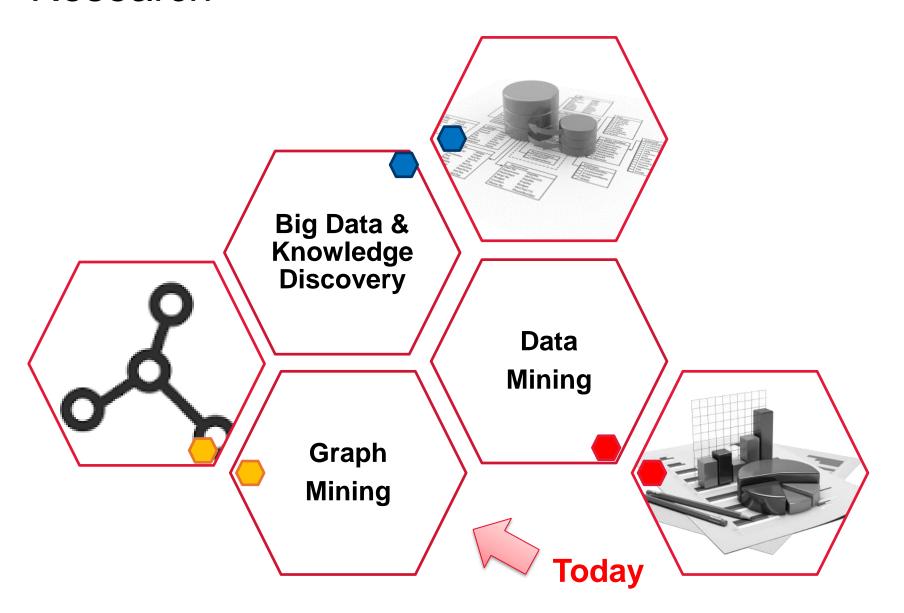
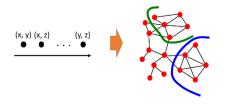


Background

Research

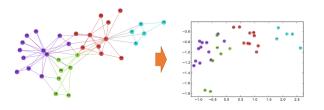


Current Research focus



C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT



B. Network Representation Learning

D. Social Media Mining & Analysis

F. Natural Language Processing

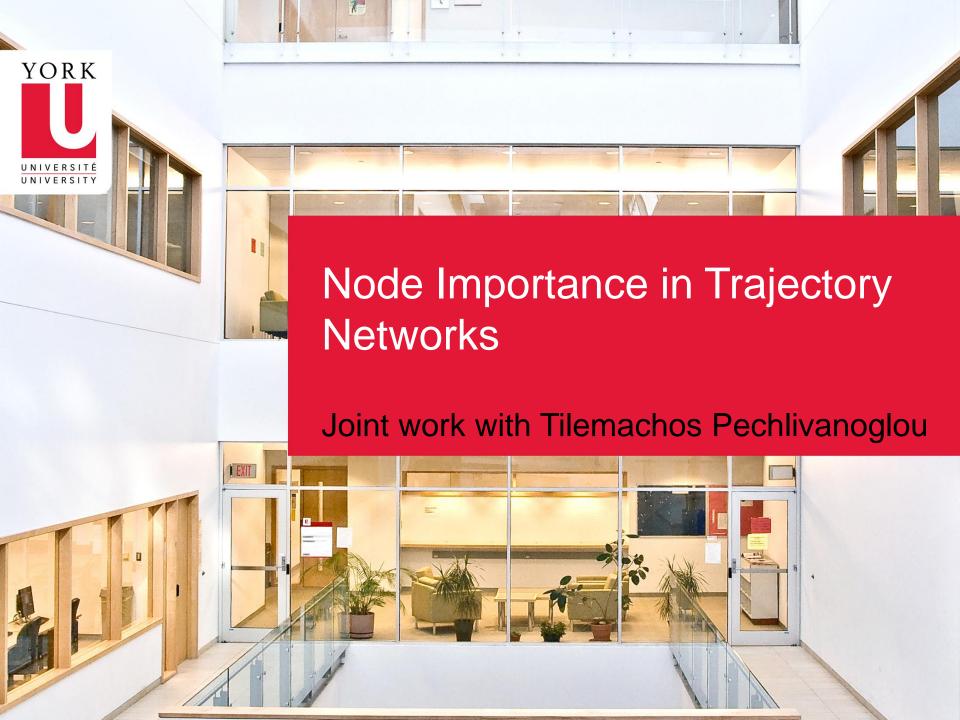
Today's Overview

Trajectory Network Mining

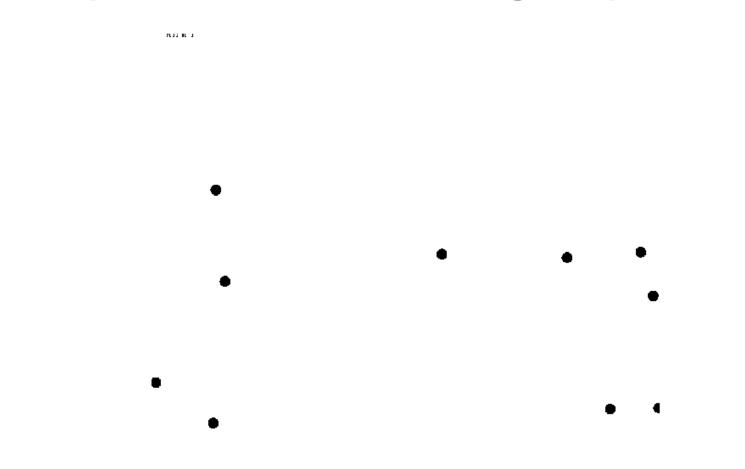
- Mining of Node Importance in Trajectory Networks
- Group Pattern Discovery of Pedestrian Trajectories

