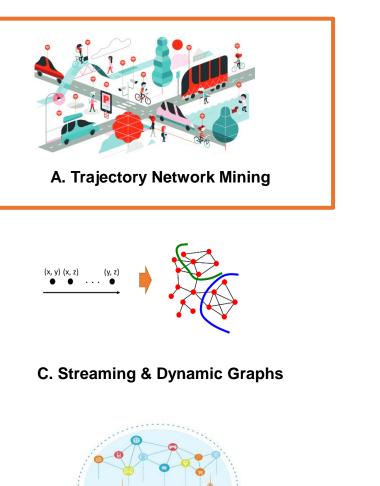
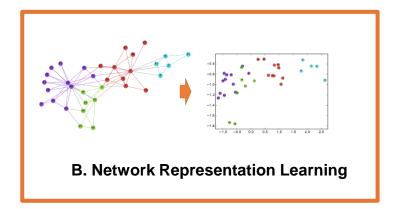


Trajectory Network Mining

Manos Papagelis papaggel@eecs.yorku.ca

Current research focus





D. Social Media Mining & Analysis

F. Natural Language Processing

E. City Science / Urban Informatics / IoT

Node Importance in Trajectory Networks

YORK

U N I V E R S I T É U N I V E R S I T Y

Trajectories of moving objects

7L13 BL 1

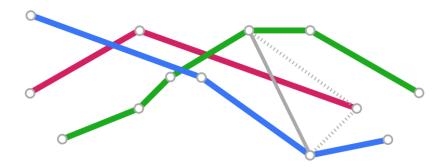
•

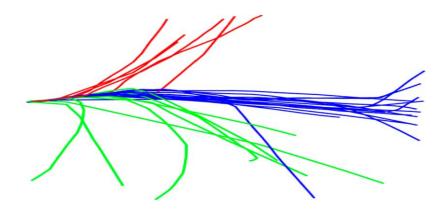
• • •

• •

every moving object, forms a **trajectory** – in **2D** it is a sequence of (**x**, **y**, **t**) there are trajectories of moving **cars**, **people**, **birds**, ...

Trajectory data mining





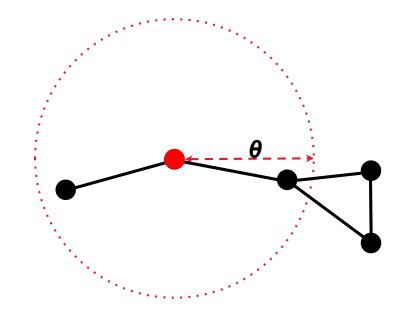
trajectory similarity

trajectory clustering

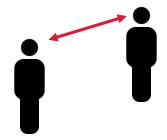
trajectory anomaly detection trajectory pattern mining trajectory classification ...more

we care about network analysis of moving objects

Proximity networks



Distance can represent

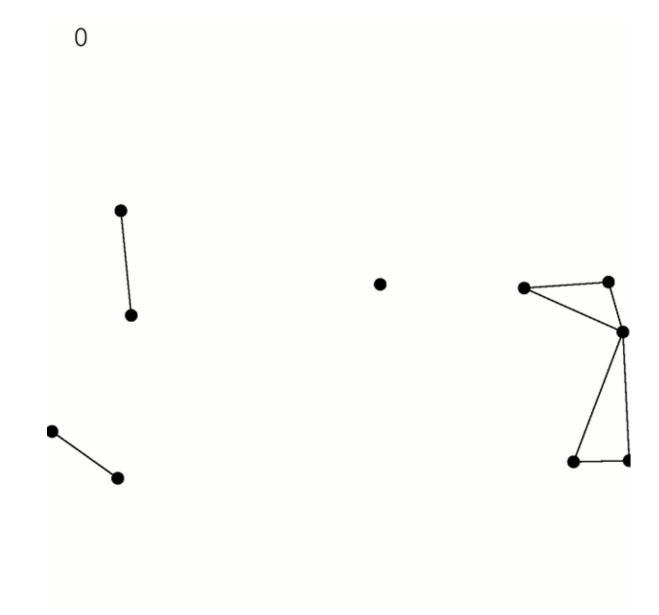


$(((\bullet)))$

line of sight

wifi/bluetooth signal range

Trajectory networks



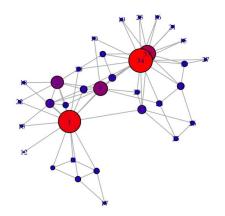
The problem

.

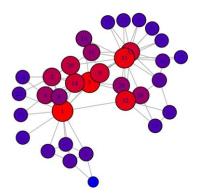
Input: logs of trajectories (x, y, t) Output: node importance metrics

Node Importance

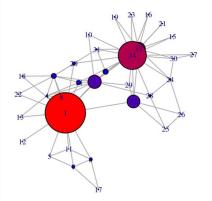
Node importance in static networks



Degree centrality



Closeness centrality

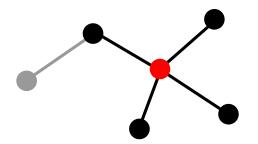


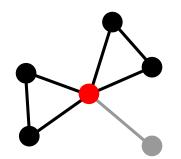
Betweenness centrality



Eigenvector centrality

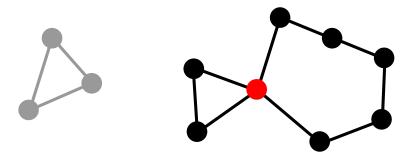
Node importance in TNs





node degree over time

triangles over time

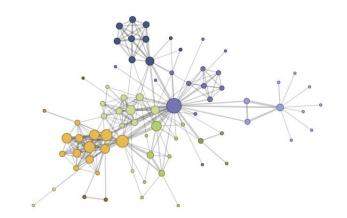


connected components over time (connectedness)

