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Motivation

• Proliferation of geo-positioning capabilities

• Massive spatiotemporal trajectories of moving 
objects are collected

• Motivates various trajectory analytics

Trajectories contained within the 5th Ring Road in Beijing

Image source: https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
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Motivation

P1

P2

…

?

?

?

?

ridesharing

traffic analysis route planning and optimization

trip/POI (point-of-interest) recommendation



Trajectories on the Road Network
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Trajectories

• Trajectory
• Denoted by 𝜏
• Represented as:

𝜏 = 𝑥!, 𝑦!, 𝑡! , … , 𝑥 " , 𝑦 " , 𝑡 "

• Trajectory set 
• Consists of all trajectories of all objects
• Denoted by 𝒯
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Road Networks

• Road Segment †

• Connects two road intersections/ends
• Denoted by 𝑟
• Collection of all segments 𝑹

• Modelled as a graph 𝒢 𝒱, ℰ
• 𝒱 : Nodes (set of road intersections)
• ℰ : Edges (set of road segments)

[ℰ = 𝑹 ⊆ 𝒱×𝒱]
Image Source: “Updating Road Networks by Local 
Renewal from GPS Trajectories” [Wu et al, MDPI ‘16]

† “Road”, “segment” and “road segment” are terms used interchangeably.
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Road Segment-based Representation

• Each trajectory 𝜏 can be expressed as a set of road segments 𝑹# ⊆ 𝑹
• This special representation is denoted by 𝔑 𝜏

𝔑 𝜏 = 𝑟!, 𝑟", 𝑟#, 𝑟!$, 𝑟!%, 𝑟!&, 𝑟"𝑟! , 𝑟!$, 𝑟# , 𝑟!% , 𝑟!&
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Problems of Interest

Trajectory Similarity Learning Pathlet Dictionary Construction

7:03 AM

7:11 AM

7:14 AM

7:01 AM



Similarity in Trajectories
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Trajectory Similarity

• How similar two trajectories are
• Several ways to define

7:03 AM

7:11 AM

7:14 AM

7:01 AM

7:12 AM

7:05 AM
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Spatiotemporal Similarity

• The dot product of their spatiotemporal representations

𝒮 𝜏$, 𝜏% = 𝐱%&𝐱$

• Spatiotemporal Weight

𝒮 𝜏$, 𝜏% = 𝜃 ⋅ 𝒮 # 𝜏$
# , 𝜏%

# + (1 − 𝜃) ⋅ 𝒮 ' 𝜏$
('), 𝜏%

(')

where
𝒮(⋅,⋅) – network-aware distance measures
𝜏$, 𝜏% – trajectories

𝜃 ∈ [0,1] – control parameter
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Spatiotemporal Similarity – Example

Taxi Trajectories Embedding Space

1 proximate 
each other 



Problem Statement
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Problem Statement

• Top-𝑘 Trajectory Similarity Search Task
• Given: Trajectory set 𝒯

Query trajectory 𝜏*
Positive integer 𝑘 ≥ 1

• Find the (ranked) list of top 𝑘 trajectories in 𝒯:
• Criterion: Similarity with 𝜏*



Existing Works
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Traditional Measures

• Free-Space Measures
• Consider the geometric aspect of trajectories on the continuous, Euclidean space
• Examples: DTW [Yi et al, ICDE ‘98], LCSS [Vlachos et al, ICDE ‘02], ERP [Chen et al, VLDB ‘04]

• Network-aware Measures
• Consider properties of underlying network (e.g., network structure, connectivity, etc.)
• Examples: TP [Shang et al, VLDB ‘17], DITA [Shang et al, SIGMOD ‘18],  NetERP [Koide et al, VLDB ‘20]

pointwise 
matching

quadratic-level 
complexity

high computational 
cost

bottleneck in massive 
trajectory datasets
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Related Work and Limitations - 1

• Related Work
• Use NN-based models for learning representations of trajectories 

[Li et al – ICDE ‘18, Yao et al – ICDE ‘19, Zhang et al – IJCAI ‘20, Han et al – KDD ‘21]

• Limitations
• Disregard the temporal dimension
• Not effective in time-aware applications

(e.g., transportation planning, monitoring, etc.)