Evolving Network Mining

 Evolving Network Representation Learning Based on Random Walks

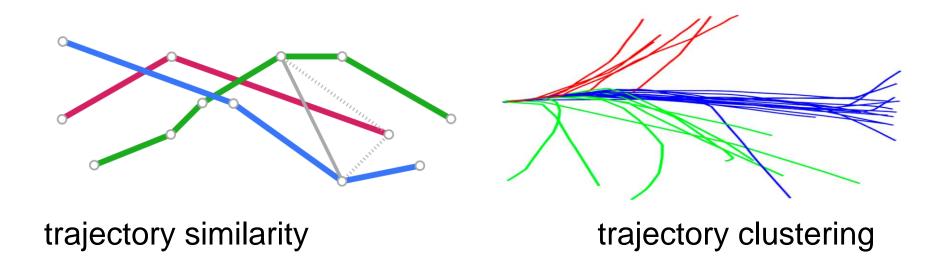


Trajectories of moving objects



every moving object, forms a **trajectory** – in **2D** it is a sequence of (**x**, **y**, **t**) there are trajectories of moving **cars**, **people**, **birds**, ...

Trajectory data mining

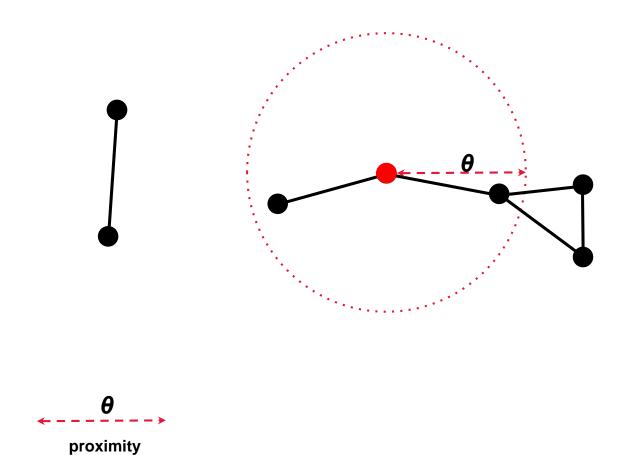


trajectory anomaly detection trajectory pattern mining trajectory classification ...more

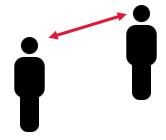
we care about network analysis of moving objects

Proximity networks

threshold



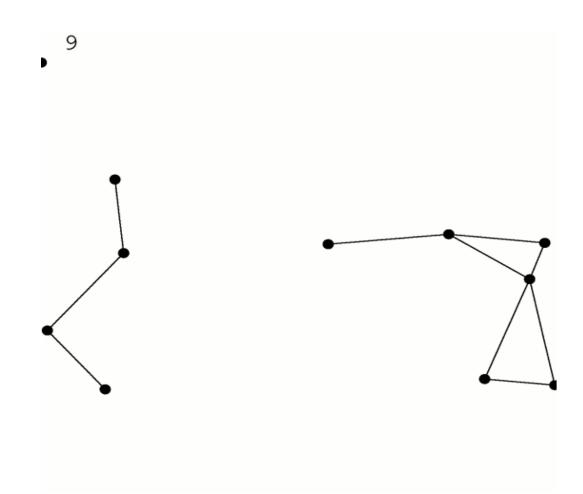
Distance can represent



line of sight

wifi/bluetooth signal range

Trajectory networks



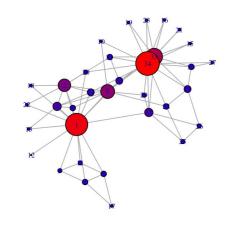
The Problem

Input: logs of trajectories (**x**, **y**, **t**) in time period [0, T]

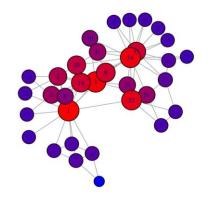
Output: node importance metrics

Node Importance

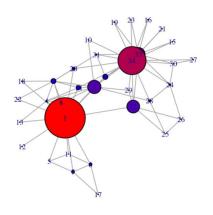
Node importance in static networks



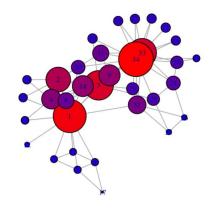
Degree centrality



Closeness centrality

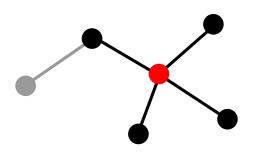


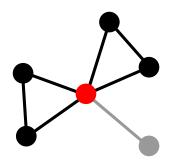
Betweenness centrality



Eigenvector centrality

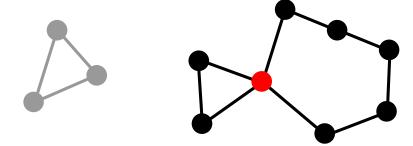
Node importance in TNs





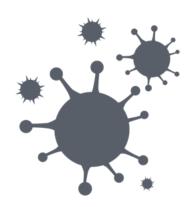
node degree over time

triangles over time



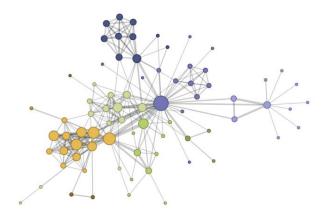
connected components **over time** (connectedness)

