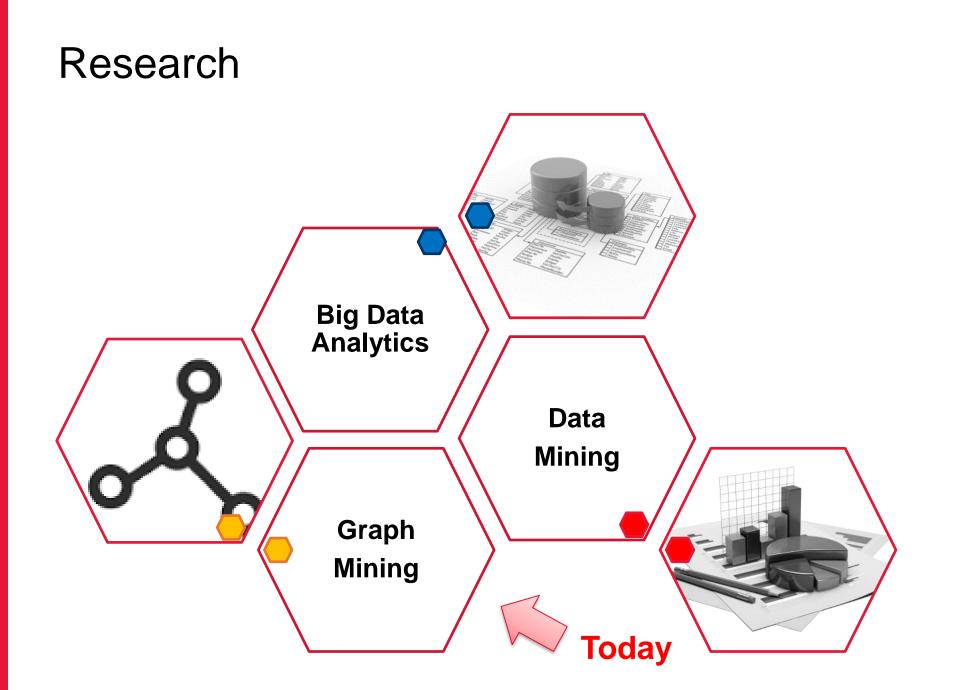
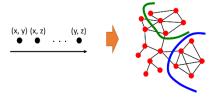


Large-scale Mining of Dynamic Networks

Manos Papagelis York University, Toronto, Canada

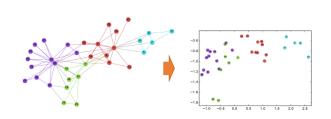


Current Research focus



C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT



B. Machine Learning with Graphs

D. Social Media Mining & Analysis

F. Natural Language Processing

Today's Overview

Trajectory Network Mining

Mining of Node Importance in Trajectory Networks

Evolving Network Mining

 Evolving Network Representation Learning Based on Random Walks

Node Importance in Trajectory Networks

YORK

U N I V E R S I T É U N I V E R S I T Y

I EXIT

Joint work with Tilemachos Pechlivanoglou

Trajectories of moving objects

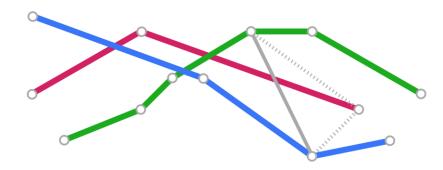
7L13 IL 1

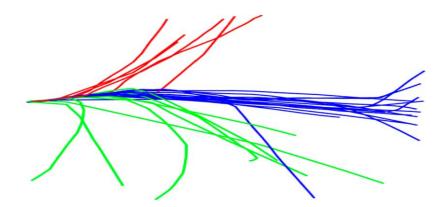
•

•

every moving object, forms a **trajectory** – in **2D** it is a sequence of (**x**, **y**, **t**) there are trajectories of moving **cars**, **people**, **birds**, ...