• Similarity relations between trajectories are preserved in low-dimensional 
embeddings

• Speedups compared to methods that operate directly on trajectories
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Related Work and Limitations - 2

• Related Work
• The temporal aspect of trajectories is important 

[Fu et al – TIST ‘20, Fang et al – KDD ‘22]

• Limitations
• Performance of models can still be improved
• Refined representations of trajectories

• Timestamps considered in the decoding process
• Captures the temporal regularities and periodic patterns in trajectories



Methodology – ST2Box

20



21

Reducing Trajectory Similarity to Set Similarity Problem

• Treat each trajectory as a set; its elements are the road segments it has traversed (road-
based representation ℜ 𝜏 )

• Similar (Dissimilar) trajectories map to similar (dissimilar) sets

Trajectories 𝜏! and 𝜏+ are similar!

𝜏!
𝜏'

𝜏$



• Spatiotemporal Trajectories to Box Embeddings for Similarity Learning
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ST2Box Overview

• Seg2Vec – spatiotemporal vector representations of road segments
• Seg2Box – box representations of sets of road segments



Input: Trajectory set 𝒯
Query trajectory 𝜏*
Positive integer 𝑘 ≥ 1

Output: the (ranked) list of top 𝑘 trajectories in 𝒯

1. Initialization
2. Spatiotemporal representation of each road segment
3. Expressing each trajectory as a set of road segments
4. Box representations of trajectories (sets)
5. Computing each trajectory’s similarity score with the query
6. Ranking each trajectory by the similarity score criterion

23

High Level Algorithm – ST2Box
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Paradigm: Trajectories to Vectors

• Method used by [Fang et al – KDD ‘22] 

𝜏!
𝜏'

𝜏$

𝐱!

𝐱$

𝐱𝟐
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Seg2Vec Idea

• Adapt a similar method as [Fang et al – KDD ‘22] but with road segments instead of each 
individual trajectory

• More refined representations of trajectories

𝜏!
𝜏'

𝜏$

Collect representations as sets!
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Seg2Vec Components

• Segment-based Spatial Representation Learning (SegSRL)
• Node2Vec (learning of adjacent roads)
• Graph Convolution Networks (local smoothing)
• LSTM with self-attentions (some roads are more important)

• Segment-based Temporal Representation Learning (SegTRL)
• Time-embedding

• LSTMs (for learning temporal dependence)
• Segment-based Spatiotemporal Fusion (SegSTF)



Neural Networks for Sets
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Neural Network Architecture for Sets

• Preserve similarity relations such as:
• Overlapping coefficient
• Cosine similarity
• Jaccard index
• Dice index

• Desire: similar trajectories to have similar set representations in the latent space
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Seg2Box: A Set-to-Box Architecture for Set Representations

• Based on Set2Box [Lee et al – ICDM ‘22]

• Applies to any type of set and elements

• We adapt Set2Box
• Trajectories as sets
• Road segments as elements

• Characteristics:
• accurate
• versatile
• generalizable

𝜏!
𝜏'

𝜏$
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The Box Architecture - Background

• Represent sets as hyperrectangles (boxes)

• Denote by box 𝐁, of the road-based representation 𝔑 𝜏, for trajectory 𝜏,

• Targets:
• Approximate 𝕍 𝐁, ∝ 𝔑 𝜏,
• Preserving similarity relations:

• Approximate 𝕍 𝐁) ∩ 𝐁* ∝ 𝔑 𝜏) ∩ 𝔑 𝜏*
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The Box Architecture – Objective

• Preseve elemental relationships between (triplets of) trajectories
• Consider the various cardinalities

• Sample positive (𝒯-) and negative (𝒯.) trajectory triplets
• The objective function is:

where D𝑉$ is the approximated volume of the boxes corresponding to 𝐶$
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Scalability

• Constant 𝒪 𝑑 running time for computing pairwise similarities [Lee et al – ICDM ‘22]

• shown empirically and theoretically
• 𝑑 – dimension of the box embedding space
• Constant value; set prior to model training

• Inherited by Seg2Box

• Perform such operations quickly, and can thus scale to larger datasets



Evaluation – ST2Box
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Evaluating ST2Box

RQ 1) Accuracy
• How does ST2Box compare with SotA methods?