Applications



infection spreading

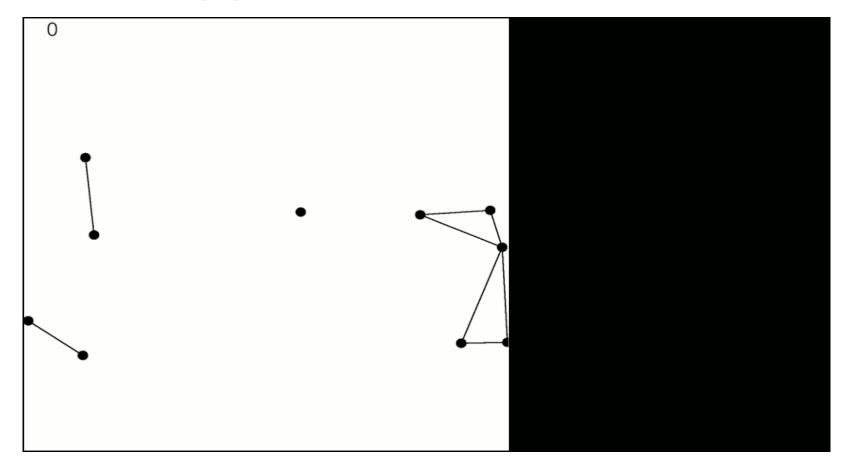
security in autonomous vehicles



rich dynamic network analytics

Evaluation of Node Importance in Trajectory Networks

Naive approach



For **every** discrete time unit t:

- 1. obtain static snapshot of the proximity network
- 2. run **static** node importance **algorithms** on snapshot **Aggregate** results at the end

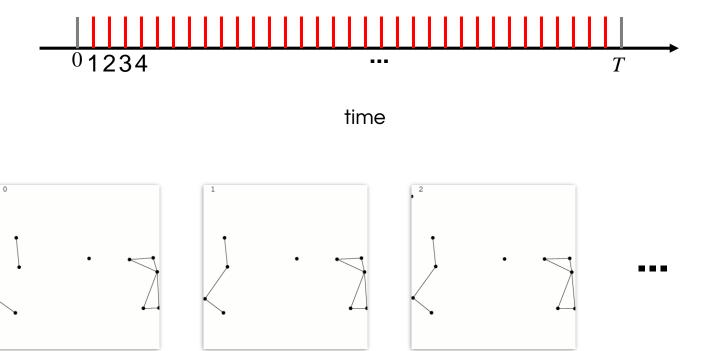
Streaming approach

Similar to naive, but:

- no final aggregation
- results calculated **incrementally** at every step

Still every time unit

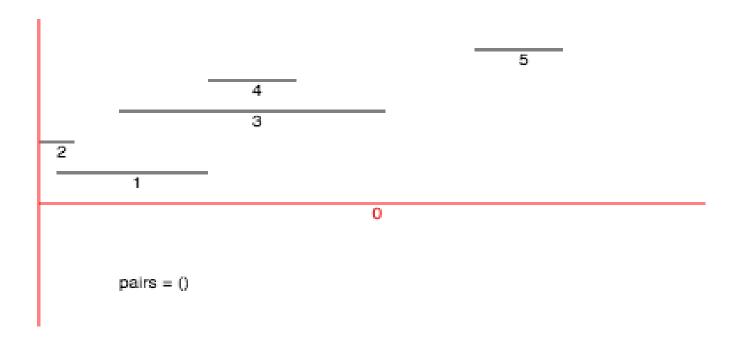
Every discrete time unit



Sweep Line Over Trajectories (SLOT)

Sweep line algorithm

A computational geometry algorithm that given line segments computes line segment overlaps



Efficient **one pass** algorithm that only processes line segments at the **beginning** and **ending** points

SLOT: Sweep Line Over Trajectories

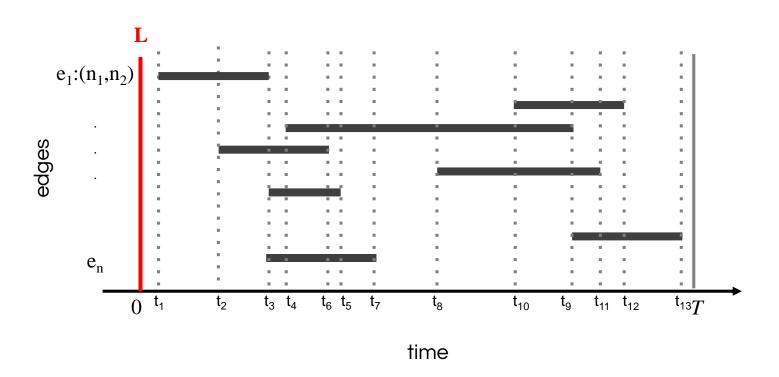
(algorithm sketch)

represent TN edges as time intervals

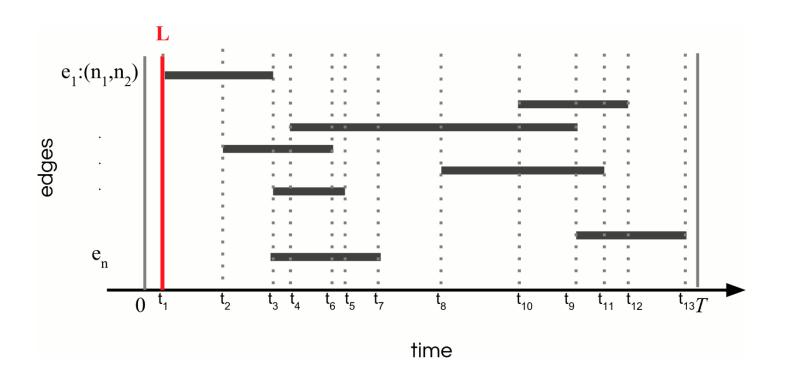
apply variation of sweep line algorithm

simultaneously compute *node degree, triangle membership, connected components* in **one pass**