Trajectory data mining





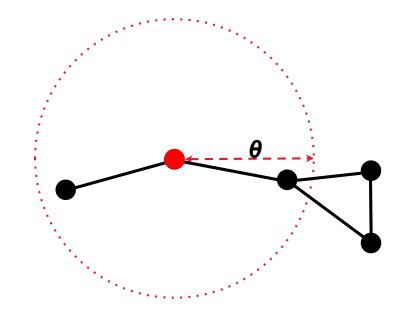
trajectory similarity

trajectory clustering

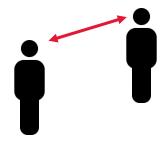
trajectory anomaly detection trajectory pattern mining trajectory classification ...more

we care about network analysis of moving objects

Proximity networks



Distance can represent

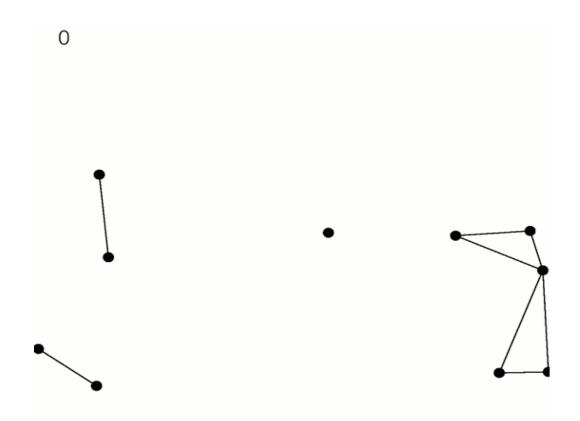


 $(((\bullet)))$

line of sight

wifi/bluetooth signal range

Trajectory networks

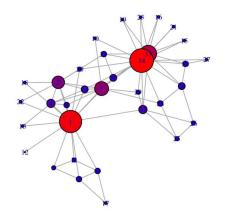


The Problem

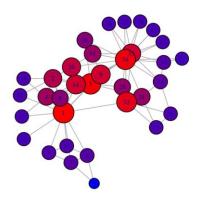
Input: logs of trajectories (**x**, **y**, **t**) in time period [0, T] Output: node importance metrics

Node Importance

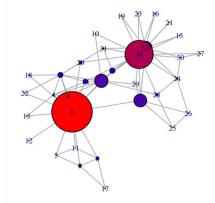
Node importance in static networks



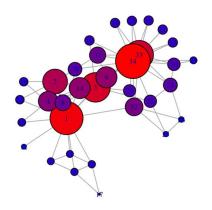
Degree centrality



Closeness centrality

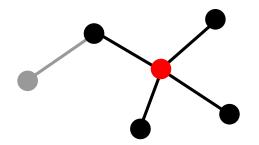


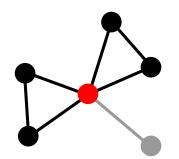
Betweenness centrality



Eigenvector centrality

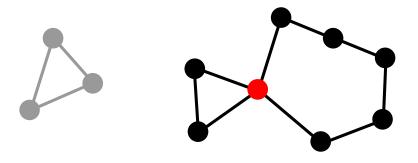
Node importance in TNs





node degree over time

triangles over time

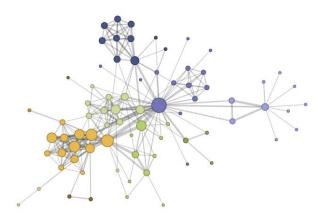


connected components **over time** (connectedness)

Applications

infection spreading

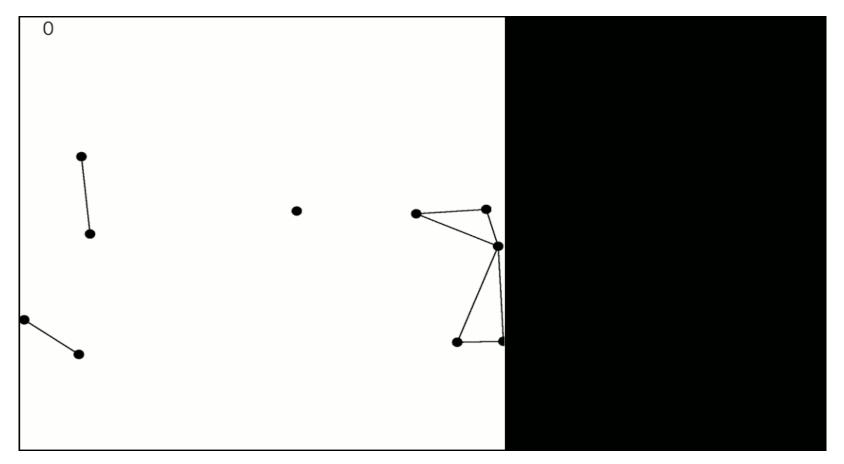
security in autonomous vehicles



rich dynamic network analytics

Evaluation of Node Importance in Trajectory Networks

Naive approach



For **every** discrete time unit t:

- 1. obtain static snapshot of the proximity network
- 2. run static node importance algorithms on snapshot Aggregate results at the end

Streaming approach

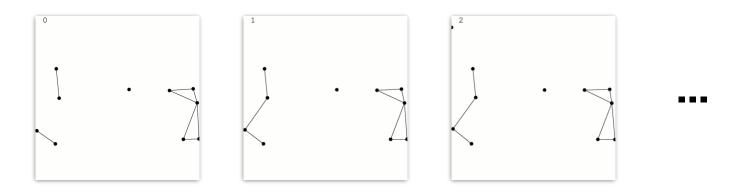
Similar to naive, but:

- no final aggregation
- results calculated incrementally at every step

Still every time unit

Every discrete time unit

time



Sweep Line Over Trajectories (SLOT)

Sweep-line algorithm

A popular computational geometry algorithm

Input

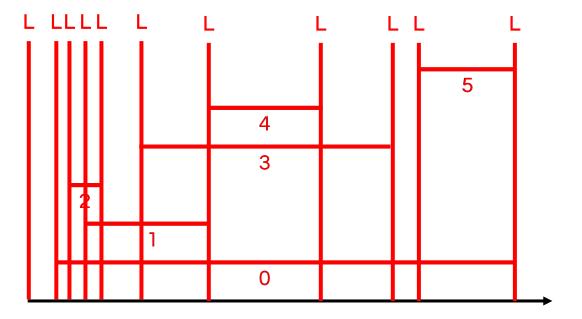
• a set of line segments (in 1D)

Output

- pairs of line segments that intersect
- size of the overlap

Efficient **one pass** algorithm that only processes line segments at the **beginning** and **ending** points

Sweep-line algorithm (1D Example)



(0, 2) (0, 1) (1, 2) (0, 3) (1, 3) (0, 4) (1, 4) (3, 4) (0, 5)

SLOT: Sweep Line Over Trajectories

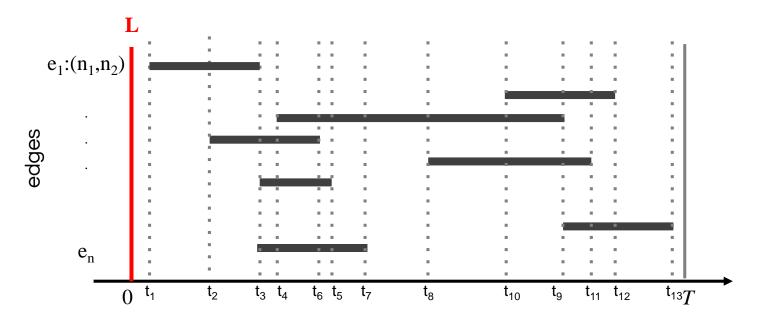
(algorithm sketch)

represent TN edges as time intervals / line segm.

apply variation of sweep line algorithm

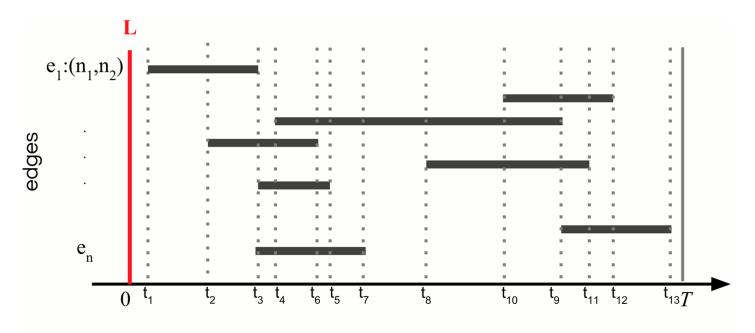
simultaneously compute *node degree, triangle membership, connected components* in **one pass**