RQ 2) Spatial Experiment
• Which spatial element is best to use for expressing trajectories as sets? (sets of 

points, cells or road segments)

RQ 3) Robustness
• How robust is ST2Box when varying the values of the spatiotemporal weight 𝜃?
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Datasets
T-Drive NYC

Taxis in the urban city Beijing New York

# nodes ~75K ~78K

# edges ~165K ~121K

# trajectories ~348K ~634K

Observation period 1 week 1 month

• Data Preprocessing
• Filter out trajectories with less than 10 sampling points
• Only consider trajectories within map ℳ
• Map-matching 

• Identifying the path on the road an object has taken given a sequence of GPS points
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Experimental Parameters

• Spatiotemporal weight parameter 𝜃 = 0.5
• Indicates that the spatial and temporal components are both equally important

• Embedding dimensions = 128
• Spatial embedding dimensions = 128
• Temporal embedding dimensions = 128

• Batch size = 512
• Number of training samples

• Positive training samples = 10
• Negative training samples = 10

• Optimizer
• Adam with learning rate of 0.001
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Baselines

• Deep Learning Baselines
• CSSRNN [Xia et al, IJCAI ‘17] Extension to RNN, with topological constraints 
• Traj2Vec [Yao et al, IJCNN ‘17] Using sliding windows and autoencoders 
• T2Vec [Li et al, ICDE ‘18] Based on Seq2Seq model
• ST2Vec [Fang et al, KDD ‘22] Fusing spatial and temporal representations (SotA)

• Box-based Architecture Baselines †

• PTs2Box 
• Hex2Box
• Rds2Box

† These baselines are all ours.
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Box-based Architecture Baselines

• PTs2Box – uses raw trajectory GPS points

• Hex2Box – uses hexagonal-shaped block cells

• Rds2Box – uses road segments (spatial only)

Data source: https://github.com/alifa98/point2hex



39

Evaluation Metrics - 1

𝒯
1)
2) 
3)
     …

𝜏!

𝒯′

𝒯!
10%

𝒯 !
"#
$%

𝒯 !
"#

𝒯 !
&'
!

50% 20% 30%
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Evaluation Metrics - 2

• Hitting Ratio (HR) [↑]
• The degree of overlap

• Mean Absolute Error (MAE) [↓]
• The average of all differences

• Kendall-Tau Metric (KT) [↑]
• The ordinal association

[↑] – Higher values indicate better model performance

[↓] – Lower values indicate better model performance
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Numerical Results
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RQ 1) Accuracy Performance – Key Observations

ST2Vec and ST2Box consistently outperform the baselines

ST2Box consistently outperform ST2Vec

ST2Box learns more refined levels of spatiotemporally-enriched information 
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RQ 2) Spatial Experiment - Results

PTs2Box does not do well
• Noisy, unmap-matched data

Hex2Box is also outperformed
• Under/overestimate the exact paths

Rds2Box yields the best performance
• Improved by ST2Box – capture the temporal aspect
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RQ 3) Robustness Study

• Varying the spatiotemporal weight 𝜃 ∈ 0.0, 0.1, … , 1.0
• Performance of ST2Box remains stable across all three evaluation metrics for both 

datasets
• Provides support for a variety of the applications

T-Drive Dataset

NYC Dataset



Constructing Pathlet Dictionaries
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Trajectory Pathlet Dictionary (PD) Construction

• Constructing a small set of basic building blocks that can represent a wide range of 
trajectories