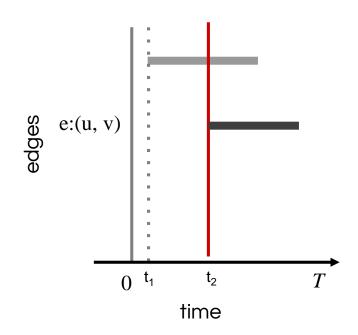
Represent edges as time intervals

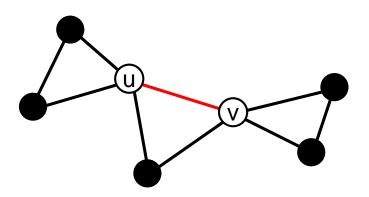


SLOT: Sweep Line Over Trajectories



At every edge start





node degree

- nodes u, v now connected
- increment u, v node degrees

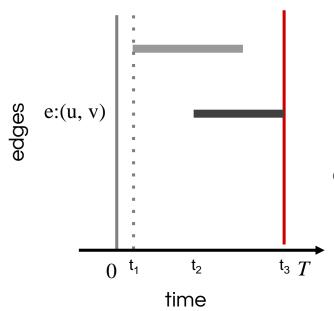
triangle membership

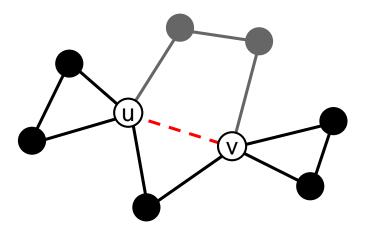
- did a triangle just form?
- look for u, v common neighbors
- increment triangle (u, v, common)

connected components

- did two previously disconnected components connect?
- compare old components of u, v
- if no overlap, merge them

At every edge stop





node degree

- nodes u, v now disconnected
- decrement u, v degree

triangle membership

- did a triangle just break?
- look for u, v common neighbors
- decrement triangle (u, v, common)

connected components

- did a conn. compon. separate?
- BFS to see if u, v still connected
- if not, split component to two

SLOT: At the end of the algorithm ...

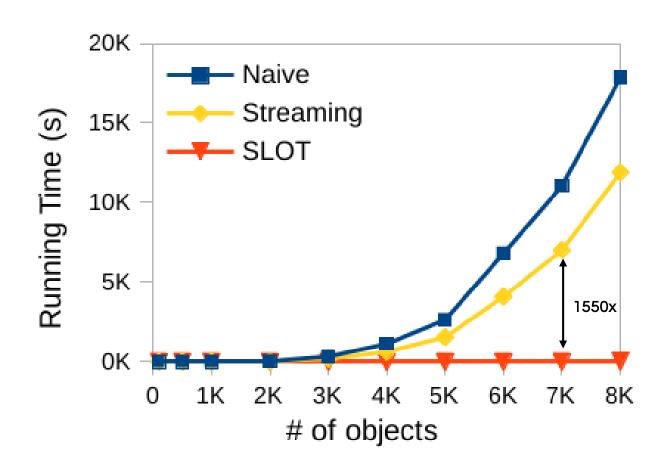
Rich Analytics

- node degrees: start/end time, duration
- triangles: start/end time, duration
- connected components: start/end time, duration

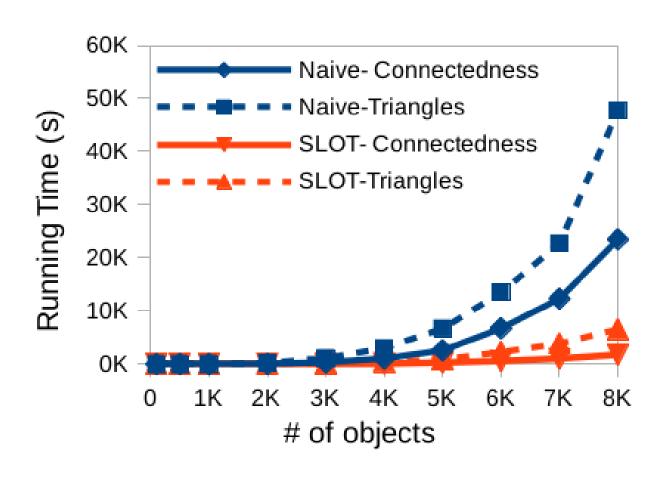
Exact results (not approximations)

Evaluation of SLOT

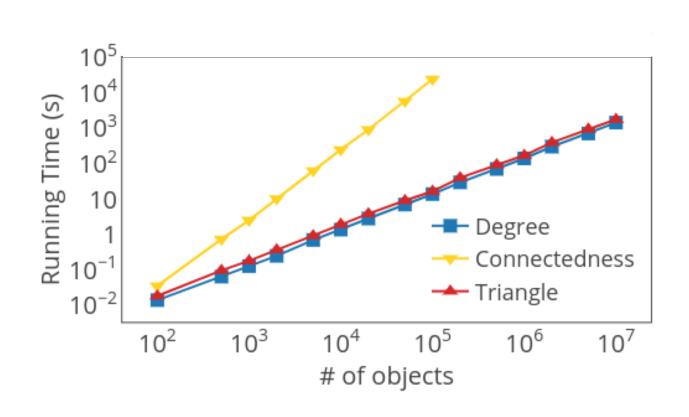
Node degree



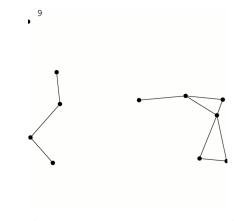
Triangle membership / connected components



