: ACM Comput. Surv. 51.5 (Sept. 2018).

issn: 0360-0300.

[112] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and Tara

Sainath. “Deep Learning for Audio Signal Processing”. In: IEEE Journal of Selected

Topics in Signal Processing 13.2 (2019), pp. 206–219.

[113] Wanting Qin, Jun Tang, and Songyang Lao. “DeepFR: A trajectory prediction model

based on deep feature representation”. In: Information Sciences 604 (2022), pp. 226–

248. issn: 0020-0255.

[114] Gerar F. Quispe-Torres, Germain Garcia-Zanabria, Harley Vera-Olivera, and Lauro

Enciso-Rodas. “Trajectory Anomaly Detection based on Similarity Analysis”. In: 2021

XLVII Latin American Computing Conference (CLEI). 2021, pp. 1–10.

[115] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,

Mark Chen, and Ilya Sutskever. “Zero-Shot Text-to-Image Generation”. In: Proceedings

of the 38th International Conference on Machine Learning. Vol. 139. Proceedings of

Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 8821–8831.

[116] S. A. Rizvi, R. Tang, X. Jiang, X. Ma, and X. Hu. Local Contrastive Learning for

Medical Image Recognition. 2023. arXiv: 2303.14153 [cs.CV].

[117] Benjamin Robira, Andrea Corradini, Federico Ossi, and Francesca Cagnacci. “Bridging

Human Mobility to Animal Activity: When Humans Are Away, Bears Will Play”. In:

Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Animal Move-

ment Ecology and Human Mobility. HANIMOB ’22. Seattle, Washington: Association

for Computing Machinery, 2022, pp. 1–8. isbn: 9781450395342.

104

https://arxiv.org/abs/2303.14153

[118] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti,

and Michael Bronstein. Temporal Graph Networks for Deep Learning on Dynamic

Graphs. 2020.

[119] Mahmoud Sakr, Cyril Ray, and Chiara Renso. “Big mobility data analytics: recent

advances and open problems”. en. In: GeoInformatica 26.4 (Oct. 2022), pp. 541–549.

issn: 1384-6175, 1573-7624.

[120] Swaminathan Sankararaman, Pankaj K. Agarwal, Thomas Mølhave, Jiangwei Pan, and

Arnold P. Boedihardjo. “Model-Driven Matching and Segmentation of Trajectories”.

In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems. SIGSPATIAL’13. Orlando, Florida: Association

for Computing Machinery, 2013, pp. 234–243. isbn: 9781450325219.

[121] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. “Fast

distributed PageRank computation”. In: Theoretical Computer Science 561 (2015).

Special Issue on Distributed Computing and Networking, pp. 113–121. issn: 0304-3975.

[122] F. Scarselli, Sweah Liang Yong, M. Gori, M. Hagenbuchner, Ah Chung Tsoi, and M.

Maggini. “Graph neural networks for ranking Web pages”. In: The 2005 IEEE / WIC

/ ACM International Conference on Web Intelligence (WI’05). 2005, pp. 666–672.

[123] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. “The Graph Neural Network Model”. In: IEEE Transactions on Neural

Networks 20.1 (2009), pp. 61–80.

[124] Madeline C. Schiappa, Yogesh S. Rawat, and Mubarak Shah. “Self-Supervised Learning

for Videos: A Survey”. In: ACM Comput. Surv. (Dec. 2022). issn: 0360-0300.

105

[125] Peter Schulam and Raman Arora. “Disease Trajectory Maps”. In: Advances in Neural

Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,

and R. Garnett. Vol. 29. Curran Associates, Inc., 2016.

[126] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos Kalnis.

“Trajectory Similarity Join in Spatial Networks”. In: Proc. VLDB Endow. 10.11 (Aug.

2017), pp. 1178–1189. issn: 2150-8097.

[127] Shuo Shang, Ruogu Ding, Kai Zheng, Christian S. Jensen, Panos Kalnis, and Xiaofang

Zhou. “Personalized Trajectory Matching in Spatial Networks”. In: The VLDB Journal

23.3 (June 2014), pp. 449–468. issn: 1066-8888.

[128] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. “DITA: Distributed In-Memory Trajec-

tory Analytics”. In: Proceedings of the 2018 International Conference on Management

of Data. SIGMOD ’18. Houston, TX, USA: Association for Computing Machinery,

2018, pp. 725–740. isbn: 9781450347037.

[129] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A Survey

of Deep Reinforcement Learning in Video Games. 2019.

[130] Aditya Shrivastava, Jai Prakash V Verma, Swati Jain, and Sanjay Garg. “A deep

learning based approach for trajectory estimation using geographically clustered data”.

en. In: SN Applied Sciences 3.6 (June 2021), p. 597. issn: 2523-3963, 2523-3971.

[131] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,

and Demis Hassabis. “Mastering the game of Go with deep neural networks and tree

search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. issn: 0028-0836, 1476-4687.

106

[132] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. “A general reinforcement

learning algorithm that masters chess, shogi, and Go through self-play”. In: Science

362.6419 (2018), pp. 1140–1144.

[133] Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis Vazirgiannis.

“Rep the Set: Neural Networks for Learning Set Representations”. In: Proceedings of the

Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by

Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning

Research. PMLR, Aug. 2020, pp. 1410–1420.

[134] Artur Strzelecki. “The Apple Mobility Trends Data in Human Mobility Patterns during

Restrictions and Prediction of COVID-19: A Systematic Review and Meta-Analysis”.

In: Healthcare 10.12 (2022).

[135] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. “A survey of

trajectory distance measures and performance evaluation”. en. In: The VLDB Journal

29.1 (Jan. 2020), pp. 3–32. issn: 1066-8888, 0949-877X.

[136] Shao-Hua Sun, Te-Lin Wu, and Joseph J. Lim. “Program Guided Agent”. In: Interna-

tional Conference on Learning Representations. 2020.