Applications

infection spreading

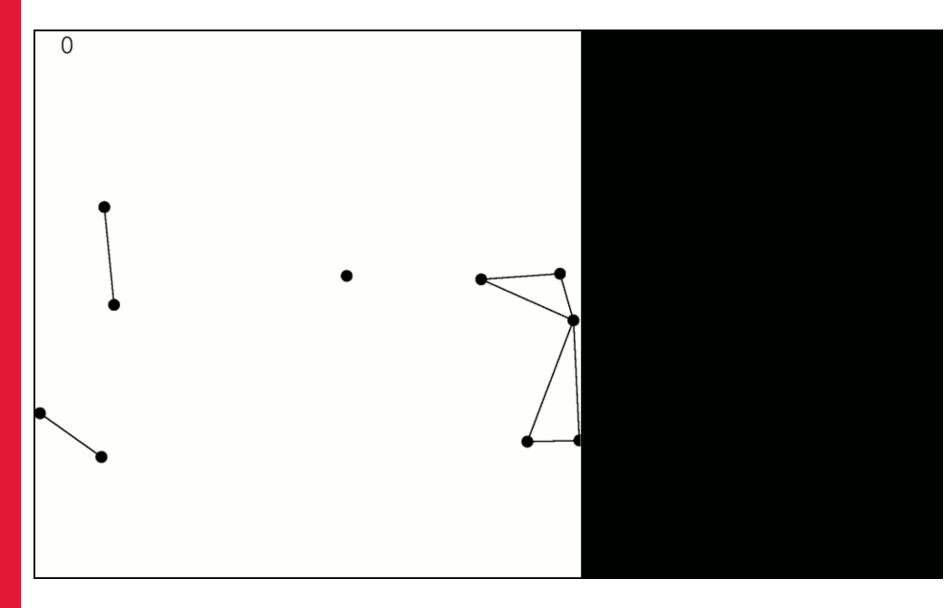
wireless signal security



rich dynamic network analytics

Evaluation of Node Importance in Trajectory Networks

Naive approach



Naive approach

For **every** discrete time unit:

- 1. get static snapshot of network
- 2. run static node importance algorithms on snapshot

Aggregate results at the end

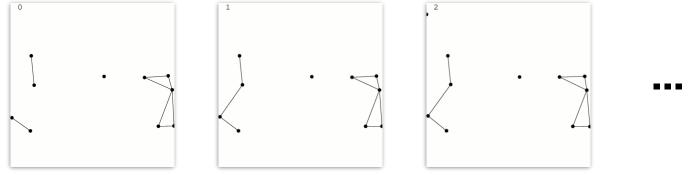
Streaming approach

Similar to naive, but:

- no final aggregation
- results calculated incrementally at every step

Still every time unit

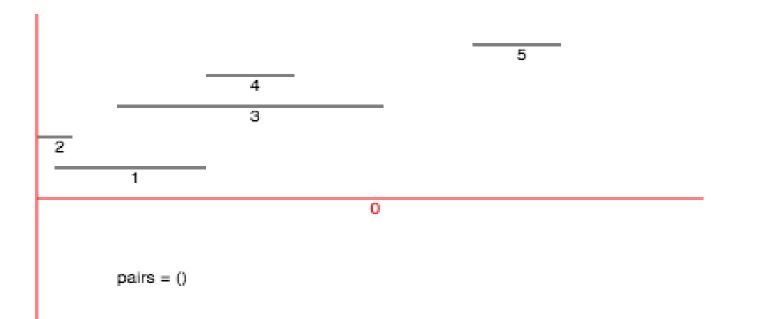
Every discrete time unit



Sweep Line Over Trajectories (SLOT)

Sweep line algorithm

A computational geometry algorithm that given line segments computes line segment overlaps



Efficient **one pass** algorithm that only processes line segments at the **beginning** and **ending** points

SLOT: Sweep Line Over Trajectories

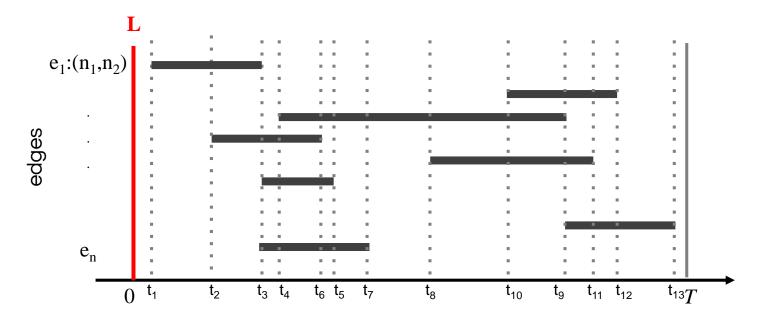
(algorithm sketch)