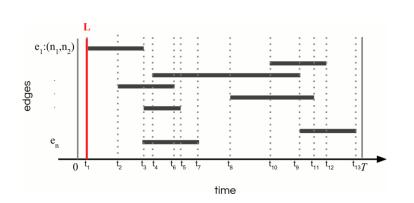
SLOT Scalability



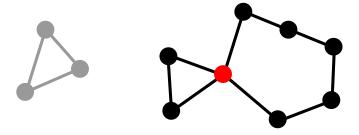
Takeaway



trajectory networks



SLOT algorithm



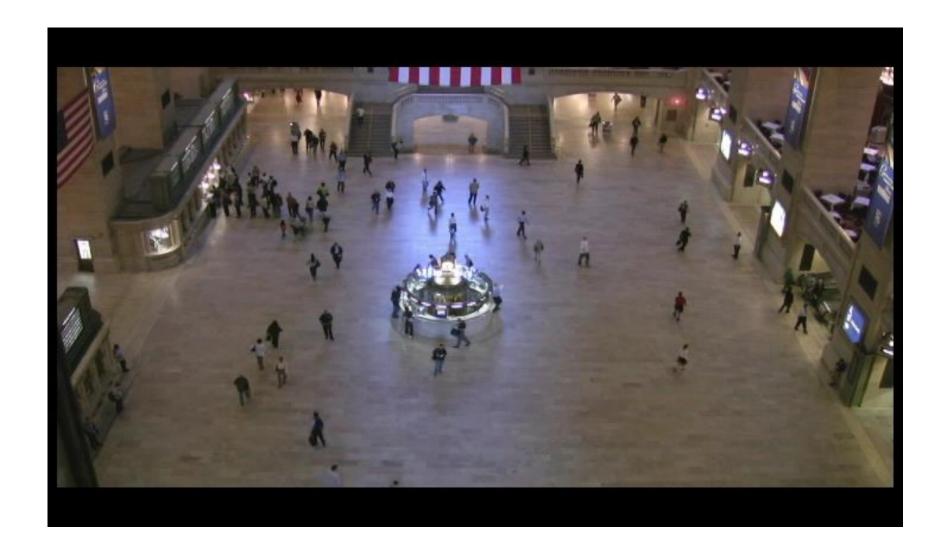
network importance over time

SLOT properties:

- fast
- exact
- scalable

Seagull migration trajectories

Pedestrian trajectories

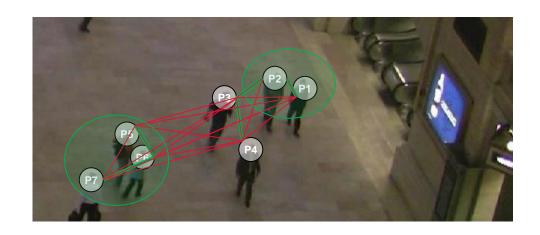


what is a group?

many definitions, many algorithms

Finding pedestrian groups

Local Grouping
Intuitive method
Spatial-only



proximity threshold
$$\vdash \theta$$

key idea

find **pairs** of pedestrians x, y where **distance**(x, y) < θ expand **pairs** to discover **groups**

Local grouping

expand the key idea to include the time dimension

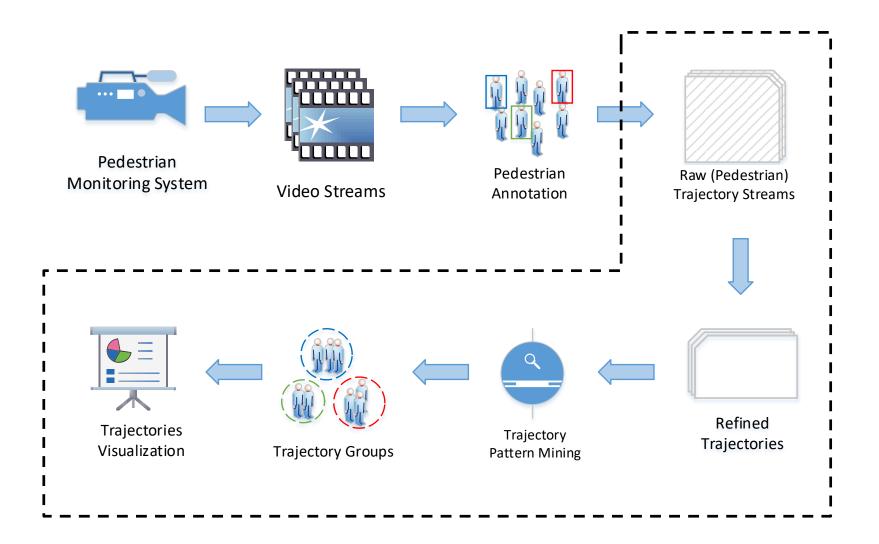
Global groups vs. Time-window groups

global grouping time-window grouping

Trajectolizer

Demo

Trajectolizer: System Overview

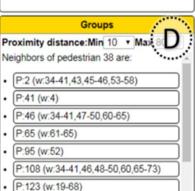


Trajectolizer: Interactive Demo

descriptive statistics about the current frame

timeline slider area to navigate video frames

Video Frame: 1 Number of pedestrians: 70 Average time pedestrians spent: 00: 01: 41 Pedestrians spent above the average time: P2 178 P8 145 P10 432 P11 469 P15 154 P28 228 P29 203 P36 1322 P38 232 P45 196 P46 195 P51 722 P63 743 P65 269 P68 141 P69 243 P70 144 Groups Proximity distance: Min 10 Max 8 P



grouping analysis

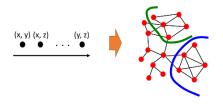
P-151 (w-22 43-59 61-74)