[137] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

Cambridge, MA, USA: A Bradford Book, 2018. isbn: 0262039249.

[138] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning. Cham: Springer International Publishing,

2010. isbn: 9783031004230.

107

[139] Yaguang Tao, Alan Both, Rodrigo I. Silveira, Kevin Buchin, Stef Sijben, Ross S. Purves,

Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. “A comparative

analysis of trajectory similarity measures”. In: GIScience & Remote Sensing 58.5

(2021), pp. 643–669.

[140] E. Tiakas, A.N. Papadopoulos, A. Nanopoulos, Y. Manolopoulos, Dragan Stojanovic,

and Slobodanka Djordjevic-Kajan. “Searching for similar trajectories in spatial net-

works”. In: Journal of Systems and Software 82.5 (2009), pp. 772–788.

[141] Kevin Toohey and Matt Duckham. “Trajectory Similarity Measures”. In: SIGSPATIAL

Special 7.1 (May 2015), pp. 43–50.

[142] Joseph Turian, Björn W. Schuller, Dorien Herremans, Katrin Kirchoff, Paola Garcia

Perera, and Philippe Esling, eds. HEAR: Holistic Evaluation of Audio Representations

(NeurIPS 2021 Competition). Vol. 166. Proceedings of Machine Learning Research.

PMLR.

[143] Saif Ur Rehman, Kexing Liu, Tariq Ali, Asif Nawaz, and Simon James Fong. “A Graph

Mining Approach for Ranking and Discovering the Interesting Frequent Subgraph

Patterns”. In: International Journal of Computational Intelligence Systems 14.1 (Dec.

2021), p. 152. issn: 1875-6883.

[144] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Advances

in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran

Associates, Inc., 2017.

[145] Petar Veličkovi, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. “Graph Attention Networks”. In: International Conference on

Learning Representations. 2018.

108

[146] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. “Probabilistic Embed-

ding of Knowledge Graphs with Box Lattice Measures”. In: Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Melbourne, Australia: Association for Computational Linguistics, July 2018,

pp. 263–272.

[147] M. Vlachos, G. Kollios, and D. Gunopulos. “Discovering similar multidimensional

trajectories”. In: Proceedings 18th International Conference on Data Engineering. 2002,

pp. 673–684.

[148] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A.

Osborne. “On the Limitations of Representing Functions on Sets”. In: Proceedings of

the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri

and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,

Sept. 2019, pp. 6487–6494.

[149] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, and

Jakob Grue Simonsen. “On Position Embeddings in BERT”. In: International Confer-

ence on Learning Representations. 2021.

[150] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang.

“Attributed Graph Clustering: A Deep Attentional Embedding Approach”. In: Proceed-

ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,

IJCAI-19. International Joint Conferences on Artificial Intelligence Organization, July

2019, pp. 3670–3676.

[151] Jingyuan Wang, Ning Wu, and Wayne Zhao. “Personalized Route Recommenda-

tion With Neural Network Enhanced Search Algorithm”. In: IEEE Transactions on

Knowledge & Data Engineering 34.12 (Dec. 2022), pp. 5910–5924. issn: 1558-2191.

109

[152] Senzhang Wang, Jiannong Cao, and Philip S. Yu. “Deep Learning for Spatio-Temporal

Data Mining: A Survey”. In: IEEE Transactions on Knowledge & Data Engineering

34.08 (Aug. 2022), pp. 3681–3700. issn: 1558-2191.

[153] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. “A Survey on Trajectory

Data Management, Analytics, and Learning”. In: ACM Comput. Surv. 54.2 (Mar.

2021). issn: 0360-0300.

[154] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. “A Survey on Trajectory

Data Management, Analytics, and Learning”. In: ACM Computing Survey 54.2 (Mar.

2021). issn: 0360-0300.

[155] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Timos Sellis, and Xiaolin Qin. “Fast

Large-Scale Trajectory Clustering”. In: Proc. VLDB Endow. 13.1 (Sept. 2019), pp. 29–

42. issn: 2150-8097.

[156] Tingting Wang, Shixun Huang, Zhifeng Bao, J. Shane Culpepper, and Reza Arablouei.

“Representative Routes Discovery from Massive Trajectories”. In: Proceedings of the

28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD ’22.

Washington DC, USA: Association for Computing Machinery, 2022, pp. 4059–4069.

isbn: 9781450393850.

[157] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai,

and Qiguang Miao. “Deep Reinforcement Learning: A Survey”. In: IEEE Transactions

on Neural Networks and Learning Systems (2022), pp. 1–15.

[158] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong. “STMARL: A Spatio-

Temporal Multi-Agent Reinforcement Learning Approach for Cooperative Traffic Light

Control”. In: IEEE Transactions on Mobile Computing 21.06 (June 2022), pp. 2228–

2242. issn: 1558-0660.

110

[159] Zhaobo Wang, Yanmin Zhu, Qiaomei Zhang, Haobing Liu, Chunyang Wang, and Tong

Liu. “Graph-Enhanced Spatial-Temporal Network for Next POI Recommendation”. In:

ACM Trans. Knowl. Discov. Data 16.6 (July 2022). issn: 1556-4681.

[160] Zheng Wang, Kun Fu, and Jieping Ye. “Learning to Estimate the Travel Time”. In:

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-

ery & Data Mining. KDD ’18. London, United Kingdom: Association for Computing

Machinery, 2018, pp. 858–866. isbn: 9781450355520.

[161] Zheng Wang, Cheng Long, and Gao Cong. “Trajectory Simplification with Reinforce-

ment Learning”. In: 2021 IEEE 37th International Conference on Data Engineering

(ICDE). 2021, pp. 684–695.