represent TN edges as time intervals

apply variation of sweep line algorithm

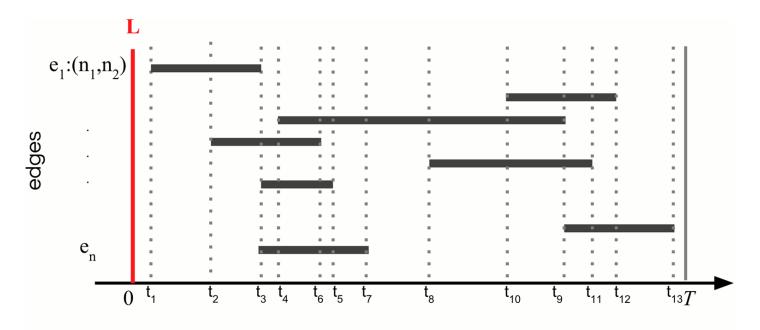
simultaneously compute *node degree, triangle membership, connected components* in **one pass**

Represent edges as time intervals



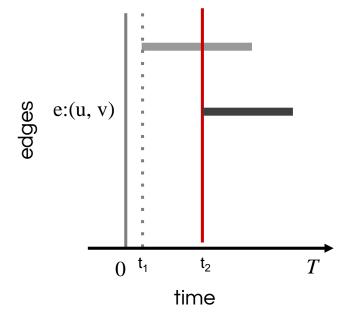
time

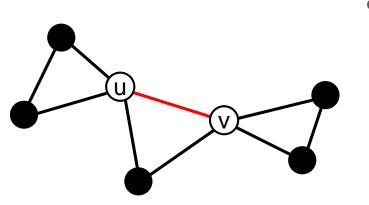
SLOT: Sweep Line Over Trajectories



time

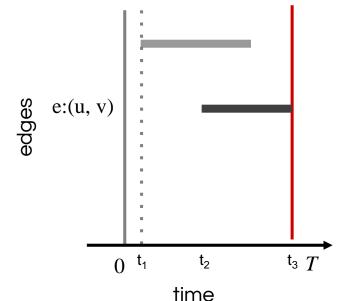
At every edge start

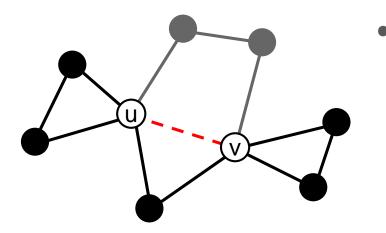




- node degree
 - nodes u, v now connected
 - increment u, v node degrees
- triangle membership
 - did a triangle just form?
 - look for u, v common neighbors
 - increment triangle (u, v, common)
- connected components
 - did two previously unconnected components connect?
 - compare old components of u, v
 - if no overlap, merge them

At every edge stop





- node degree
 - nodes u, v now disconnected
 - decrement u, v degree
- triangle membership
 - did a triangle just break?
 - look for u, v common neighbors
 - decrement triangle (u, v, common)
- connected components
 - did a component separate?
 - BFS to see if **u**, **v** still connected
 - if not, split component to two

SLOT: At the end of the algorithm ...

node degrees: start/end time, duration **triangles**: start/end time, duration **connected components**: start/end time, duration

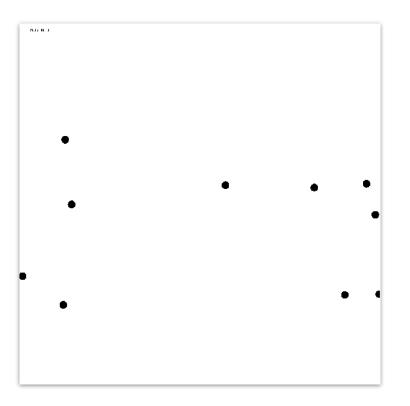
Exact results (not approximations)

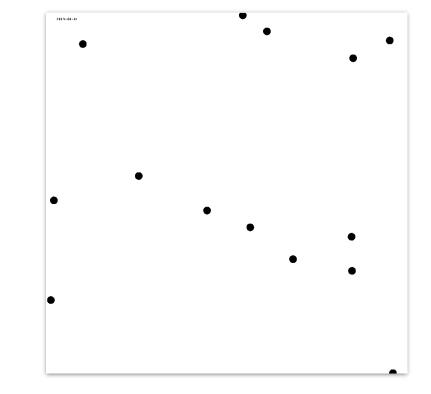
e.g. node degree of u *d(u)* is:

d(u) = 5, from t=0until t=10 duration=10d(u) = 6, from t=10until t=50 duration=40d(u) = 4, from t=50until t=100 duration=50

