End-to-end Graph Analytics

Manos Papagelis

papaggel@eecs.yorku.ca www.eecs.yorku.ca/~papaggel

Research

what is a network or a graph?

Network Components

Network (or Graph) G(N,E)
 Objects: nodes (vertices) N
 Relationships: links (edges) E

Built on the mathematics of graph theory

networks are ubiquitous

Networks: Social

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Networks: Communication

Graph of the Internet (Autonomous Systems)

Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999] Robustness [Doyle-Willinger, 2005]

Networks: Knowledge Graph

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

[West-Leskovec, 2012]

Networks: Biology

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactions

Metabolic networks:

Nodes: Metabolites and enzymes Edges: Chemical reactions

Networks: Brain

Human brain has between 10-100 billion neurons [Sporns, 2011]

why should we care about networks?

Networks: Common Language

network analysis helps to reveal the underlying dynamics of these systems, not easily observable before

what do we study in networks?

Networks: Structure & Process

Structure and evolution

- What is the structure of a network?
- Why and how did it become to have such structure?

Processes and dynamics

 Networks provide "skeleton" for spreading of information, behavior, diseases

how do we reason about networks?

Reasoning About Networks

Empirical studies/properties

Study network data to find organizational principles

Mathematical models

Probabilistic, graph theory

Algorithms

Methods for analyzing graphs, solving graph-related problems

Properties

Six degrees of separ.

Power-law degrees

Strength of weak ties

Densif. power law, Shrinking diameter

Models

Erdös-Renyi model

Small-world model

Community model

Cascade model

Algorithms

Decentralized search Link prediction

Link analysis

Community detection

Map of Superpowers

CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Applying Our Superpowers

Social media analytics

Viral marketing

Applying Our Superpowers

Predicting epidemics: Ebola

Drug design

Our Research

Current Research Focus

C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT

B. Network Representation Learning

D. Social Media Mining & Analysis

F. Natural Language Processing

Trajectory Data Mining

Problem 1: Trajectory Network Mining
Problem 2: Group Pattern Discovery of Pedestrian Trajectories

Trajectory Network Mining

Node Importance

Given a **network** which node is **more important**?

Node Importance

Various notions of node importance (or node centrality)

- Degree centrality (= degree of u)
- Betweenness centrality (= #shortest paths passing through u)
- Closeness centrality (= avg. length of shortest paths from u to all other nodes of the network)
- Eigenvector centrality (= like PageRank)

Trajectories of Moving Objects

Every moving object, forms a trajectory – in **2D** it is a sequence of (**x**, **y**, **t**) There are trajectories of moving **cars**, **people**, **birds**, ...

Trajectories of Moving Objects

Every moving object, forms a trajectory – in **2D** it is a sequence of (**x**, **y**, **t**) There are trajectories of moving **cars**, **people**, **birds**, ...

Proximity Network at time t

proximity threshold $\vdash \theta$

connect all nodes **x**, **y** where **distance(x, y) < θ**

Trajectory Networks

Trajectories

Trajectory Networks

Given a trajectory network which node is more important?

what we care about?

Node Importance in TNs

Node Importance in Trajectory Networks

- Node degrees over time (+ durations)
- Triangles over time (+ durations)
- Connected components over time (+ durations)

Applications

- Rich dynamic network analytics
- Disease spreading (influenza)
- Security (in Vehicle-to-Vehicle communications)

how to solve the problem?

Group Pattern Discovery of Pedestrian Trajectories

Pedestrian Trajectories

what is a group?

many definitions, many algorithms

e.g., *flock*, *convoy*, *evolving-clusters*, *gathering-pattern*, ... [see ACM TIST Tutorial 2015]

Finding Pedestrian Groups

Local Grouping

Intuitive method Spatial-only

key idea

find **pairs** of pedestrians **x**, **y** where **distance(x, y) < θ** expend **pairs** to discover **groups**

Local Grouping

Challenge: Projection into Ground Plane

High perspective distortion - pedestrians closer to the camera appear larger than the ones farther away

expand the key idea to include the time dimension

Global Grouping vs. Time-window Grouping

Global Grouping Time-window Grouping

Trajectolizer: System Overview

Trajectolizer: Interactive Demo

References

[IEEE MDM 2018] Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, **Manos Papagelis**. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, **best paper award**)

[IEEE MDM 2018] Trajectolizer: Interactive Analysis and Exploration of Trajectory Group Dynamics. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, **Manos Papagelis**. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, demo)

[ACM TIST Tutorial 2015] Zheng, Y. (2015). **Trajectory data mining: an overview**. ACM Transactions on Intelligent Systems and Technology (TIST), 6(3), 29.

Back to Our Long-term Goal

end-to-end graph analytics

End-to-end Graph Analytics

Working with Us

What We are Looking For?

(solid) Math & Stat (solid) Programming

(interest in) Data Mining & ML

Thanks!

Questions?

About you?

Contact: Manos Papagelis papaggel@eecs.yorku.ca www.eecs.yorku.ca/~papaggel