• Many names in the literature
[Panagiotakis et al – TKDE ‘12, Chen et al – SIGSPATIAL ‘13, Sankararaman et al – SIGSPATIAL ‘13, Agarwal et al – PODS ‘18, Li et al –

TSAS ‘18, Zhao et al – CIKM ’18]

• Pathlet
• Subtrajectory
• Trajectory Segments
• Fragments
• …
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Brief Background: Pathlets

• Pathlet (𝜌) - any sub-path in the road network 𝒢
• Collection of all pathlets𝒫 (a pathlet set)
• Edge-disjoint – no two pathlets overlap in edges

• Pathlet Length
• Denoted by ℓ; the path length in the road network (ℓ ≥ 1,ℓ ∈ ℤ)
• 𝜒-order Pathlet Set – All pathlets have length at most 𝜒

• Pathlet Graph – derived from the road network 𝒢, denoted by 𝒢1 𝒱1, ℰ1
• Pathlet Neighbors – share the same start/end points (road intersections) 

• Neighbor set - denoted by Ψ 𝜌 ; the collection of all neighbors of 𝜌

Grey pathlet has two neighbors: 
orange and blue pathlets
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Pathlet-based Representation of a Trajectory

(a) (b)

𝜏

(c)

𝜌!

𝜌'

𝜌$ 𝜌+ 𝜌"𝜌%

Φ 𝜏 = 𝜌!, 𝜌", 𝜌%, 𝜌$

Denoted by Φ 𝜏 = 𝜌 ! , 𝜌 + , … , 𝜌 2
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Trajectory Traversal Set

• Denoted by
Λ 𝜌 = 𝜏 | ∀𝜏 ∈ 𝒯, 𝜌 ∈ Φ 𝜏

(a) (b)

Λ 𝜌$ = 𝜏', 𝜏$, 𝜏"

Λ 𝜌' = 𝜏', 𝜏$
Λ 𝜌! = 𝜏" Λ 𝜌+ = 𝜏', 𝜏+, 𝜏"

Λ 𝜌" = 𝜏!, 𝜏+
Λ 𝜌% = 𝜏+

Λ 𝜌& = 𝜏!, 𝜏%
Λ 𝜌, = 𝜏!, 𝜏+, 𝜏%
Λ 𝜌# = 𝜏!, 𝜏%

• Pathlet Weights – importance in the road network

𝓣
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Pathlet Dictionary

(a) (b)

𝓣

𝜌!
𝜌'
𝜌$
𝜌+
𝜌"
𝜌%
𝜌&
𝜌,
𝜌#

𝜏"
𝜏', 𝜏$
𝜏', 𝜏$, 𝜏"
𝜏', 𝜏+, 𝜏"
𝜏!, 𝜏+
𝜏+
𝜏!, 𝜏%
𝜏!, 𝜏+, 𝜏%
𝜏!, 𝜏%
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Existing Works and Limitations

• Existing works
[Panagiotakis et al – TKDE ‘12, Chen et al – SIGSPATIAL ‘13, Sankararaman et al – SIGSPATIAL ‘13, Agarwal et al – PODS ‘18, Li et al –

TSAS ‘18, Zhao et al – CIKM ’18]

• Main Limitations
• Traditional-based (non-learning) methods
• Overlapping pathlet assumption

Overlapping Pathlets Edge-disjoint Pathlets
(Top-down Approach) (Bottom-up Approach)

overlap!
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Top-down vs Bottom-up Methods

• Candidates are all pathlets of various 
sizes and configurations

• Reduce dictionary size by considering 
only the top most (popular) ones

• Expensive space complexity: Θ 𝑛+

Top-down Methods Bottom-up Methods

• Candidates are all length-1 pathlets (road 
segments)

• Form the dictionary by merging neighbor 
(adjacent) pathlets

• Space efficient: Θ 𝑛

the number of road segments

Space complexities can 
be proven theoretically
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Novel Trajectory Metrics