Represent edges as time intervals



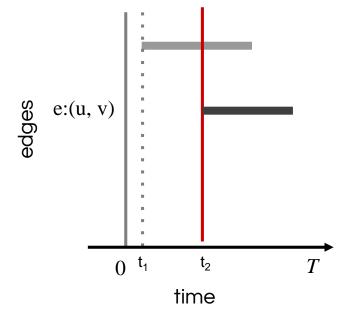
time

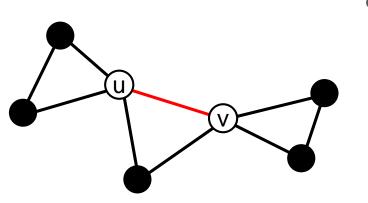
SLOT: Sweep Line Over Trajectories



time

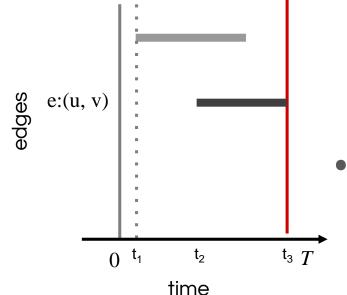
At every edge start

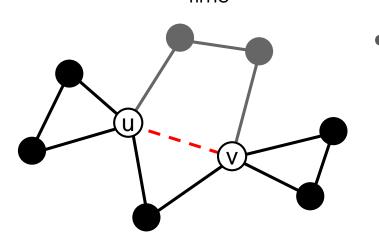




- node degree
 - nodes u, v now connected
 - increment u, v node degrees
- triangle membership
 - did a triangle just form?
 - look for u, v common neighbors
 - increment triangle (u, v, common)
- connected components
 - did two previously disconnected components connect?
 - compare old components of u, v
 - if no overlap, merge them

At every edge stop





- node degree
 - nodes u, v now disconnected
 - decrement u, v degree
- triangle membership
 - did a triangle just break?
 - look for u, v common neighbors
 - decrement triangle (u, v, common)
 - connected components
 - did a conn. compon. separate?
 - BFS to see if **u**, **v** still connected
 - if not, split component to two

SLOT: At the end of the algorithm ...

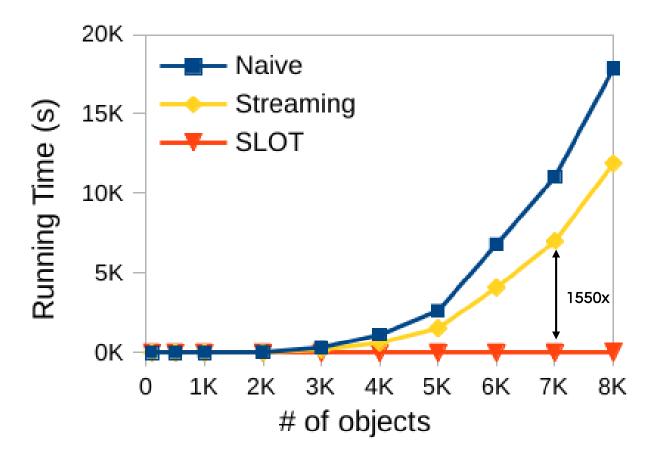
Rich Analytics

- node degrees: start/end time, duration
- triangles: start/end time, duration
- connected components: start/end time, duration

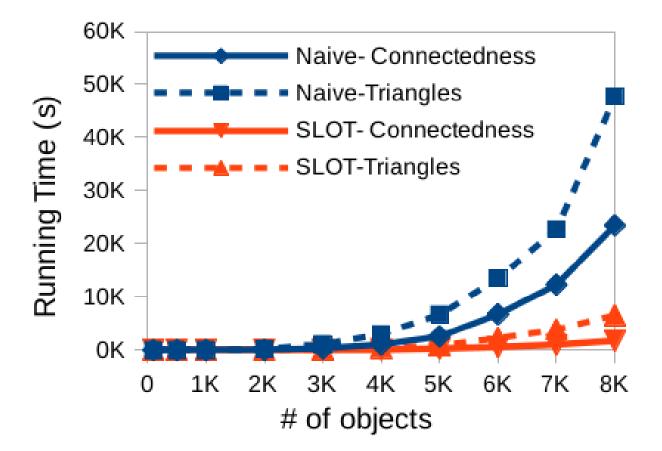
Exact results (not approximations)