[162] Zhongqiu Wang, Guan Yuan, Haoran Pei, Yanmei Zhang, and Xiao Liu. “Unsupervised

learning trajectory anomaly detection algorithm based on deep representation”. In: In-

ternational Journal of Distributed Sensor Networks 16.12 (2020), p. 1550147720971504.

[163] Julian Wiederer, Arij Bouazizi, Marco Troina, Ulrich Kressel, and Vasileios Bela-

giannis. “Anomaly Detection in Multi-Agent Trajectories for Automated Driving”. In:

Proceedings of the 5th Conference on Robot Learning. Vol. 164. Proceedings of Machine

Learning Research. PMLR, Nov. 2022, pp. 1223–1233.

[164] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. “Modeling Trajecto-

ries with Recurrent Neural Networks”. In: Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 3083–3090.

[165] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu.

“Graph Learning: A Survey”. In: IEEE Transactions on Artificial Intelligence 2.2

(2021), pp. 109–127.

111

[166] Wenwen Xia, Yuchen Li, Jianwei Tian, and Shenghong Li. “Forecasting Interaction

Order on Temporal Graphs”. In: Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining. KDD ’21. Virtual Event, Singapore: Association

for Computing Machinery, 2021, pp. 1884–1893. isbn: 9781450383325.

[167] Jiajie Xu, Jing Zhao, Rui Zhou, Chengfei Liu, Pengpeng Zhao, and Lei Zhao. “Pre-

dicting Destinations by a Deep Learning based Approach”. In: IEEE Transactions on

Knowledge and Data Engineering 33.2 (2021), pp. 651–666.

[168] Hao Xue, Bhanu Prakash Voutharoja, and Flora D. Salim. “Leveraging Language

Foundation Models for Human Mobility Forecasting”. In: Proceedings of the 30th

International Conference on Advances in Geographic Information Systems. SIGSPA-

TIAL ’22. Seattle, Washington: Association for Computing Machinery, 2022. isbn:

9781450395298.

[169] Raj Kapoor Yadav, Giriraj Kishor, Himanshu, and Kishan Kashyap. “Comparative

Analysis of Route Planning Algorithms on Road Networks”. In: 2020 5th International

Conference on Communication and Electronics Systems (ICCES). 2020, pp. 401–406.

[170] P. Yang, H. Wang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. “T3S: Effective Repre-

sentation Learning for Trajectory Similarity Computation”. In: 2021 IEEE 37th Intl.

Conf. on Data Eng. (ICDE). Los Alamitos, CA, USA: IEEE Computer Society, Apr.

2021, pp. 2183–2188.

[171] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. “Comp. Trajectory Similarity in

Linear Time: A Generic Seed-Guided Neural Metric Learning Approach”. In: 2019

IEEE 35th Intl. Conf. on Data Eng. (ICDE). 2019, pp. 1358–1369.

[172] Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. “Trajectory

clustering via deep representation learning”. In: 2017 International Joint Conference on

Neural Networks (IJCNN). 2017, pp. 3880–3887. doi: 10.1109/IJCNN.2017.7966345.

112

https://doi.org/10.1109/IJCNN.2017.7966345

[173] Byoung-Kee Yi, H.V. Jagadish, and C. Faloutsos. “Efficient retrieval of similar time

sequences under time warping”. In: Proceedings 14th International Conference on Data

Engineering. 1998, pp. 201–208.

[174] Jiang Yi and Zhang Zhenhao. “Route planning based on improved A algorithm”. In:

2017 Chinese Automation Congress (CAC). 2017, pp. 6939–6942.

[175] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming

Shen, and Tie-Yan Liu. “Do Transformers Really Perform Badly for Graph Representa-

tion?” In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021.

[176] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. “Point-

BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2022.

[177] Haitao Yuan and Guoliang Li. “Distributed In-memory Trajectory Similarity Search

and Join on Road Network”. In: 2019 IEEE 35th International Conference on Data

Engineering (ICDE). 2019, pp. 1262–1273.

[178] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. “Driving with Knowledge

from the Physical World”. In: Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’11. San Diego, California,

USA: Association for Computing Machinery, 2011, pp. 316–324.

[179] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and

Yan Huang. “T-Drive: Driving Directions Based on Taxi Trajectories”. In: Proceedings

of the 18th SIGSPATIAL International Conference on Advances in Geographic Infor-

mation Systems. GIS ’10. San Jose, California: Association for Computing Machinery,

2010, pp. 99–108.

113

[180] Jing Yuan, Yu Zheng, Chengyang Zhang, Xing Xie, and Guang-Zhong Sun. “An

Interactive-Voting Based Map Matching Algorithm”. In: 2010 Eleventh International

Conference on Mobile Data Management. 2010, pp. 43–52.

[181] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.

“Graph Transformer Networks”. In: Advances in Neural Information Processing Systems.

Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.

Garnett. Vol. 32. Curran Associates, Inc., 2019.

[182] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan

Salakhutdinov, and Alexander J Smola. “Deep Sets”. In: Proceedings of the 31st Inter-

national Conference on Neural Information Processing Systems. NIPS’17. Long Beach,

California, USA: Curran Associates Inc., 2017, pp. 3394–3404. isbn: 9781510860964.

[183] Simone Zamboni, Zekarias Tilahun Kefato, Sarunas Girdzijauskas, Christoffer Norén,

and Laura Dal Col. “Pedestrian trajectory prediction with convolutional neural net-

works”. In: Pattern Recognition 121 (2022), p. 108252. issn: 0031-3203.

[184] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. “Learning Joint Spatial-Temporal

Transformations for Video Inpainting”. In: Computer Vision – ECCV 2020. Cham:

Springer International Publishing, 2020, pp. 528–543. isbn: 978-3-030-58517-4.

[185] Hanyuan Zhang, Xingyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun, Weiwei

Sun, and Changhu Wang. “Trajectory Similarity Learning with Auxiliary Supervision

and Optimal Matching”. In: Proc. of the Twenty-Ninth Intl. Joint Conf. on Artificial

Intelligence. IJCAI’20. Yokohama, Yokohama, Japan, 2021. isbn: 9780999241165.