Live Demo

current frame with pedestrian IDs and trajectories

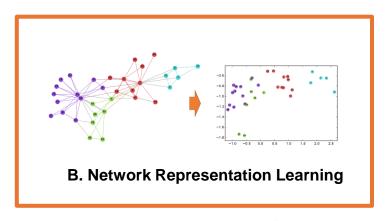
Current Research focus

A. Trajectory Network Mining



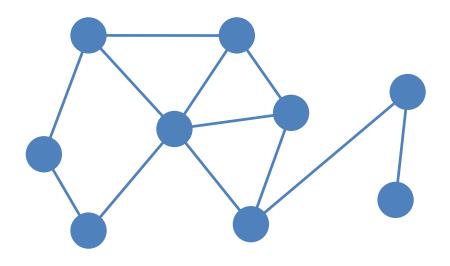
C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT



D. Social Media Mining & Analysis

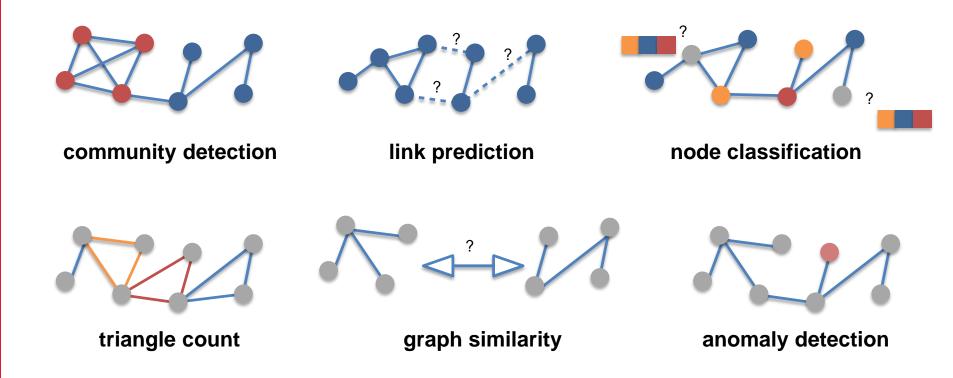
F. Natural Language Processing



networks

(universal language for describing complex data)

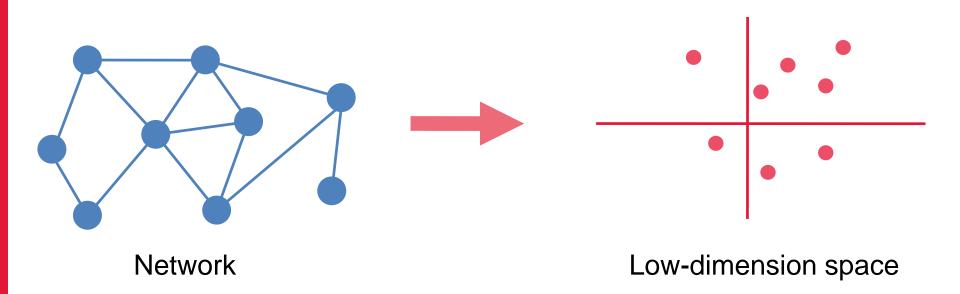
Classical ML Tasks in Networks



Limitations of Classical ML:

- expensive computation (high dimension computations)
- extensive domain knowledge (task specific)

Network Representation Learning (NRL)

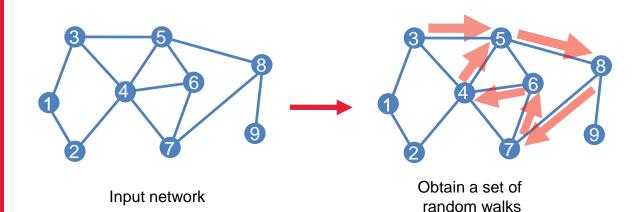


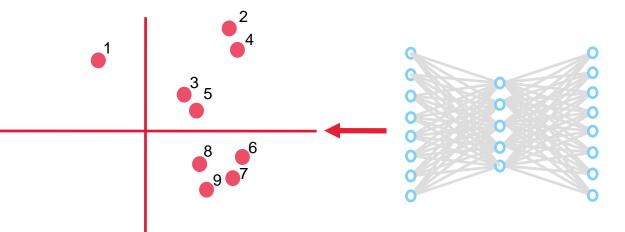
several network structural properties can be learned/embedded (nodes, edges, subgraphs, graphs, ...)

Premise of NRL:

- faster computations (low dimension computations)
- agnostic domain knowledge (task independent)

Random Walk-based NRL





Feed sentences to a

Skip-gram NN model

Learn a vector representation

for each node

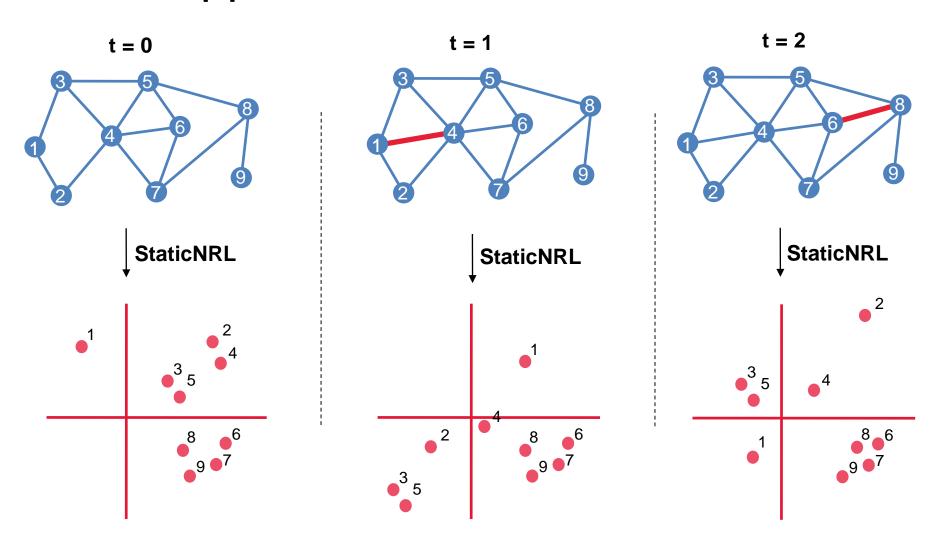
Treat the set of random walks as sentences