Evaluation of SLOT

Simulating trajectories

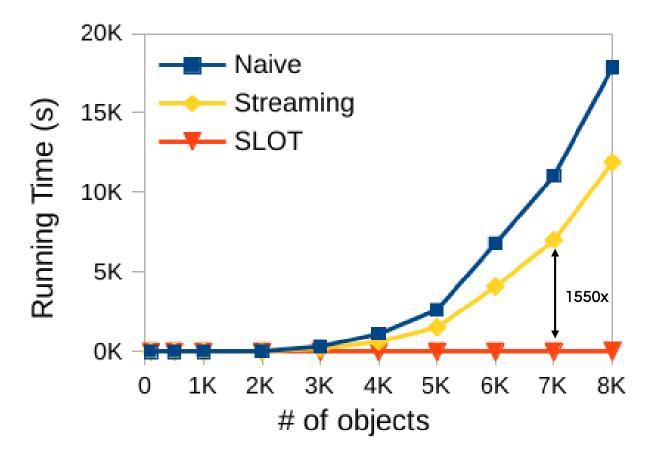




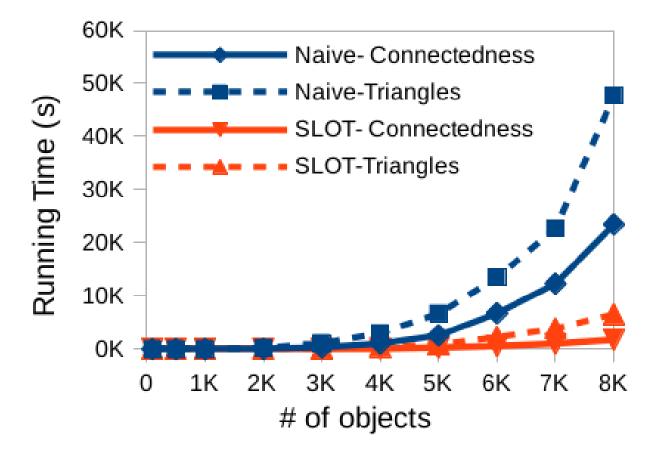
constant velocity

random velocity

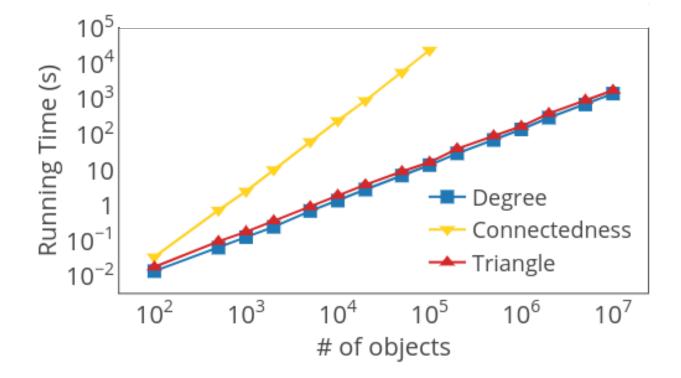
Node degree



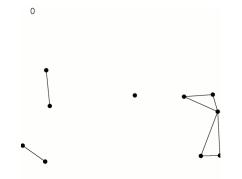
Triangle membership / connected components

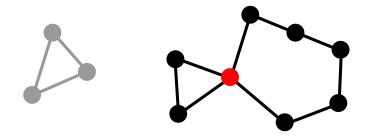


SLOT Scalability



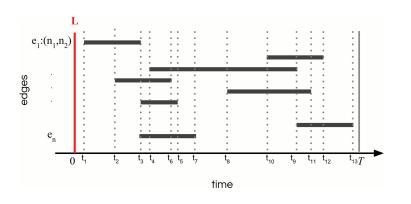
Takeaway





trajectory networks

network importance over time



SLOT properties:

- fast
- exact
- scalable

SLOT algorithm

Seagull migration trajectories

THE N

Group Pattern Discovery of Pedestrian Trajectories

Pedestrian trajectories

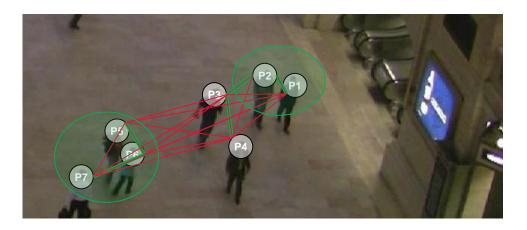
what is a group?

many definitions, many algorithms

e.g., *flock, convoy, evolving-clusters, gathering-pattern, ...* [ACM TIST Tutorial 2015]

Finding pedestrian groups

Local Grouping Intuitive method Spatial-only



key idea

find **pairs** of pedestrians **x**, **y** where **distance**(**x**, **y**) < θ expand **pairs** to discover **groups**

Local grouping

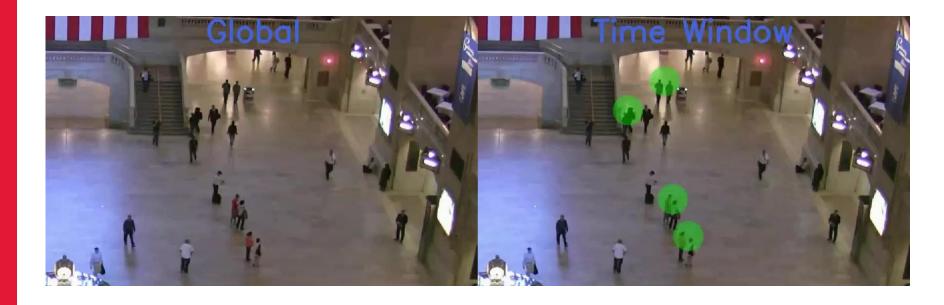
Challenge: Projection into ground plane

High perspective distortion - pedestrians closer to the camera appear larger than the ones farther away