Evaluation of SLOT

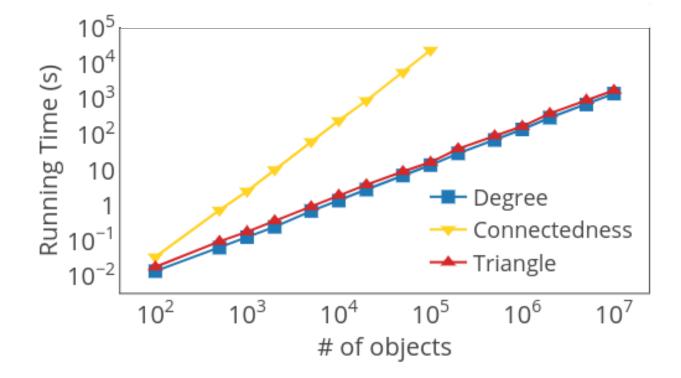
Node degree

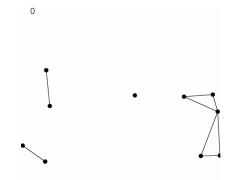


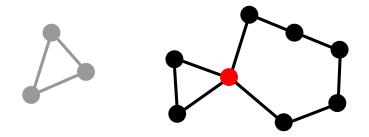
Triangle membership / connected components



SLOT Scalability

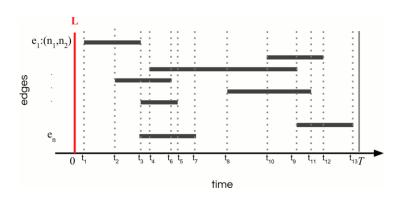






trajectory networks

network importance over time



SLOT properties:

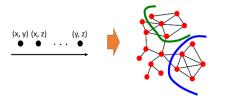
- fast
- exact
- scalable

SLOT algorithm

Seagull migration trajectories

Current Research focus

A. Trajectory Data Mining



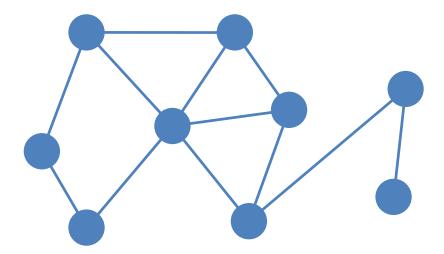
C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT

D. Social Media Mining & Analysis

F. Natural Language Processing

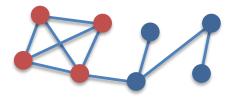
Joint work with Farzaneh Heidari



networks

(universal language for describing complex data)

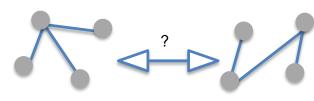
Classical ML Tasks in Networks

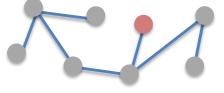


community detection

link prediction

M





triangle count

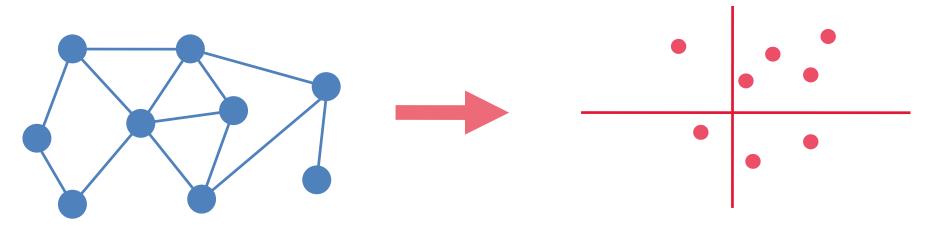
graph similarity

anomaly detection

Limitations of Classical ML:

- expensive computation (high dimension computations)
- extensive domain knowledge (task specific)

Network Representation Learning (NRL)