StaticNRL (DeepWalk, node2vec, ...)

but real-world networks are constantly evolving

Evolving Network Representations Learning

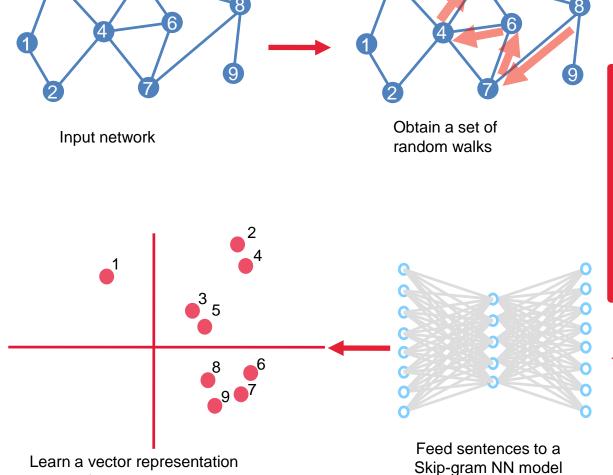
Naive Approach



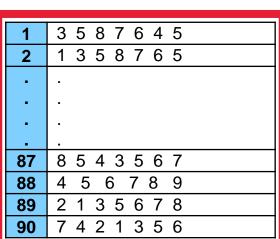
Impractical (expensive, incomparable representations)

EvoNRL Key Idea

for each node



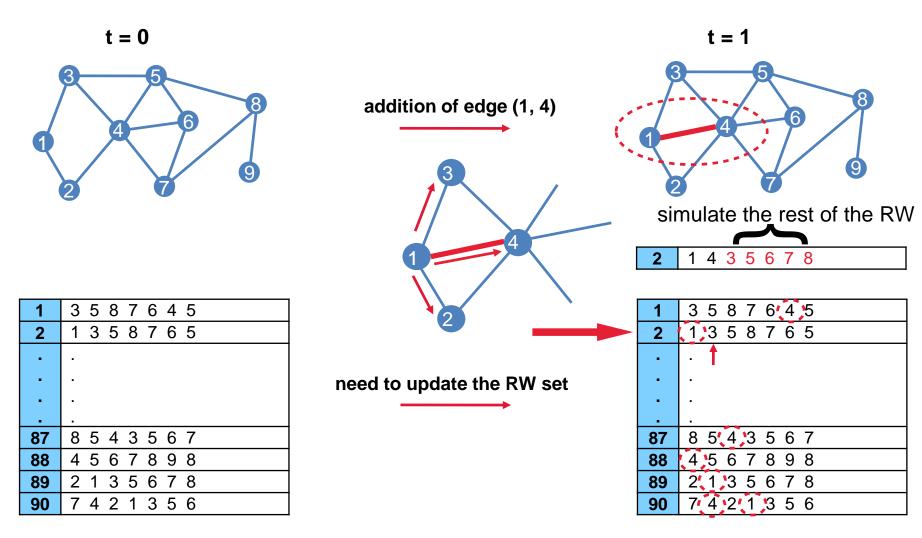
dynamically maintain a valid set of random walks for every change in the network



Treat the set of random walks

as sentences

Example: Edge Addition



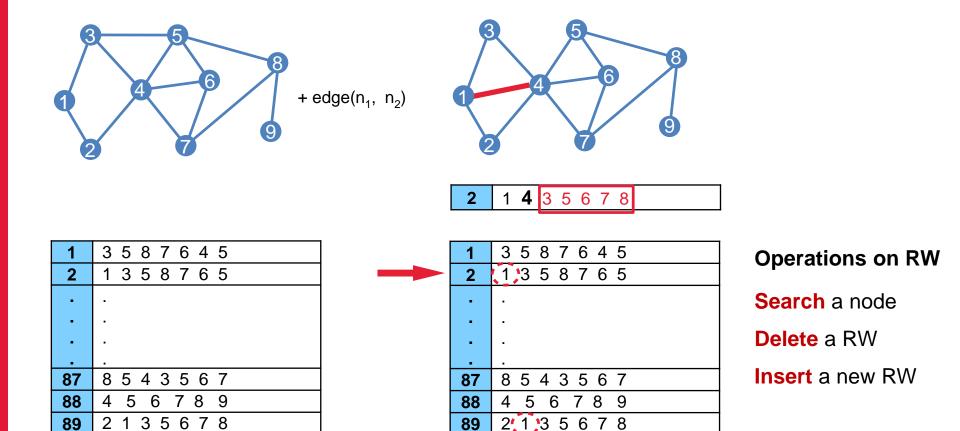
similarly for edge deletion, node addition/deletion