• Trajectory Representability
• Denoted by 𝜇 ∈ [0%, 100%]
• The percentage of a trajectory that can be represented using pathlets in the pathlet

set

• 𝜇 𝜏 = |4(")|
ℓ(")

• Trajectory Loss
• Denoted by 𝐿'67%
• The percentage of all trajectories with representability of 0%
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Trajectory Representability and Loss - Example

𝜏

Φ 𝜏 = 𝜌+, 𝜌8, 𝜌9, 𝜌:
𝜇 𝜏 = 100%

After the merging-based algorithm

𝜌+, 𝜌:

50%

Notice that 𝜇 is monotonically non-
increasing at each step of the iteration
Trajectory is lost/discarded once 𝜇
reaches zero! 

Pathlet 𝜌! and 𝜌" are no 
longer part of Φ 𝜏 , since it 
merged with 𝜌#!" and 𝜌# are 
not in Φ 𝜏
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Remark

• Ignoring trajectory representability?
• A portion of a trajectory that cannot be represented by the pathlets is considered 

lost
• Degrades performance in constructing good quality dictionaries

Green pathlet merged with another 
that is neither blue or yellow

Representability Trajectory 
Lost?

With 
Representability 75% No

Without 
Representability N/A Yes

Representability Trajectory 
Lost?

With 
Representability 100% No

Without 
Representability N/A No

Initial State After the Merge
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PD Construction - Objectives

(O1) Minimal size of candidate pathlet set 𝕊
(O2) Minimal average number of pathlets representing each trajectory, 𝜙

(O3) Minimal trajectory loss
(O4) Maximal average representability values for the remaining trajectories, �̅�

min
1!21"21#21$3!

𝛼! 𝕊 + 𝛼' ⋅
1
𝒯
7
4∈𝒯

Φ 𝜏 + 𝛼$𝐿789: − 𝛼+ ⋅
1
𝒯
7
4∈𝒯

𝜇 𝜏
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Problem Statement

• Trajectory Pathlet Dictionary Construction
• Given: Trajectory set 𝒯

Road Network 𝒢 of map ℳ
Maximum pathlet length 𝜒 ≥ 1
Maximum trajectory loss 𝑀
Average trajectory representability threshold �̂�

• Construct a trajectory pathlet dictionary denoted by 𝕊
• Constraints:

All pathlets in 𝕊 are edge-disjoint and have lengths ℓ ≤ 𝜒
Achieve the maximum possible utility based on our objective
Trajectory loss constraint 𝐿'67% < 𝑀
Trajectory representability constraint �̅� ≥ �̂�



Methodology - PathletRL
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PathletRL - Overview

• Extracting candidate pathlets
• Deep Reinforcement Learning framework
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Extracting Candidate Pathlets - Pseudocode
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Extracting Candidate Pathlets - Example

Initialize length-1 pathlets
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Extracting Candidate Pathlets - Example

𝜌
Choose pathlet 𝜌 uniformly at random  



𝜌

𝜌!
𝜌'

𝜌$

𝜌+
𝜌"

𝜌% Identify all neighbors of 𝜌
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Extracting Candidate Pathlets - Example



𝜌

𝜌!
𝜌'

𝜌$

𝜌+
𝜌"

𝜌% Compute utility of 𝜌;<6=<

66

Extracting Candidate Pathlets - Example

𝝆𝒎𝒆𝒓𝒈𝒆 Utility

MERGED(𝜌, 𝜌!) +0.7

MERGED(𝜌, 𝜌') +1.8

MERGED(𝜌, 𝜌$) -1.6

MERGED(𝜌, 𝜌+) +5.5

MERGED(𝜌, 𝜌") -3.2

MERGED(𝜌, 𝜌%) +2.9



𝜌

𝜌!
𝜌'

𝜌$

𝜌+
𝜌"

𝜌% Obtain 𝜌∗ with the highest utility
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Extracting Candidate Pathlets - Example

