Mobility-based Models of Epidemic Spreading

Tilemachos Pechlivanoglou, Jing Li, Jialin Sun, Gian Alix, Nina Yanin, Farzaneh Heidari, Manos Papagelis

Presenter: Manos Papagelis

YorkU LAMPS Lab Invited Talk, Nov 2021

Background and Motivation

Covid-19 (a global pandemic)

containment measures physical **distancing** business, social life **lockdown**

side effects economic downturn psychological well-being

need for more moderate contact-reduction policies

Mechanism of infectious disease spreading

5 Source: Matt Crooks, towards data science

Revisiting epidemic concepts

reproductive number

compartmental models (population-based) offline contact tracing

Basic reproductive number (R_o)

The **expected** number of people that an individual infects

 $R_0 < 1$ infection dies out $R_0 > 1$ infection persists

 $R_0 = p \times k$

p: transmission probability **k**: number of contacts

Ebola: 1.6-2

Beyond R0

(unrealistic) assumptions of R0

homogeneous population: all individuals are equally susceptible full population mixing: all individuals are equally likely to come into contact with each other

more realistic epidemic models need to integrate heterogeneity of individuals, e.g., different contact patterns monitor actual contacts of individuals

Offline contact tracing (through interviews)

time-consuming
resource-intensive
lack of accuracy

Digital contact tracing

Enabled by mobile apps, geolocation devices, etc.

- ✓ addresses limitations of traditional contact tracing
- × privacy concern

Compartmental models

SIR model

Time $t = \blacksquare$

Probability of being infected - β

Probability of recovering - γ

Individual-based models

mobility network / contact network

nodes: individuals **edges**: social interaction **contagion**: stochastic infection due to spatial proximity

Motivation

reproductive number

very simple
 assumes full mixing
 ignores heterogeneity of individuals

compartmental

- learning transition
 probabilities (as a group)
- X ignores heterogeneity of individuals

individual-based

- ✓ best reflection of real life
- monitor individual transition between compartments
- X requires extensive, very detailed data

focus of this research

Today's Overview

- Epidemic Spreading in Trajectory Networks
- Microscopic Modeling of Spatiotemporal Epidemic Dynamics

They offer two complementary approaches

Epidemic Spreading in Trajectory Networks

YORK U

Tilemachos Pechlivanoglou, Jing Li, Jialing Sun, Farzaneh Heidari, Manos Papagelis

Research Questions

RQ1: How to take (mobility) heterogeneity into account?

model **relative risk** of individuals as a factor of **their contacts** over time

RQ2: How to model epidemic spreading?

model epidemic spreading as **cascading** process in **dynamic spatiotemporal networks**

RQ3: How to contain an epidemic?

design **targeted network interventions** that aim at containing/controlling the contagious process

Problem Statement

The Problem

Input

• Historical data of individual trips (trajectories)

Output

- Assess the relative risk of infection of individuals
- Assess the size of a disease outbreaks due to specific individuals
- Assess the impact of targeted non-pharmaceutical intervention strategies
- Provide support to health policy-making

Methodology

Trajectories of individuals

Proximity network

Trajectory network

Modeling risk of infection

Three (3) methods for measuring risk of infection

1+1+1+1 = 4

5+1+2+12 = 20

 $\beta = 0.1$ 4-0.9⁵-0.9¹-0.9²-0.9¹² \cong 1.4

(1) # of contacts (node degree)

(2) total contact time

(3) sum of contact times in geometric function

 intuitive
 doesn't consider time spent in contact considers contact timeX long contacts skew result

 considers contact time
 very long contacts don't count as much

Modeling epidemic spreading

Simulating disease spreading on a trajectory network

we employ a stochastic agent-based SEIR network model

Each node (person) has a $p_{u,v}$ chance to infect their neighbors

 $p_{u,v} = 1 - (1 - \beta)^k$

where

β: transmission probability **k**: duration (in timesteps)

Disease spreading

Timestamp: 1

0

Disease spreading

Targeted network interventions

Intervention policy 1 (centralized): node immunization

Givletendolse opplytostor of the guides t

Intervention policy 2A (individual): avoiding high-risk contacts

Seffect Blag and febraic and febraic veetige bore hop rised ge

Intervention policy 2B (individual): maintaining a "social bubble"

For every model predeceded by commbred east acts (tricengtes in a cts mon)

Experimental results

Pedestrian simulation data

map: YorkU campus map
(from OpenStreetMap)

trips: random individual trips based on **daily activity patterns** (with SUMO)

granularity level: min-by-min movement of 10k pedestrians over 30 days (with SUMO)

mobility network: spatiotemporal network (10k nodes, ~56M edges)