Estimated Homography to overcome this distortion

expand the key idea to include the time dimension

Global groups vs. Time-window groups

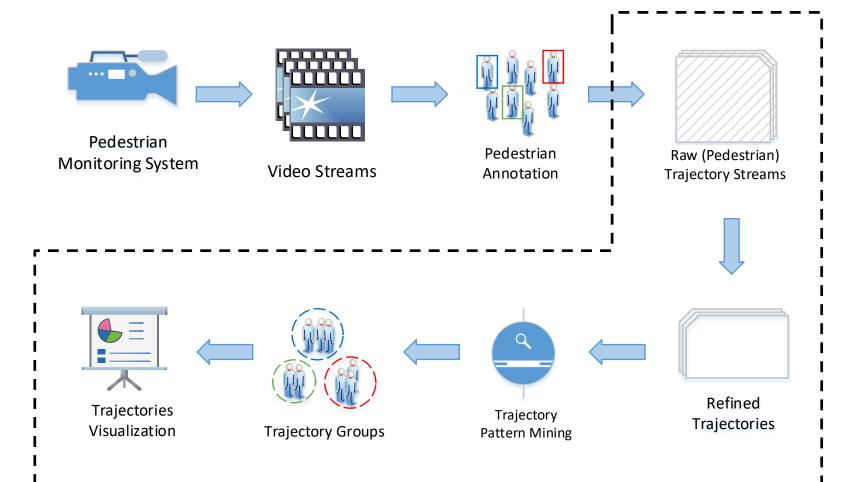


global grouping time-window grouping

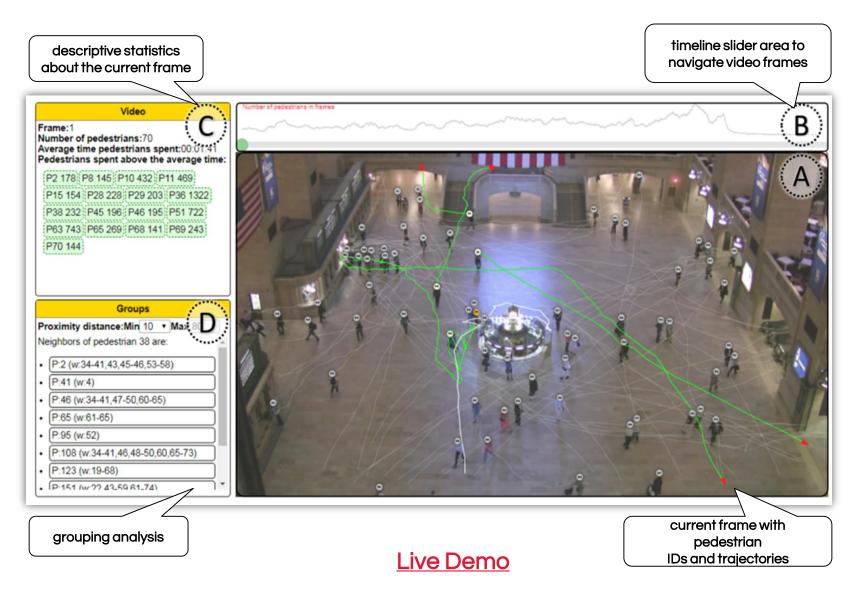
Trajectolizer

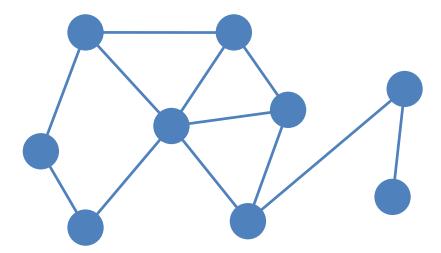
Demo

Trajectolizer: System Overview



Trajectolizer: Interactive Demo

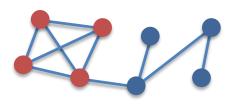


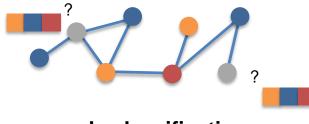


networks

(universal language for describing complex data)

Classical ML Tasks in Networks





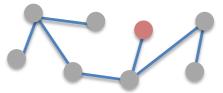
community detection

link prediction

node classification

triangle count

graph similarity



anomaly detection

Limitations of Classical ML Tasks

expensive computation

(high dimension computations)

extensive domain knowledge

(task specific)

Network Representation Learning (NRL)

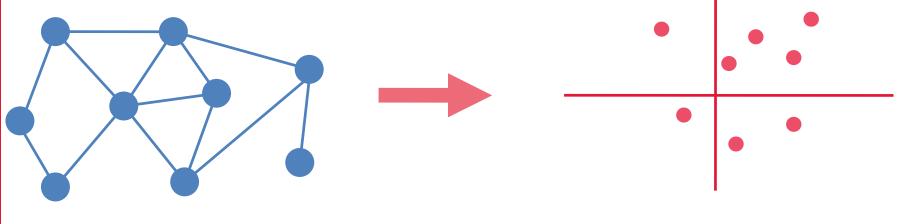
faster computations

(low dimension computations)

agnostic domain knowledge

(task independent)

Network Representation Learning (NRL)