𝝆𝒎𝒆𝒓𝒈𝒆 Utility

MERGED(𝜌, 𝜌!) +0.7

MERGED(𝜌, 𝜌') +1.8

MERGED(𝜌, 𝜌$) -1.6

MERGED(𝜌, 𝜌+) +5.5

MERGED(𝜌, 𝜌") -3.2

MERGED(𝜌, 𝜌%) +2.9

𝝆𝒎𝒆𝒓𝒈𝒆 Utility

MERGED(𝜌, 𝜌!) +0.7

MERGED(𝜌, 𝜌') +1.8

MERGED(𝜌, 𝜌$) -1.6

MERGED(𝜌, 𝜌+) +5.5

MERGED(𝜌, 𝜌") -3.2

MERGED(𝜌, 𝜌%) +2.9



𝜌

𝜌!
𝜌'

𝜌$

𝜌+
𝜌"

𝜌% Merge 𝜌 and 𝜌9
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Extracting Candidate Pathlets - Example



𝜌
New current pathlet 𝜌

69

Extracting Candidate Pathlets - Example



Deep Reinforcement Learning
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Deep Reinforcement Learning (DRL) Framework and Components

• Desirable actions
• Lead to higher rewards

• Unfavorable actions
• Lead to punishment (Lower-valued rewards)

• Idea
• Learn the best sequence of actions that yield the maximum possible reward value

• Components
• The Environment and the Agent
• The States and Actions
• The Reward Function (Utility)
• The Reinforcement Learning Policy
• The Experience Replay Buffer
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DRL Components: The Environment and the Agent

• Environment
• The pathlet graph 𝒢1
• It is where the algorithm will be operating on

• Agent
• Our agent is trained to learn which pathlets in the pathlet graph are to be 

merged/kept unmerged
• The agent is trained to learn the most optimal sequence of actions that yield the 

highest possible utility in the form of rewards
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DRL Components: The State and Action Spaces

• The State Space 𝑠' = 𝑆!, 𝑆+, 𝑆8, 𝑆9 ∈ 𝒮 = ℝ?@9

• 𝑆! - the number of pathlets in the current pathlet graph
• 𝑆+ - the average number of pathlets to represent the trajectories
• 𝑆8 - the trajectory loss
• 𝑆9 - the average trajectory representability

• The Action Space
• 𝑎' ∈ 𝒜 = 𝐾𝐸𝐸𝑃,𝑀𝐸𝑅𝐺𝐸
• Merge action requires the agent to merge the current pathlet 𝜌 with one of its Ψ 𝜌

neighbors
• Write our action space as:

𝒜 = n
∀BC∈E C

𝑀𝐸𝑅𝐺𝐸 𝜌, o𝜌 ∪ 𝐾𝐸𝐸𝑃 𝜌
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DRL Components: The Reward Function

• The Reward Function

• Instantaneous Rewards

• Discount Rate Factor
• Realize the importance of both immediate and long-term rewards
• 𝛾 ∈ [0,1]

(∗)

The change in value between the 
previous and current timesteps
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DRL Components: The Policy and Deep Q Networks (DQNs)

• Goal: learn the most optimal policy 𝜋 through the selection of 𝑎' ∈ 𝒜 while in state 𝑠' ∈ 𝒮
that maximizes the 𝑄-index

• 𝑄-learning 
• Agent records and keeps track of all possible 𝑠', 𝑎' pairs and the associated 𝑄-

values in a lookup table
• The 𝑄-table is updated at each timestep recursively:

• Non-linear approximator
• State-space is continuous
• Unable to maintain large state-action tables
• Deep Q Networks!

The learning rate
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DRL Components: The Experience Replay Buffer

• Learning based on prior experience

• Collection of data
• Keeping track of all state-action pairs/state-transitions
• Learn later

• The experience tuple records 𝑠', 𝑎', 𝑟', 𝑠'-! are stored in a memory buffer (the 
experience replay buffer)
• The agent samples a memory minibatch from this replay buffer



Evaluation - PathletRL
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Evaluating PathletRL

RQ 1) Quality of Dictionary
• How does PathletRL compare with SotA methods?