Network

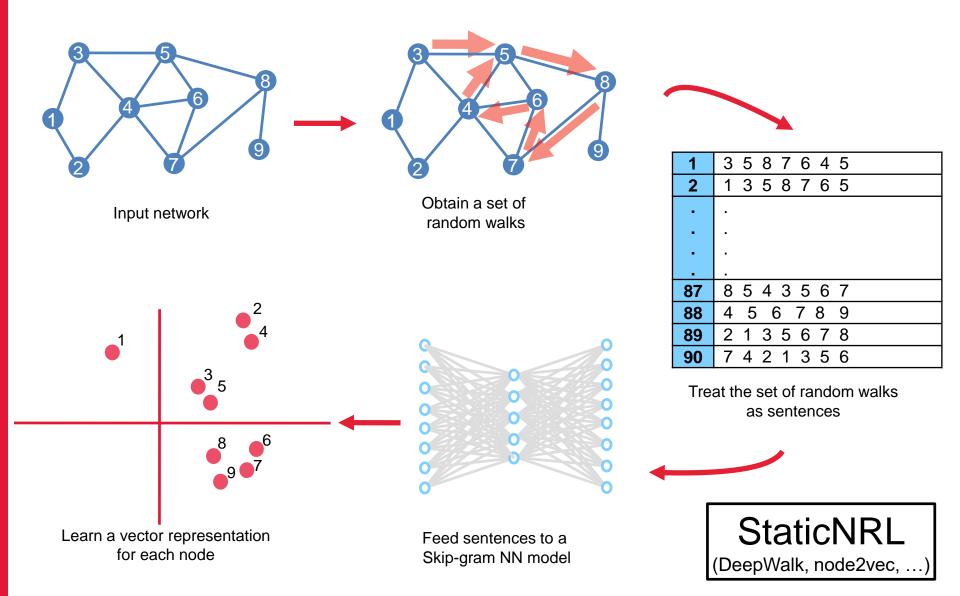
Low-dimension space

several network structural properties can be learned/embedded (nodes, edges, subgraphs, graphs, ...)

Premise of NRL:

- faster computations (low dimension computations)
- agnostic domain knowledge (task independent)

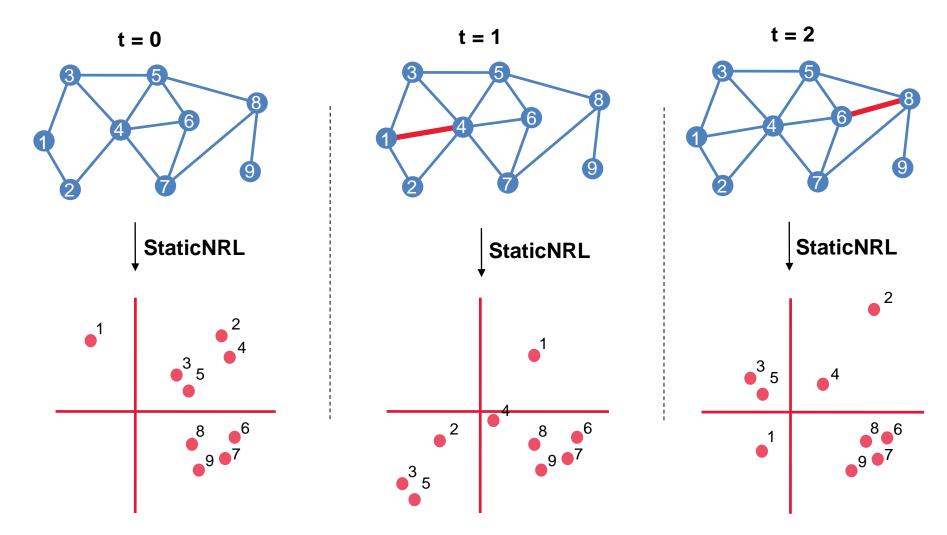
Random Walk-based NRL



but real-world networks are constantly evolving

Evolving Network Representations Learning

Naive Approach



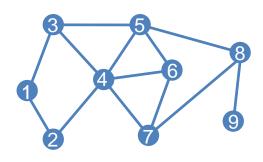
Impractical (expensive, incomparable representations)