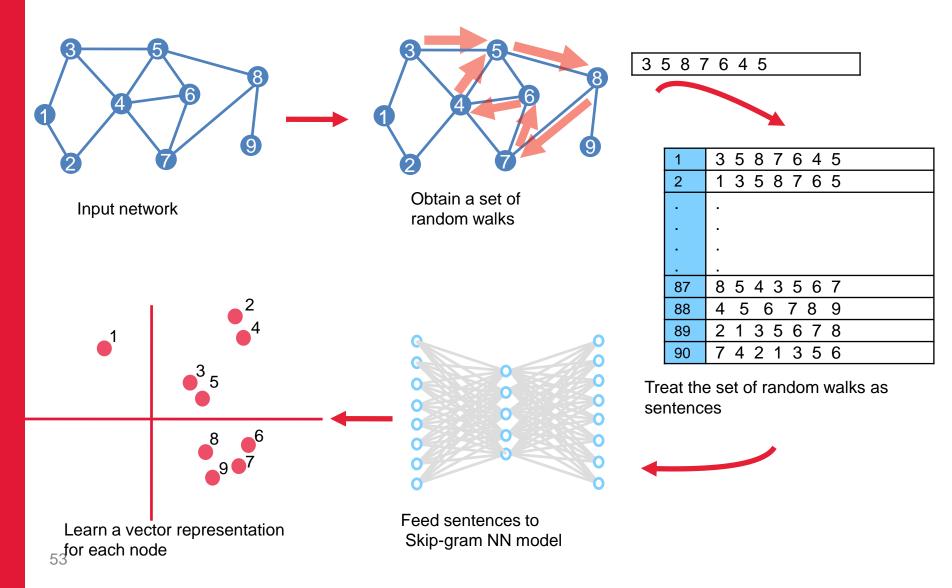


Network

Low-dimension space

several network structural properties can be learned/embedded (nodes, edges, subgraphs, graphs, ...)

Random Walk-based NRL



Random Walk-based NRL

StaticNRL

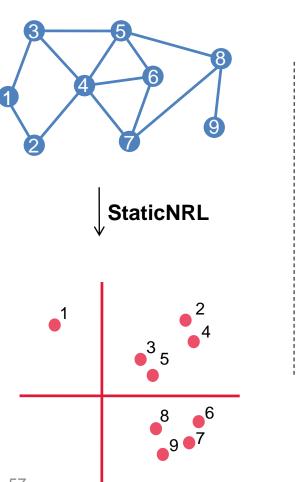
DeepWalk node2vec But...

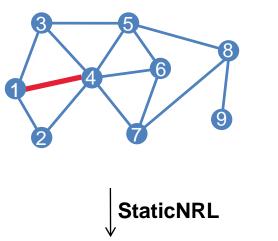
real-world networks are constantly changing

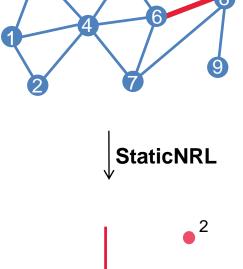
how can we learn representations of an evolving network?