RQ 2) Memory Storage Needs
• How much memory does the bottom-up approach save compared to top-down?

RQ 3) Ablation Study
• How much more effective is PathletRL against its ablation versions?

RQ 4) Partial Trajectory Reconstruction
• How effective is the constructed PD in reconstructing original trajectories?
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Datasets

TORONTO ROME

# nodes ~1.9K ~7.5K

# edges/initial pathlets ~2.5K ~15.4K

# trajectories ~169K ~3.8M

Observation period 3.7 hours 1 week

• TORONTO
• Realistic synthetic car traffic dataset generated using SUMO app†

• ROME
• Real world taxi cab trajectories taken from CRAWDAD‡

• 70% for training (constructing the PD); 30% for testing (evaluating the PD)
† SUMO (Simulation of Urban Mobility): https://www.eclipse.org/sumo/ - an application for simulating traffic
‡ CRAWDAD: https://crawdad.org/ - an archive site for wireless network and mobile computing datasets 
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Experimental Parameters

• Deep neural network
• Consists of FC layers of 128, 64 and 32 hidden neurons
• ReLU activation function
• Adam optimizer with learning rate of 0.001
• Dropout = 0.2

• DQN parameters
• A total of 5 episodes for each of the 100 iterations
• Size of the experience replay buffer is 100,000
• Memory minibatch size is 64
• Discount factor of 𝛾 = 0.99

• 𝜒-order candidate set: 𝜒 = 10
• Maximum trajectory loss is 25% and average representability threshold is 80%

• Objective parameter 𝛼! = 𝛼+ = 𝛼8 = 𝛼9 = 0.25
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Baselines

• SotA
• Chen et al. [Chen et al, SIGSPATIAL ‘13] Solvable with dynamic programming
• Agarwal et al. [Agarwal et al, PODS ‘18] Framed as subtrajectory clustering problem

• Null Model
• SGT Length-1 pathlets only (no merging occurs)

• Ablation Versions
• PathletRL-RND
• PathletRL-NR
• PathletRL-UNW
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Evaluation Metrics

• 𝕊 , the size of the pathlet dictionary
• 𝜙, the average number of pathlets that represent each trajectory

• 𝐿'67%, the average number of trajectories discarded (%)

• �̅�, the average representability across the remaining trajectories (%) 

Notes:
• All these metrics indicate that lower values are better, except the last one that indicates 

that higher values are better
• The third and fourth metrics are not applicable to [Chen et al, SIGSPATIAL ‘13] and [Agarwal et al, 

PODS ‘18]

• The fourth metric is not applicable to PathletRL-NR
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RQ 1) Numerical Results and Key Observations

[1] Agarwal et al, PODS ‘18

[26] Chen et al, SIGSPATIAL ‘13

• PathletRL improves from the null model, SGT
• PathletRL outperforms traditional methods ([Chen et al, SIGSPATIAL ‘13] and [Agarwal et al, PODS ‘18])
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RQ 2) Memory Efficiency

Bottom-up approaches outperform top-down methods

~7
,4

00
x ~2

4,
00

0x



85

RQ 3) Ablation Study – Average Returns

• PathletRL-RND has the poorest performance
• Exhibits random RL policy (no learning)
• All other methods converge after some iteration

• PathletRL-NR does not do well
• Missing representability metric

• PathletRL-UNW is only a runner-up
• Neglect the essence of pathlet weights

• PathletRL (ours) demonstrates the best performance 
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RQ 4) Partial Trajectory Reconstruction



Conclusions
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Summary and Contributions

Trajectories as Sets ST2Box: Seg2Vec and Seg2Box

Deep Reinforcement Learning 
(DQN)

Partial trajectory reconstruction 
~85%

Edge-disjoint pathlets

ST2Box Properties

• Accurate

• Versatile

• Generalizable

• Robust

• Fast and Scalable
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Questions?

Thank you!
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