[186] Hanyuan Zhang, Xingyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun, Weiwei

Sun, and Changhu Wang. “Trajectory Similarity Learning with Auxiliary Supervision

and Optimal Matching”. In: Proceedings of the Twenty-Ninth International Joint

114

Conference on Artificial Intelligence. IJCAI’20. Yokohama, Yokohama, Japan, 2021.

isbn: 9780999241165.

[187] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement Learning:

A Selective Overview of Theories and Algorithms. 2019.

[188] Muhan Zhang and Yixin Chen. “Link Prediction Based on Graph Neural Networks”. In:

Proceedings of the 32nd International Conference on Neural Information Processing

Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 5171–5181.

[189] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. “Deep Set Prediction Networks”.

In: Proceedings of the 33rd International Conference on Neural Information Processing

Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[190] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. “FSPool: Learning Set Repre-

sentations with Featurewise Sort Pooling”. In: International Conference on Learning

Representations. 2020.

[191] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Curtis P.

Langlotz. “Contrastive Learning of Medical Visual Representations from Paired Images

and Text”. In: Proceedings of the 7th Machine Learning for Healthcare Conference.

Ed. by Zachary Lipton, Rajesh Ranganath, Mark Sendak, Michael Sjoding, and Serena

Yeung. Vol. 182. Proceedings of Machine Learning Research. PMLR, May 2022, pp. 2–

25.

[192] Jing Zhao, Jiajie Xu, Rui Zhou, Pengpeng Zhao, Chengfei Liu, and Feng Zhu. “On

Prediction of User Destination by Sub-Trajectory Understanding: A Deep Learning

Based Approach”. In: Proceedings of the 27th ACM International Conference on

Information and Knowledge Management. CIKM ’18. Torino, Italy: Association for

Computing Machinery, 2018, pp. 1413–1422. isbn: 9781450360142.

115

[193] Yan Zhao, Shuo Shang, Yu Wang, Bolong Zheng, Quoc Viet Hung Nguyen, and

Kai Zheng. “REST: A Reference-Based Framework for Spatio-Temporal Trajectory

Compression”. In: Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. KDD ’18. London, United Kingdom: Association

for Computing Machinery, 2018, pp. 2797–2806. isbn: 9781450355520.

[194] Yu Zheng. “Trajectory Data Mining: An Overview”. In: ACM Trans. Intell. Syst.

Technol. 6.3 (May 2015). issn: 2157-6904.

[195] Yue Zhou and Thomas Huang. “‘Bag of segments’ for motion trajectory analysis”. In:

2008 15th IEEE International Conference on Image Processing. 2008, pp. 757–760.

116

Appendix A

The Broader Impact: Applications to

Pathlet Dictionaries

Pathlets and pathlet dictionaries are found to be useful in a variety of practical applications

and thus serves a broader impact to many reseachers and practioners alike. We discuss a few

of their applications in more detail.

A.1 Trajectory Compression

Compression is the process of reducing the size of a trajectory while preserving its important

spatiotemporal features [99]; it is more commonly useful when there is a need of transmitting

or storing large trajectory datasets in much smaller, more limited resources (e.g., mobile

devices, wireless networks, etc.). A common technique for trajectory compression involves

sampling points in trajectories that carry the most significant amount of spatiotemporal

information. With a pathlet dictionary, one is able to capture the pathlets in a trajectory’s

pathlet-based representation set that are most useful and could represent a large number of

trajectories in the dataset.

117

A.2 Route Planning

While navigation services and route planning apps such as Google Maps18 and Apple Maps19

exist, they are not necessarily accessible to users when online (internet) connection is not

available (e.g., network outages, poor wifi signals in remote areas, etc.). As such, there is a

need for accessing maps and loading mobility data offline while at the same time efficiently

answering majority of user queries (for example, path recommendation from Point A to B).

Pathlet dictionaries can be useful in this case.

A.3 Trajectory Prediction

Prediction and forecasting of trajectories is important in several domains including trans-

portation [92, 82], urban planning [55, 83], and healthcare [125, 110, 4, 134]. Pathlets could be

useful by expressing trajectories as sequences of pathlets, predicting the next pathlet(s) in the

sequence and then concatenating these predicted pathlets to form the predicted trajectories.

A.4 Anomaly Detection

Spotting outliers has been an active research direction [80, 163, 76]. One could use pathlets

to detect trajectories that move or behave anomalously by expressing each trajectory as

their pathlet-based representation set and then identifying which of those trajectories has a

pathlet-based representation set that deviates from other trajectories.

18http://maps.google.com/
19https://www.apple.com/maps/

118

http://maps.google.com/
https://www.apple.com/maps/

Appendix B

Proofs to Theorems

B.1 Proof of Theorem 4.2.1

Theorem 4.2.1 (Trajectory Representability Theorem). At any step i of the

iterative Algorithm 4.2, then the trajectory representability µ of some trajectory τ ∈ T

by the end of that iteration i is equal to:

µi(τ) =

∑
ρ′∈Φi(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(4.14)

where Φ0 and Φi are the pathlet-based representation of trajectory τ in the initial

(iteration 0) and iteration i of the iterative algorithm respectively.

Before proceeding with the proof, we first introduce two facts that will prove useful in

our main proof for the theorem. The first fact relates to pathlet lengths.

Fact 1. The pathlet length of some pathlet ρA ∈ P , plus the pathlet length of a neighboring

pathlet ρB ∈ P is equal to the pathlet length of ρAB, where ρAB is the pathlet formed when

119

pathlets ρA and ρB are merged. In other words:

ℓ(ρA) + ℓ(ρB) = ℓ(ρAB) (B.1)

This fact is fairly intuitive and does not require further explanation. As a remark, note

that either one of ρA or ρB (or both) has length 1. This is because we would never find two

higher-ordered (i.e., a pathlet with length greater than 1) pathlets merging together. The

current pathlet in process can only merge with a neighboring pathlet that have never been

processed in the algorithm (they all have length 1) and any neighboring high-ordered pathlets

have already been preprocessed and added to the dictionary.