EvoNRL Key Idea



Example: Edge Addition

t = 0



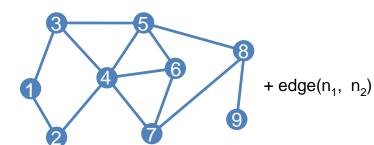
1	3 5 8 7 6 4 5	
2	1 3 5 8 7 6 5	
-		٦
-		
-		
-		
87	8543567	
88	4 5 6 7 8 9 8	٦
89	2 1 3 5 6 7 8	
90	7 4 2 1 3 5 6	

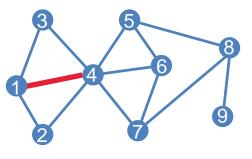
t = 1 addition of edge (1, 4) simulate the rest of the RW 1 4 3 5 6 7 8 3 5 8 7 6 4 5 1358765 2 need to update the RW set 87 8 5 4 3 5 6 7 88 15 7898 6 2,1,3,5,6,7,8 89 7 4 2 1 3 5 6 90

similarly for edge deletion, node addition/deletion

Efficiently Maintaining a Set of Random Walks

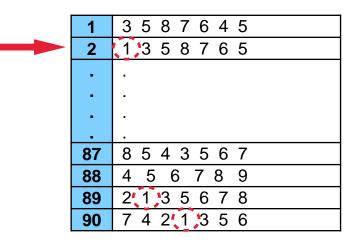
EvoNRL Operations





|--|

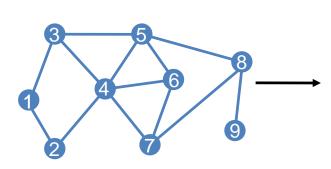
1	3 5 8 7 6 4 5
2	1 3 5 8 7 6 5
•	
•	
•	
87	8543567
88	4 5 6 7 8 9
89	2 1 3 5 6 7 8
90	7 4 2 1 3 5 6



Operations on RW Search a node Delete a RW Insert a new RW

need for an efficient indexing data structure

EvoNRL Indexing



1	3 5 8 7 6 4 5	
2	1 3 5 8 7 6 5	
•		
-		
-		
-		
87	8543567	
88	4 5 6 7 8 9	
89	2 1 3 5 6 7 8	
90	7 4 2 1 3 5 6	



each node is **a keyword** each RW is **a document** a set of RWs is **a collection of documents**

Term	Frequency	Postings and Positions
1	3	< 2, 1 >, < 89, 2 >, < 90, 4 >
2	2	<89, 1>, <90, 3>
3	5	<1, 1>, <2, 1>, <87, 3>, <89, 3>, <90, 5>
4	4	<1, 6>, <87, 3>, <90, 2>
5	9	<1, 2>, <1, 7>, <2, 3>, <2, 7>, <87, 5>, <88, 2>, <89, 4>, <90, 6>
6	6	<1, 5>, <2, 6>, <87, 6>, <88, 3>, <89, 3>, <90, 5>
7	5	<1, 4>, <2, 5>, <87, 7>, <88, 4>, <89, 6>, <90, 7>
8	5	<1, 3>, <2, 4>, <87, 1>, <88, 6>, <89, 7>
9	1	<88, 7>

Evaluation of EvoNRL

Evaluation: EvoNRL vs StaticNRL

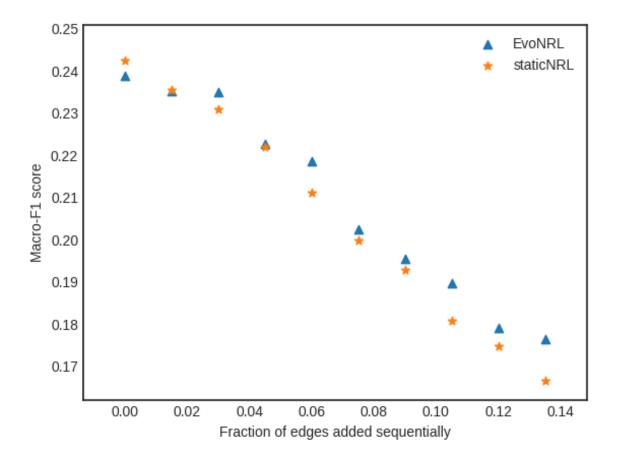
Accuracy

EvoNRL ≈ StaticNRL (at each timestep)