Efficiently Maintaining a Set of Random Walks

EvoNRL Operations

7 4 2 1 3 5 6

90

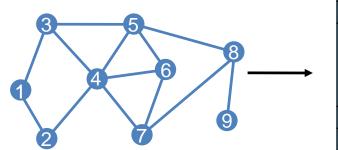


need for an efficient indexing data structure

90

7 4 2 1 3 5 6

EvoNRL Indexing



1	3 5 8 7 6 4 5	
2	1 3 5 8 7 6 5	
•		
•		
87	8 5 4 3 5 6 7	elast
88	4 5 6 7 8 9	حام
89	2 1 3 5 6 7 8	
90	7 4 2 1 3 5 6	
		'

each node is a keyword each RW is a document a set of RWs is a collection of documents

Term	Frequency	Postings and Positions
1	3	< 2, 1 >, < 89, 2 >, < 90, 4 >
2	2	<89, 1>, <90, 3>
3	5	<1, 1>, <2, 1>, <87, 3>, <89, 3>, <90, 5>
4	4	<1, 6>, <87, 3>, <90, 2>
5	9	<1, 2>, <1, 7>, <2, 3>, <2, 7>, <87, 5>, <88, 2>, <89, 4>, <90, 6>
6	6	<1, 5>, <2, 6>, <87, 6>, <88, 3>, <89, 3>, <90, 5>
7	5	<1, 4>, <2, 5>, <87, 7>, <88, 4>, <89, 6>, <90, 7>
8	5	<1, 3>, <2, 4>, <87, 1>, <88, 6>, <89, 7>
9	1	<88, 7>

Evaluation of EvoNRL

Evaluation: EvoNRL vs StaticNRL

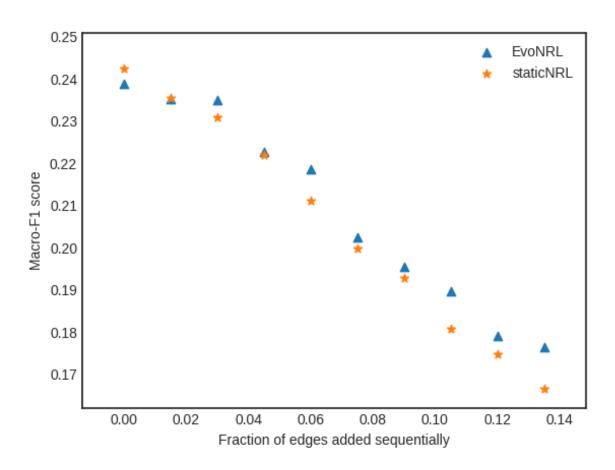
Accuracy

■ EvoNRL ≈ StaticNRL

Running Time

EvoNRL << StaticNRL

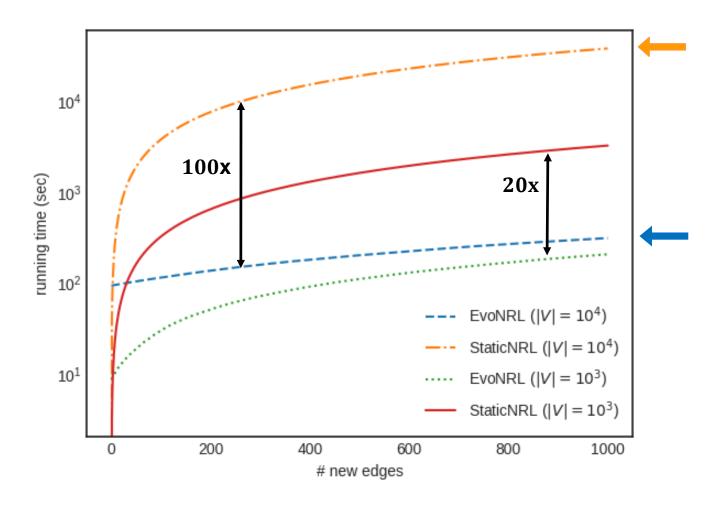
Accuracy: edge addition



EvoNRL has similar accuracy to StaticNRL

(similar results for edge deletion, node addition/deletion)

Time Performance



EvoNRL performs orders of time faster than StaticNRL

Takeaway

how can we learn representations of an evolving network?

EvoNRL

time efficient accurate generic method

Credits

Farzaneh Heidari

[Complex Networks 2018] EvoNRL: Evolving Network Representation Learning Based on Random Walks. Farzaneh Heidari and Manos Papagelis.

code: https://github.com/farzana0/EvoNRL/

[IEEE Big Data 2018] Fast and Accurate Mining of Node Importance in Trajectory Networks. Tilemachos Pechlivanoglou and Manos Papagelis.

code: https://github.com/tipech/trajectory-networks

Tilemachos Pechlivanoglou

Abdullah Sawas et al.

[Geoinformatica 2019] A Versatile Computational Framework for Group Pattern Mining of Pedestrian Trajectories. A. Sawas, A. Abuolaim, M. Afifi, M. Papagelis. GeoInformatica (Vol. X, No. X, 2019)

[IEEE MDM 2018] Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories. A. Sawas, A. Abuolaim, M. Afifi, M. Papagelis. (best paper award)

demo: https://sites.google.com/view/pedestrians-group-pattern/

Thank you!

Questions?

Data Mining Lab @ YorkU

Mandate

- Conduct basic research / knowledge transfer
- Equip students with theoretical knowledge & practical experience
- Research focus:
 - data mining
 - graph mining
 - machine learning
 - NLP
 - big data analytics

Members

- Two Faculty Members (Prof. Aijun An, Prof. Manos Papagelis)
- ~20 High Quality Personnel (HQP)
 - ~5 Postdoc, ~6 PhDs, ~8 MSc, ~3 Undergrads, ~1 staff