Fact 2. The sequence of trajectory representabilities {µi} for some trajectory τ ∈ T is

monotonically non-increasing. In other words, the trajectory representability of τ at some

iteration j of the algorithm, for some i < j is less than or equal to its representability at

iteration i:

µi(τ) ≥ µj(τ) (B.2)

This claim is straightforward and intuitive as it simply stems from the nature of Algorithm

4.2. As a remark, if j = i+ 1, then µi(τ) ≥ µi+1(τ). This then implies that:

µi(τ) = µi+1(τ) + ϵ (B.3)

for some non-negative ϵ ≥ 0. Clearly, if there are no changes to the trajectory representability

between iterations i and (i+ 1), then ϵ = 0. Otherwise, if its representability decreased at

this iteration, then ϵ > 0.

Proof of Theorem 4.2.1.

We are then ready to provide proof to this theorem by means of induction. First, we

120

claim that the theorem holds at the initial base case, i.e., when i = 0:

µ0(τ) =

∑
ρ′∈Φ0(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
= 1 = 100%

which checks out since the trajectory representabilities of all trajectories τ ∈ T have this

representability value at the beginning of the algorithm. Now, assume that the theorem holds

at some iteration i = n ≥ 0:

µn(τ) =

∑
ρ′∈Φn(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)

All it remains to complete the proof is to show that the theorem holds for when i = n+ 1,

i.e.,

µn+1(τ) =

∑
ρ′∈Φn+1(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)

Now let current pathlet ρA be the pathlet that merges with its neighbor pathlet ρB to form

ρAB at the iteration (n+ 1). At this point, there are three cases to consider.

Case 1. ρA /∈ Φn(τ) and ρB /∈ Φn(τ)

This is the case when both these two pathlets that are candidate for merging are not

in the pathlet-based representation set Φn(τ). This means that there is no change to the

pathlet-based representation of τ from iteration n to (n+ 1); i.e., Φn+1(τ) = Φn(τ), as well

as their representabilities at iteration (n+ 1), i.e., µn+1(τ) = µn(τ).

µn+1(τ) = µn(τ)

=

∑
ρ′∈Φn(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(by the Inductive Hypothesis)

=

∑
ρ′∈Φn+1(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(Φn+1(τ) = Φn(τ) for Case 1)

Case 2. ρA ∈ Φn(τ) and ρB ∈ Φn(τ)

121

In this case, both ρA and ρB are in Φn(τ) and therefore their merged pathlet ρAB will be

in the pathlet-based representation of τ at the next iteration (n + 1), i.e., ρAB ∈ Φn+1(τ).

Note that that both ρA and ρB will no longer be in Φn+1(τ). Moreover in this case, it is clear

as well that their representabilities of τ also do not change between iterations n and (n+ 1).

Thus we have:

µn+1(τ) = µn(τ)

=

∑
ρ′∈Φn(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(by the Inductive Hypothesis)

=

∑
ρ′∈Φn(τ)\{ρA,ρB} ℓ(ρ

′) + ℓ(ρA) + ℓ(ρB)∑
ρ∈Φ0(τ)

ℓ(ρ)
(separate ρA and ρB)

=

∑
ρ′∈Φn(τ)\{ρA,ρB} ℓ(ρ

′) + ℓ(ρAB)∑
ρ∈Φ0(τ)

ℓ(ρ)
(by Fact 1)

=

∑
ρ′∈Φn(τ)\{ρA,ρB}∪{ρAB} ℓ(ρ

′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(inclusion of the new merged pathlet ρAB)

=

∑
ρ′∈Φn+1(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(as Φn+1(τ) = Φn(τ) \ {ρA, ρB} ∪ {ρAB})

Note that in the last step, to get Φn+1(τ), this is simply the same as the previous Φn(τ)

except we take out the two pathlets that are candidate for merging {ρA, ρB} and then add

back the newly formed merged pathlet {ρAB}.

Case 3. ρA ∈ Φn(τ) and ρB /∈ Φn(τ)

Without loss of generality, this case should suffice for when only one of {ρA, ρB} is in

Φn(τ). Unlike Cases 1 and 2 where the representability of τ did not change, here in Case

3 τ ’s representability will decrease. Following from Fact 2, there exists some positive ϵ > 0

that satisfies the equality in Equation (B.3). This equation can be rewritten as:

µn+1(τ) = µn(τ)− ϵ (∗)

122

(where i’s are expressed as as n’s). From here, it is not difficult to see that the ϵ we are after

is basically the percentage of the trajectory that can no longer be represented by the pathlets

in the dictionary at the next iteration (n+ 1). Since we know that ρA, which was part of

Φn(τ) will no longer be part of Φn+1(τ) due to its merge with ρB to form ρAB (and moreover,

ρAB is not part of Φn+1(τ) as ρB /∈ Φn(τ)), then it must be that the portion covered by ρA in

τ is the loss and is the ϵ that we want:

ϵ =
ℓ(ρA)∑

ρ∈Φ0(τ)
ℓ(ρ)

> 0 (∗∗)

Note that this value is positive as both ℓ(ρA) > 0 and
∑

ρ∈Φ0(τ)
ℓ(ρ) > 0. So now we have:

µn+1(τ) = µn(τ)− ϵ (by (∗))

=

∑
ρ′∈Φn(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
− ϵ (by the Inductive Hypothesis)

=

∑
ρ′∈Φn(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
− ℓ(ρA)∑

ρ∈Φ0(τ)

(by (∗∗))