Running Time

EvoNRL << StaticNRL (at each timestep)

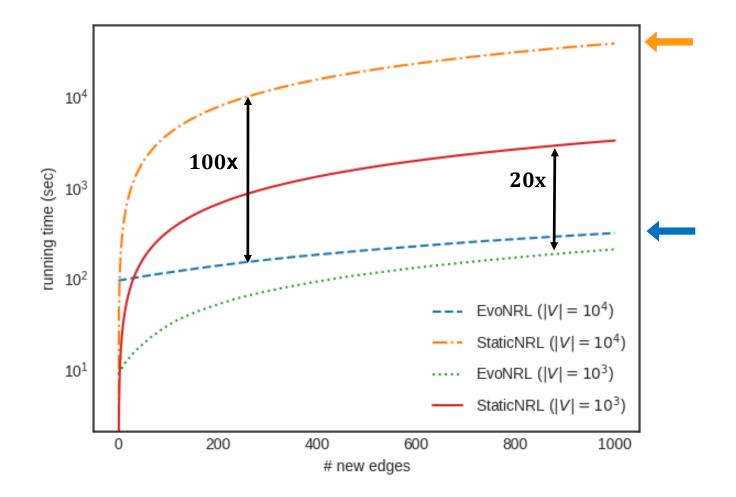
Accuracy: edge addition



EvoNRL has similar accuracy to StaticNRL

(similar results for edge deletion, node addition/deletion)

Time Performance



EvoNRL performs orders of time faster than StaticNRL

how can we learn representations of an evolving network?

EvoNRL

time efficient accurate generic method

Credits

Farzaneh Heidari

[Applied Network Science, Vol. 5, No. 18, 2020] Evolving Network Representation Learning Based on Random Walks. Farzaneh Heidari & Manos Papagelis.

[Complex Networks 2018] EvoNRL: Evolving Network Representation Learning Based on Random Walks. Farzaneh Heidari & Manos Papagelis.

code: https://github.com/farzana0/EvoNRL/

Tilemachos Pechlivanoglou

[IEEE BigData 2018] Fast and Accurate Mining of Node Importance in Trajectory Networks. Tilemachos Pechlivanoglou & Manos Papagelis.

code: <u>https://github.com/tipech/trajectory-networks</u>

See also extensions:

[IEEE ICDM 2019] Efficient Mining and Exploration of Multiple Axisaligned Intersecting Objects. Tilemachos Pechlivanoglou, Vincent Chu & Manos Papagelis.

[IEEE DSAA 2020] MRSweep: Distributed In-Memory Sweep-line for Scalable Object Intersection Problems. Tilemachos Pechlivanoglou, Mahmoud Alsaeed & Manos Papagelis. Thank you!

Questions?

Working with Us

Data Mining Lab @ YorkU

http://dminer.eecs.yorku.ca

Members

- Faculty Members
 - Prof. Aijun An, Prof. Manos Papagelis
- High Quality Personnel (HQP)

~5 Postdocs, ~6 PhDs, ~8 MSc, ~3 Undergrads, ~1 staff

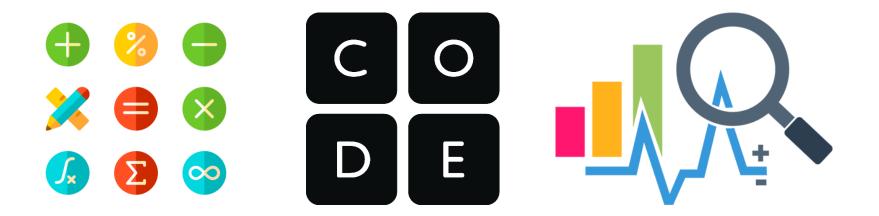
Lab Mandate

- Conduct basic research in the area of data mining/ML
- Equip HQP with theoretical knowledge & practical experience
- Knowledge transfer to industry

Research Area

 data mining, graph mining, machine learning, natural language processing (NLP), big data analytics

What We Are Looking For?



(solid) Math & Stat (solid) Programming

(interest in) Data Mining & ML

About you?

Contact: Manos Papagelis papaggel@eecs.yorku.ca www.eecs.yorku.ca/~papaggel