Modeling real-world activity patterns

distribution of activity levels

hourly activity

activity level

Synthetic Data Generator

Simulation of Urban MObility (SUMO)

- designed for traffic/ pedestrian flow prediction
- supports real map analysis

Distribution of relative risks of individuals

rrisk_u⁽³⁾ more smooth a 3x higher risk than b

Outbreaks due to "seed" nodes belonging to different risk groups

Direct vs secondary infections

Ro distribution of individuals

Intervention 1 vs null model (same # of random edges removed)

node immunization

Intervention 2A vs null model

avoiding high-risk contacts

Intervention 2B vs null model

maintaining a "social bubble"

SEIR progress ($\alpha = 20\%$)

infections for varying α

Comparison of interventions

Takeaway

Microscopic Modeling of Spatiotemporal Epidemic Dynamics

Tilemachos Pechlivanoglou, Gian Alix, Nina Yanin, Jing Li, Farzaneh Heidari, Manos Papagelis

YORK U

Presenter: Manos Papagelis

November 2021

Problem Statement

The Problem

Input

Historical data of individual trips (trajectories)

Output

- Assess the relative risk of infection of individuals
- Assess the relative risk of infection of geographic areas and points-of-interest (POIs)
- Assess the risk of infection of a (pedestrian) trip in an urban environment
- Recommend alternative trips that mitigate the risk of infection
- Assess the impact of targeted non-pharmaceutical intervention strategies
- Provide support to health policy-making

Methodology

Trajectories of individuals

Geographic area tessellation

We define **blocks** by applying plane tessellation using a hexagonal grid (**honeycomb**)

Block risk of infection

Block infection risk (1/2)

21.13 HL 1

What is the risk of infection of a **block**?

How they compare to each other?

Block infection risk (2/2)

the risk **brisk(b, t)** of a **block b** at **time t** is a function of the **#pairs of individuals** in **b** at **t** the risk **brisk**_b is the average risk of a block over an observation period

Risk map example (overlay of a geographic area)

Individual risk of infection

Individual infection risk (1/2)

What is the risk of infection of an **individual**?

How they compare to each other?

Individual infection risk (2/2)

the risk **risk**_u of an individual is a function of the risks **brisk**_b of all **blocks traversed**

YORK

Point-of-interest (POI) risk of infection

Multi-block: POI-based hierarchical block aggregation

Point-of-interest (POI) risk of infection

Pedestrian trip risk of infection

Blocks and trips

Pedestrian trip risk of infection (1/3)

Pedestrian trip risk of infection (2/3)

Pedestrian trip risk of infection (3/3)

Pedestrian trip recommendation

Pedestrian trip recommendation

(a)

Pedestrian trip recommendation model

distance travel time infection risk

Risk-based trip/POI recommendation

Path Recommender	PC Recom	9I mender	Searched Results
OSRM	l	Gr	ass Hopper
Find a destination:			
Drive	W	alk	Bike
175 Hilda Avenue			
Finch Station			
eave now			
\bigcirc leave	yyyy-m	m-dd,	: 🗖
Submit]		

Input: Query

Output: Recommended Trips/POIs

Origin-destination trip recommendation

Input: Query (origin, destination, time)

Output: risk-based trip recommendation

POI recommendation example

Input: Query (POI type, radius, time)

Output: risk-based POI recommendation

Modeling epidemic spreading

Infectious disease spreading

assumptions

- SIR model: Susceptible, Infectious and Recovered
- seed nodes: some people are infected at time 0

Stochastic modeling of infectious disease spreading (1/2)

YORK

Stochastic modeling of infectious disease spreading (2/2)

YORK

Experimental results

Experimental Scenarios

Q1 Effect of POI visitor distribution on risk

Q2 Effect of POI visitor distribution, occupancy and initial infected seed size on direct infections

Q3 Impact of targeted and non-targeted intervention strategies

Q4 Impact of recommendation policy

Q1 Effect of POI visitor distribution on risk

Q2 Effect of POI visitor distribution, occupancy and initial infected seed size on direct infections

YORK

Q3 Impact of targeted and non-targeted intervention strategies

Q4 Impact of recommendation policy

Takeaway

• •

Low

→ High

risk maps

risk of trips

hierarchical modeling

trip recommendations

Credits

Tilemachos Pechlivanoglou

Jing Li

Gian Alix

Epidemic Spreading in Trajectory Networks.

T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, M. Papagelis. **Big Data Research** (BDR, Vol. 27, 100275, pp 1-15, 2022).

Microscopic Modeling of Spatiotemporal Epidemic Dynamics. T. Pechlivanoglou, G. Alix, N. Yanin, J. Li, F. Heidari, M. Papagelis. Submitted.

Jialin Sun

Nina Yanin

Farzaneh Heidari

Thank you!

Questions?