=

∑
ρ′∈Φn(τ)

ℓ(ρ′)− ℓ(ρA)∑
ρ∈Φ0(τ)

ℓ(ρ)

=

∑
ρ′∈Φn(τ)\{ρA} ℓ(ρ

′) + ℓ(ρA)− ℓ(ρA)∑
ρ∈Φ0(τ)

ℓ(ρ)
(separate ρA)

=

∑
ρ′∈Φn(τ)\{ρA} ℓ(ρ

′)∑
ρ∈Φ0(τ)

ℓ(ρ)

=

∑
ρ′∈Φn+1(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)
(as Φn+1(τ) = Φn(τ) \ {ρA})

Thus, on the basis of the inductive hypothesis, we just have shown that:

µn+1(τ) =

∑
ρ′∈Φn+1(τ)

ℓ(ρ′)∑
ρ∈Φ0(τ)

ℓ(ρ)

Clearly, the theorem holds true for all i ≥ 0, which completes the proof. □

123

Figure B.1: An illustration of a pathlet tree. The root contains the road network and its
children are the length-1 pathlets. Each of these length-1 pathlets have children which are
their pathlet neighbors, and so forth.

B.2 Proof of Theorem 4.2.2

Theorem 4.2.2 (Initial Memory Storage Requirement Theorem). The memory

space that is required by top-down methods for initializing a pathlet dictionary has

a quadratic Θ(n2) bound, with n as the number of segments of the road network.

Bottom-up schemes on the other hand, such as the proposed PathletRL, requires

only an initial Θ(n) amount of memory space, with n as the number of initial length-1

pathlets.

To prove that the proposed methods can significantly reduce the amount of memory space

needed to store the initial pathlets in contrast to existing works, we first analyze the space

complexity for the baseline top-down methods. Recall that there are n road segments in

some arbitrary road network. Because existing models consider overlapping pathlets, as well

124

as different varities, sizes and configurations of the pathlets (i.e., length-1, length-2, etc.),

then we can simply count how many pathlets can be derived for each pathlet length:

• For length-1, there are clearly n such pathlets.

• For length-2, such pathlets can be formed as follows. Choose one of the n pathlets

calling it ρ; and then affix a pathlet neighboring to ρ (called ρ′ ∈ Ψ(ρ)); see the pathlet

tree in Figure B.1 for an illustrative depiction. Clearly, there are |Ψ(ρ)| choices. With

n pathlets, then there are:

|Ψ(ρ1)| × |Ψ(ρ2)| × ...× |Ψ(ρn)| =
n∏

i=1

|Ψ(ρi)| (B.4)

total number of length-2 pathlets. However, this is not precisely correct since there are

multiple pathlets that are counted twice. To fix this, it is enough to count the number

using combinatorics, where we "choose" two road segments out of the n that we have

in the road network (i.e.,
(
n
2

)
length-2 pathlets).

• In fact, for any pathlet of length-ℓ, then there should be
(
n
ℓ

)
such pathlets. In total,

there should be
∑ℓ

i=1

(
n
i

)
pathlets. Letting ℓ = n at the worst case, then we can derive

an upper bound for the memory space complexity in terms of the total number of

pathlets of the top-down approach:

n∑
i=1

(
n

i

)
= O

((
n

1

))
+O

((
n

2

))
+ ...+O

((
n

n

))
= O (2n) (B.5)

The exponential upper bound analysis for the space complexity of the top-down schemes

can however still be further improved. For example, this bound also takes into account all

such combinations of pathlets that are non-neighboring and as such should be excluded from

the total count. This specific worst case also assumes that the road network is a complete

125

graph (i.e., all the intersections of the road network are connected to each other), that is

not very realistic. Moreover, we can also find a more tighter bound for the space complexity

(involving both the lower and upper bounds). We first consider the following two facts that

will be useful in the later proof.

Fact 1. Let aij be the entry situated at the ith row and jth column of an m ×m square

matrix A. Moreover, let x be a column vector of ones that has dimension20 dim(A)× 1. Then

the sum of all entries of A is:
m∑
i=1

m∑
j=1

aij = x⊤Ax (B.6)

Here is a short proof and it is quite easy to show:

x⊤Ax =



1

1

...

1



⊤ 

a11 a12 . . . a1m

a21 a22 . . . a2m
...

...

am1 am2 . . . amm





1

1

...

1


=

[
1 1 . . . 1

]


a11 + a12 + . . .+ a1m

a21 + a22 + . . .+ a2m
...

am1 + am2 + . . .+ amm



=

[
1 1 . . . 1

]


∑m
j=1 a1j∑m
j=1 a2j

...∑m
j=1 amj


=

m∑
j=1

a1j +
m∑
j=1

a2j + . . .+
m∑
j=1

amj =
m∑
i=1

m∑
j=1

aij

This shows a way to represent the sum of the entries of some matrix, which should prove

useful at a later time. Now, here is another fact that bounds the above quadratic form:

Fact 2. For a square symmetric matrix A (i.e., A = A⊤) with λmin and λmax as its smallest

and largest eigenvalues respectively, then the quadratic form x⊤Ax is tightly bounded by the
20The dim(A) of a square matrix A is defined to be equal to the number of rows it has, and this is how we

will define the dimension of a square matrix throughout this manuscript. In this case, x has dimension m× 1.

126

squared L2-norm of x, for all ∀x ∈ Rdim(A)×1:

λmin||x||22 ≤ x⊤Ax ≤ λmax||x||22 (B.7)

In other words, x⊤Ax = Θ(||x||22). In order to keep the discussion focused, I omit the proof

of this well-known fact and direct the reader to linear algebra books [103] if interested in

reading its complete proof.