Naive Approach

t = 0

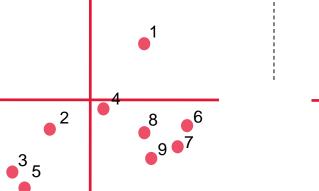




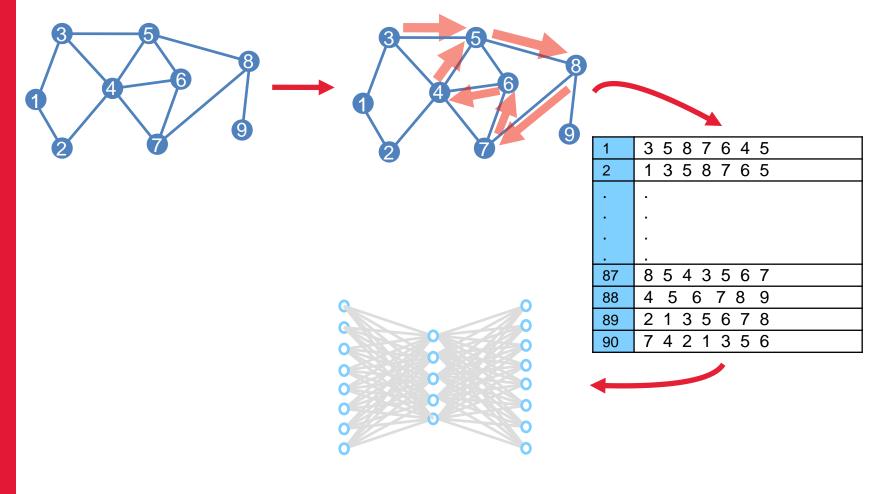


³5

1



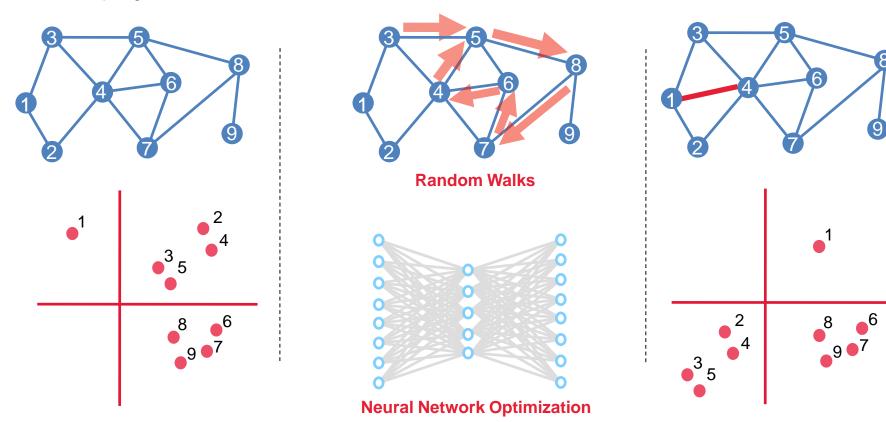
Limitation #1



time expensive

Limitation #2

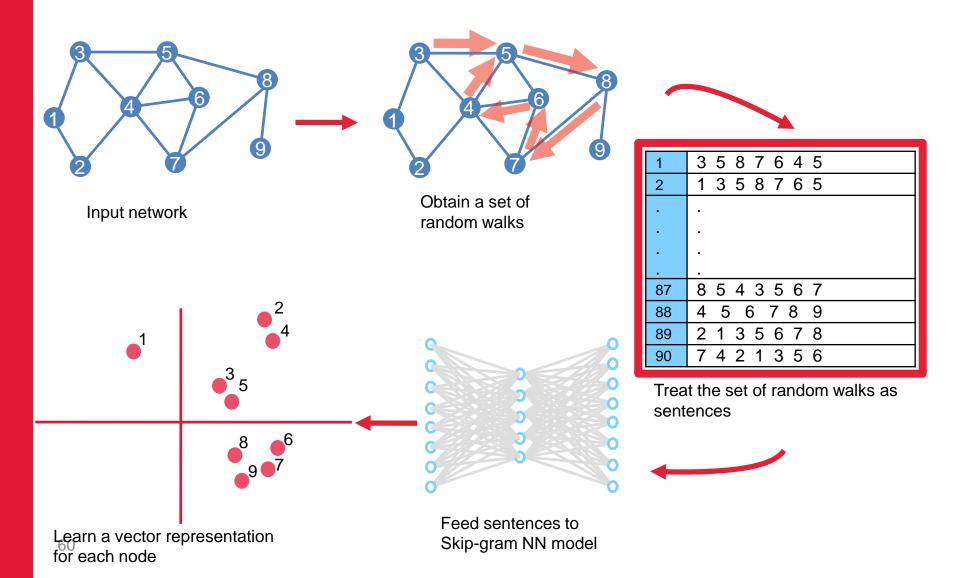
t = 0



t = 1

incomparable representations

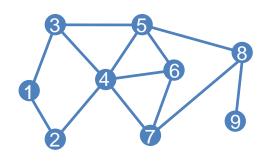
EvoNRL Key Idea



dynamically maintain a set of random walks for every change in the network

Example

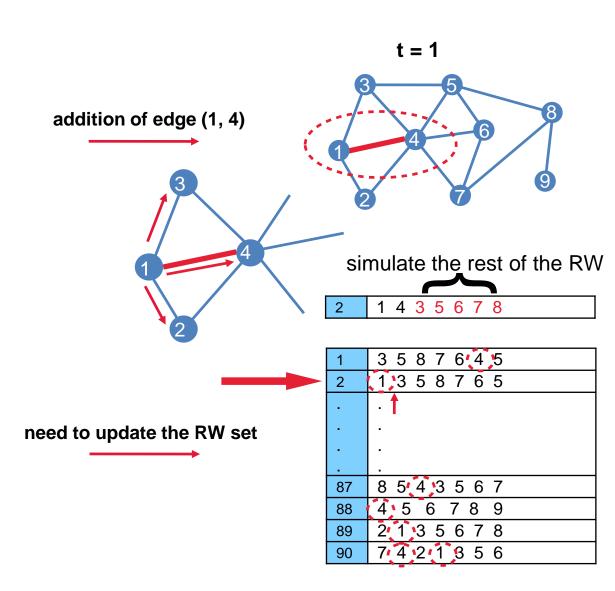
t = 0



1	3 5 8 7 6 4 5
2	1 3 5 8 7 6 5
•	
•	
•	
-	
87	8543567
88	4 5 6 7 8 9
89	2 1 3 5 6 7 8
90	7 4 2 1 3 5 6

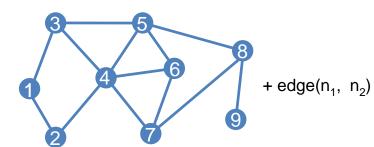
2 5 9 7 6 4 5

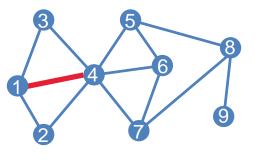
. .



how can we efficiently maintain a set of random walks?