For a more careful consideration of counting the pathlets, we first focus on the nodes

(road intersections) of the road network. If one was to construct an adjacency matrix A

where entry aij ∈ A equals 1 if there is an edge (or road segment) from i to j (or j to i as

our road network is undirected by assumption) and 0 otherwise, then aij ∈ Aℓ determines

the number of paths of length ℓ to traverse node i to j (or vice-versa) on the road network

represented by adjacency matrix A [101]. Assuming the absence of self-loops for simplicity,

then the total number of paths of length ℓ for any pair of nodes in the road network is the

sum of all entries in the upper diagonal (excluding the main diagonal) of Aℓ. We express it as

follows. Let Qℓ = Aℓ −D(Aℓ), where D(A) is the matrix that contains the diagonal entries

of A along its main diagonal and zeros elsewhere. And then the sum of the upper diagonal

entries of Qℓ is simply 1
2
x⊤Qℓx, with x as dim(Qℓ)× 1 column of ones (the sum of entries

is in line with Fact 1 above in Equation (B.6)). And then the half here is to avoid double

counting (i.e., the undirected graph from i to j is the same as j to i as a result of symmetry).

So clearly, if we want all the pathlets of at least length-1, then we can write it as follows:

∑
ℓ∈Z+

x⊤Qℓx ̸=0

1

2
x⊤Qℓx (B.8)

To yield a lower bound on this summation with respect to the number of road segments in

the road network (instead of the nodes/road intersections), consider the smallest possible

127

number of nodes for n edges in the road network first. Each edge connects together two

nodes; as a result, there can be at least |V| = n nodes. Thus, in the Equation (B.8), it turns

out that the dim(Qℓ) = n and dim(x) = n× 1 as a result of dim(A) = n.

Now, each of the terms in Equation (B.8) is lower-bounded by Ω(||x||22) = Ω(n) as a

consequence of the Fact 2 in Equation (B.7). To see why Ω(||x||22) reduces to Ω(n), first note

that x is a column vector of ones with dimension n× 1. Therefore, its squared L2-norm is:

√12 + 12 + ...+ 12︸ ︷︷ ︸
n

2

=
(√

n
)2

= n (B.9)

Note however that the eigenvalue λmin should not be relevant towards the space complexity

expressed in terms of the number of road segments. However, such space analysis is only

for one of the n terms in the summation of Equation (B.8)21; thus the lower bound for the

number of pathlets of the top-down scheme is n× Ω(n) = Ω(n2).

A similar argument can be used to show that the upper bound on this is also quadratic

in the number of edges in the road network22, i.e., O(n2). As a result, we can yield a tighter

bound of the memory space complexity of the top-down methods to be Θ(n2), which is a

much better improvement on our earlier analysis.

The proposed bottom-up method PathletRL, which consumes less memory space to

initially store the pathlets, is more efficient with Θ(n) memory space complexity. It is quite

easier to analyze. Since we only consider length-1 edge-disjoint pathlets, it is easy to see how

ours simply relies exactly on the number of segments in the road network – which happens to

be n. □

21It can be noted that at the worst case, the longest pathlet length in the road network is n; so that is why
the summation can have up to n terms

22Note that here, we have 2n nodes at most instead of just n nodes, but the result should still hold for the
upper bound, which is O(n2), as we only scaled the number of nodes by a factor of 2.

128

Appendix C

Other Deep Reinforcement Learning

Policies

The choice of Dqn method over others such as Actor-Critic (A2c) and Policy-gradient is due

to a number of reasons. For one, Dqns are more sample efficient than Policy-gradient methods

because learning happens using an experience replay buffer rather than learning from data

collected with the current policy. Moreover, with small action spaces, Dqn’s are more stable

and more efficient than A2c methods; a separate neural network computes (approximates) the

target Q-values, which can reduce the variance in these estimates. In addition, implementing

Dqns is more straightforward compared to Actor-critic and Policy-gradient methods that

tend to be more complex in terms of architectures and hyperparameter tuning. This makes

them easier to employ in real-world settings.

129

Appendix D

Ground Truth Similarity Measures

In the Top k Similarity Search Problem, five similarity measures have been utilized as ground

truths. We provide some in-depth description of these ground truth measures in this appendix.

D.1 Two-Phase (Tp)

Tp [126], or the Two-Phase algorithm, is a divide-and-conquer strategy that comprises of

two main steps: (1) the trajectory-search phase, that is responsible for concurrently exploring

the spatial and temporal domains (the network expansion [35] and timestamp search for

each trajectory τ respectively); and (2) the merging phase that combines together all the

computed results for all the trajectories’ searches. The illustration in Figure D.1 should give

some idea of what the method is.

D.2 Distributed In-Memory Trajectory Analytics (Dita)

Dita [128], or Distributed In-Memory Trajectory Analytics, is a user-friendly distributed

analytics system on Spark that supports trajectory similarity search under the following basic

130

Figure D.1: An example of the Tp Method; illustration taken from Shang et al. [126]

framework. Firstly, it utilizes global indexing to calculate relevant partitions that consists

of trajectories similar to the query trajectory τq, and then sends it to the corresponding

workers of these partitions. Next, for each of the partitions, the local indexing is used to

generate candidate trajectories and then verify their similarity with τq. Finally, the results

are collected and returned to the user.

131

D.3 Longest Common Road Segment (Lcrs)

The Longest Common Road Segment (Lcrs) is a new similarity function defined by Yuan et

al. [177] according to the following formula. For two trajectories τi an τj:

SLcrs =
φ(τi, τj)

|τi|+ |τj| − φ(τi, τj)
(D.1)

where we remind the reader that |τ | denotes the length of trajectory τ on the road network

as per the preliminary chapters. The φ(τi, τj) of τi = ⟨r(1)i , ..., r
(|τi|)
i ⟩ and τj = ⟨r(1)j , ..., r

(|τj |)
j ⟩

(the road segments of trajectories τi and τj can then be calculated recursively as follows:

φ(τi, τj) =


0 if |τi| = 0 ∨ |τj| = 0

|τi[|τi|]|+ φ(τi[1..(|τi| − 1)], τi[1..(|τj| − 1])) if τi[|τi|] = τj[|τj|]

max {φ (τi [1.. (|τi| − 1)] , τj) , φ (τi, τi [1.. (|τj| − 1)])} otherwise
(D.2)

Note that τi[m] refers to the mth road segment of τi, i.e., τi[m] = ⟨τ (m)
i ⟩. And also τi[1..m]

denotes the 1st to the mth road segments of τi, i.e., τi[1..m] = ⟨τ (1)i , ..., τ
(m)
i ⟩.

D.4 Network-aware Erp (NetERP)

The Network-aware Edit Distance with Real Penalty (NetERP) [72] extends from the Edit

Distance with Real Penalty (Erp) [27] by replacing the Euclidean distance in Erp with the

shortest path distance. This was mostly motivated from previous works that employ shortest

path distance [38, 59, 126, 127, 140] between two nodes u and v in the road network.

132

D.5 Fréchet Distance (Fréchet)

The Fréchet distance [44] of two trajectories τa = ⟨a1, ..., am⟩ τb = ⟨b1, ..., bn⟩ (where each

trajectory is expressed as a sequence of points) is calculated recursively as follows:

SF (τa, τb) =



max
i

d(ai, b1) if n = 1

max
j

d(a1, bj) if m = 1

max

{
d(am, bn),

min

{
SF (τa[1..(m− 1)], τb[1..(n− 1)]),

SF (τa[1..(m− 1)], τb),

SF (τa, τb[1..(n− 1)])

}
}

otherwise

(D.3)

133

Appendix E

The Choice of Baselines against

PathletRL

While there have been a number of considerable baseline methods [156, 108, 195] that can be

used to compare PathletRL with, there are some reasons we decided to not do so. Firstly,

Wang et al. [156] focuses on route representativeness discovery which is a completely different

task than ours. Theirs, including Panagiotakis et al. [108] use a representativeness criterion

that is not applicable to our case. Zhou et al. [195] moreover focuses on motion analysis

which is a substantially different setting and task. This is in contrast to Chen et al. [26]

and Agarwal et al. [1], where we have opted for their baselines methods due to a number

of reasons. The former is the original and most representative work on pathlet dictionary

construction, while the latter is the most representative/newest method on subtrajectory

clustering that frames the pathlet dictionary construction as a subtrajectory clustering task.

Both of these baselines also do not rely on learning-based methods, compared to our proposed

model where we show the importance of deep learning.

As an aside, it is important to note that the technical problem of trajectory pathlet

dictionary construction is novel and state-of-the-art methods are originating from the original

134

work of Chen et al. [26]. We revisit the problem with a RL-based approach and consider

additional constraints (such as edge-disjointness in pathlets and the χ-order constraint).

135

Appendix F

Reproducibility

I refer the reader to Chapters 5.1.3 and 5.2.3 for the experimental paramaters used for

St2Box and PathletRL respectively. Moreover, the models have been implemented using

Python 3.10 using an Intel Core i7-9700, 3.00GHz CPU, 62GB RAM and a GeForce RTX

2800 8GB GPU. PathletRL was based on Tensorflow’s tf-agents23 (version 0.15.0 at

the time of development), while St2Box uses PyTorch 1.13. Their Github repositories are

also available for public access24,25.

23https://www.tensorflow.org/agents
24https://github.com/techGIAN/PathletRL
25https://github.com/techGIAN/ST2Box

136

https://www.tensorflow.org/agents
https://github.com/techGIAN/PathletRL
https://github.com/techGIAN/ST2Box

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	The State of the Art and Limitations
	SotA and Their Limitations for Similarity Search Tasks
	SotA and Their Limitations for Pd Construction

	The Proposed Approach
	The Proposed Approach for Similarity Search Tasks
	The Proposed Approach for Pd Construction

	Contributions
	Thesis Organization

	Literature Review
	Trajectory Similarity
	Traditional Methods
	Learning-based Methods

	Pathlet Mining
	Subtrajectory Clustering

	Graph Mining
	Edge Contraction
	Machine Learning with Graphs

	Deep Learning
	Deep Representation Learning for Trajectories
	Deep Reinforcement Learning
	Deep Learning for Sets

	Preliminaries
	Preliminary Definitions
	Problem Statements
	Trajectory Similarity Learning
	Trajectory Pathlet Dictionary Construction

	Methodology
	St2Box: Similarity Learning for Trajectories
	Algorithmic Details of St2Box
	Spatiotemporal Representation Learning of Road Segments
	From Trajectories to Sets
	The Box Architecture

	PathletRL: A Solution for Pd Construction
	Extracting Candidate Pathlets
	Reinforcement Learning Framework
	Space Complexity Analysis

	Evaluation
	Evaluating St2Box
	Research Questions
	Datasets
	Experimental Parameters
	Baselines
	Evaluation Metrics
	Results and Discussion

	Evaluating PathletRL
	Research Questions
	Datasets
	Experimental Parameters
	Baselines
	Evaluation Metrics
	Results and Discussion

	Conclusions
	Summary and Contributions
	Future Research Directions

	Bibliography
	Appendices
	The Broader Impact: Applications to Pathlet Dictionaries
	Trajectory Compression
	Route Planning
	Trajectory Prediction
	Anomaly Detection

	Proofs to Theorems
	Proof of Theorem 4.2.1
	Proof of Theorem 4.2.2

	Other Deep Reinforcement Learning Policies
	Ground Truth Similarity Measures
	Two-Phase (Tp)
	Distributed In-Memory Trajectory Analytics (Dita)
	Longest Common Road Segment (Lcrs)
	Network-aware Erp (NetERP)
	Fréchet Distance (Fréchet)

	The Choice of Baselines against PathletRL
	Reproducibility