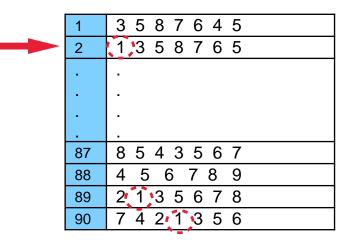
EvoNRL Operations





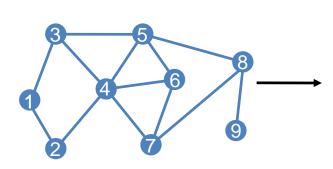
	2	1	4	3	5	6	7	8
--	---	---	---	---	---	---	---	---

1	3 5 8 7 6 4 5
2	1 3 5 8 7 6 5
•	
87	8543567
88	4 5 6 7 8 9
89	2 1 3 5 6 7 8
90	7 4 2 1 3 5 6



Operations on RW Search a node Delete a RW Insert a new RW

EvoNRL Indexing



1	3 5 8 7 6 4 5
2	1 3 5 8 7 6 5
	•
•	•
•	•
87	8543567
88	4 5 6 7 8 9
89	2 1 3 5 6 7 8
90	7 4 2 1 3 5 6



each node is **a keyword** each RW is **a document** a set of RWs is **a collection of documents**

Term	Frequency	Postings and Positions
1	3	< 2, 1 >, < 89, 2 >, < 90, 4 >
2	2	<89, 1>, <90, 3>
3	5	<1, 1>, <2, 1>, <87, 3>, <89, 3>, <90, 5>
4	4	<1, 6>, <87, 3>, <90, 2>
5	9	<1, 2>, <1, 7>, <2, 3>, <2, 7>, <87, 5>, <88, 2>, <89, 4>, <90, 6>
6	6	<1, 5>, <2, 6>, <87, 6>, <88, 3>, <89, 3>, <90, 5>
7	5	<1, 4>, <2, 5>, <87, 7>, <88, 4>, <89, 6>, 90, 7>
8	5	<1, 3>, <2, 4>, <87, 1>, <88, 6>, <89, 7>
9	1	<88, 7>

Evaluation: EvoNRL vs StaticNRL

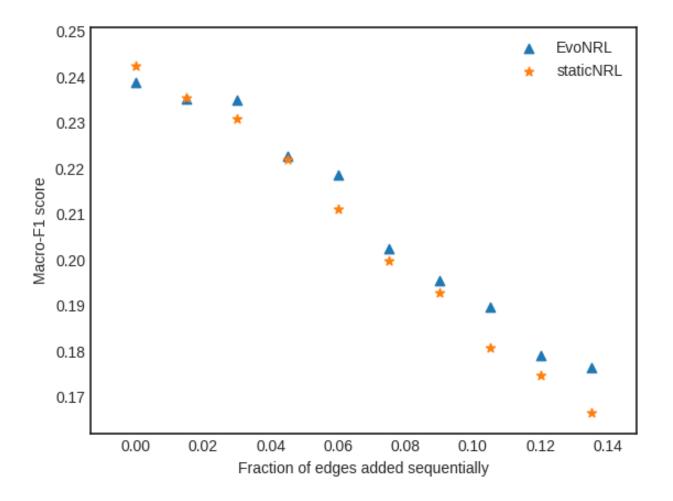
Accuracy

EvoNRL ≈ StaticNRL

Running Time

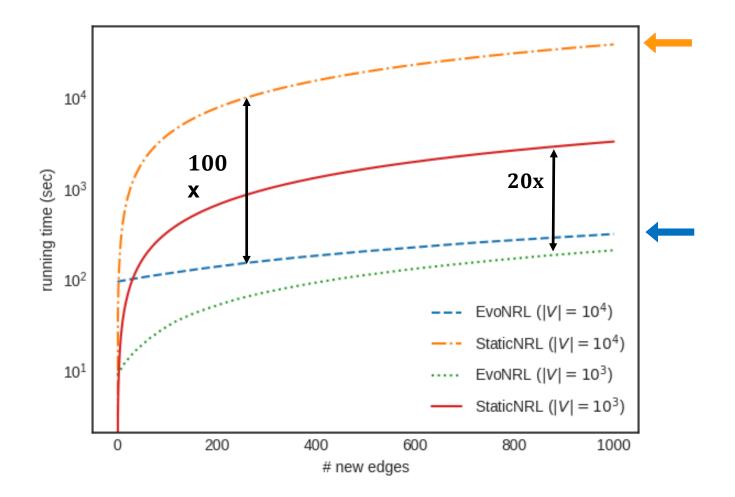
EvoNRL << StaticNRL</p>

Accuracy



EvoNRL has the similar accuracy as StaticNRL

Time Performance



68 EvoNRL performs orders of time faster than StaticNRL

how can we learn representations of an evolving network?

EvoNRL

time efficient accurate generic method Thank you!

Questions?

Credits

Farzaneh Heidari

Tilemachos Pechlivanoglou

Abdullah Sawas

Data Mining Lab @ YorkU

Mahmoud Afifi

Abdullah Abuolaim

References

[IEEE Big Data 2018] Fast and Accurate Mining of Node Importance in Trajectory Networks. Tilemachos Pechlivanoglou, Manos Papagelis. (IEEE Big Data 2018)

[IEEE MDM 2018] Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, Manos Papagelis. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, **best paper award**)

[IEEE MDM 2018] Trajectolizer: Interactive Analysis and Exploration of Trajectory Group Dynamics. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, Manos Papagelis. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, demo)

[Complex Networks 2018] EvoNRL: Evolving Network Representation Learning Based on Random Walks. Farzaneh Heidari, Manos Papagelis. Proceedings of the 7th International Conference on Complex Networks and Their Applications.