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Abstract
The bulk synchronous parallel (BSP) is a celebrated synchronization model for general-
purpose parallel computing that has successfully been employed for distributed training 
of deep learning models. A shortcoming of the BSP is that it requires workers to wait for 
the straggler at every iteration. Therefore, employing BSP increases the waiting time of 
the faster workers of a cluster and results in an overall prolonged training time. To amelio-
rate this shortcoming of BSP, we propose ElasticBSP, a model that aims to relax its strict 
synchronization requirement with an elastic synchronization by allowing delayed synchro-
nization to minimize the waiting time. ElasticBSP offers more flexibility and adaptabil-
ity during the training phase, without sacrificing the accuracy of the trained model. Elas-
ticBSP is realized by the algorithm named ZipLine, which consists of two phases. First, 
it estimates for each worker the end time points of its future iterations at run time, and 
then a one-pass algorithm over the estimated time points of all workers is employed to fast 
compute an optimal future time point for synchronization. We provide theoretical results 
about the correctness and performance of the ZipLine algorithm. Furthermore, we propose 
algorithmic and implementation optimizations of ZipLine, namely ZipLineOpt and ZipLi-
neOptBS, which reduce the time complexity of ZipLine to linearithmic time. A thorough 
experimental evaluation demonstrates that our proposed ElasticBSP model, materialized 
by the proposed optimized ZipLine variants, converges faster and to a higher accuracy than 
the predominant BSP. The focus of the paper is on optimizing the synchronization schedul-
ing over a parameter server architecture. It is orthogonal to other types of optimizations, 
such as the learning rate optimization.
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1  Introduction

The parameter server framework (Dean et al., 2012; Ho et al., 2013; Langer et al., 2020) 
has been widely adopted to distributing the training of large deep neural networks (DNNs) 
(Chen et al., 2015; Zhang et al., 2017). The framework consists of multiple workers and a 
logical server that maintains globally shared parameters, typically represented as vectors 
and matrices (Li et al., 2014), and it supports two approaches: model parallelism and data 
parallelism (Chen & Lin, 2014).

Model parallelism (Dean et al., 2012; Langer et al., 2020) refers to partitioning of a large 
DNN model into small parts and distributing them to multiple workers for parallel training. 
Due to the complicated dependencies between layers of parameters in contemporary DNNs and 
predominant use of multiple GPUs (Coates et al., 2013; Cui et al., 2016), it is challenging to 
decouple the parameters of inter-layers or intra-layers for concurrent training of DNNs such as 
VGG (Simonyan & Zisserman, 2014) and ResNet (He et al., 2016). Additionally, since the inter-
computer communication is determined by the connection bandwidth and the capacity of the 
switch in place, some partitions (in one computer) might need to wait long for the output of any 
dependent partitions (in another computer). While this is true for any single forward computing, 
typically in deep learning one iteration consists of both forward and back-propagation phases, 
and training large model requires a large number of iterations. Thus, model parallelism has rarely 
been seen in practice. To the contrary, data parallelism (Langer et al., 2020) has prevailed in 
industry (Dryden et al., 2016; Strom, 2015) and been implemented in many applications (Zhang 
et al., 2017; Li et al., 2015; Moritz et al., 2015). In this paper we focus on data parallelism.

Data parallelism refers to partitioning (sharding) of large training data into smaller 
equal-sized shards and assigning them to workers (see Fig. 1). Then, the entire DNN model 
is replicated to each worker. During training, each worker trains the replica model using 
its assigned data shard, sends the locally computed gradients to the server that maintains 
globally shared parameters (weights) and receives back updated global weights from the 
server. Weight synchronization is critical in this process as it provides to the server a way of 
controlling the iteration throughput, to boost the convergence speed against wall-clock time 
and the quality of convergence (i.e., the accuracy).

Due to its importance, a number of synchronization models have been proposed (Langer 
et al., 2020), the most important of which are the asynchronous parallel (ASP), the bulk syn-
chronous parallel (BSP), and the stale synchronous parallel (SSP). ASP (Dean et al., 2012; 
Recht et al., 2011) is the simplest model, as it assumes no weight synchronization — workers 
always receive different versions of weights from the server at every iteration. BSP (Gerbessio-
tis & Valiant, 1994) is the most celebrated synchronization model but it has the straggler prob-
lem (Harlap et al., 2016) that might delay computation considerably. A critical component of 
it is the barrier synchronization, where workers reaching a barrier have to wait until all other 
workers have reached it as well (see Fig. 2). A straggler naturally exists in a heterogeneous 
environment where the processing speeds of workers vary. In a homogeneous environment, a 
straggler may also exist, which is caused by random node slowdown or communication delay. 
Communication delay roots in two sources, intra and inter-computer communications1.

1  We have mentioned the inter-computer communication bottleneck earlier. For intra-computer com-
munication, the communication delay is caused by data moving between GPUs. GPUs accelerates the 
DNNs training since the computation of DNNs is matrix operation and GPU is specialized in SIMD (sin-
gle instruction multiple data) parallel processing for large batch data processing. However, data moving 
between GPUs within a computer has a potential bottleneck since GPU-to-GPU memory copy has to go 
through PCIe links (64 Gbps theoretical bandwidth for 4 PCIe links on a regular motherboard) unless the 
expensive NVLinks are installed (e.g., 80 Gbps theoretical bandwidth for 4 NVLink links).
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Fig. 1   Data parallelism under the 
parameter server (PS) framework 
running SGD. Each machine is 
labeled by a worker id. Workers 
fetch the weight w from PS and 
compute the gradients �w based 
on loss function and the assigned 
data shard. PS receives gradients 
�w from workers and update the 
weight w to a new weight w′ for 
the next iteration

In the straggler problem, faster workers have to wait for the straggler. During the train-
ing phase of a DNN model, each worker, at each iteration, computes the model gradi-
ents based on the local data shard and the local weights (originally from the server) and 
sends the gradients to the server. The server aggregates the gradients from all workers, 
performs weight update (as one synchronization) and signals the workers to retrieve the 
latest weights for the next iteration. The workers replace their local weights with the latest 
weights from the server and start a new iteration.

SSP (Ho et  al., 2013; Cui et  al., 2014) provides an intermediate approach to the two 
extremes achieved by ASP and BSP. It performs synchronization, but mitigates the strict 
synchronization requirement of BSP. In principle, it monitors the difference in the number 
of iterations (iteration difference) between the fastest and the slowest workers and restricts 
it to be within a threshold by forcing the fastest worker to wait until the threshold is not 
exceeded.

The aforementioned models exhibit certain limitations. In ASP there is no need for syn-
chronization, so the waiting time of the workers is eliminated. However, the convergence 
in the training might be dramatically affected due to inconsistent weight updates to the 
model. On the other hand, a prevalent shortcoming of the BSP is the strict synchronization 
requirement it imposes. As shown in Fig. 2, all workers are waiting for each other by a syn-
chronization barrier. Each barrier represents the time point of the weight synchronization 
among workers and a superstep represents the time period between consecutive barriers. In 
BSP, a superstep is an iteration. There are also other BSP-like models, in which a superstep 
is set to k iterations, where k is fixed (Wang & Joshi, 2019). In SSP, while the strict syn-
chronization requirement of BSP is removed, a user-specified threshold (fixed throughout 
the training period) is needed to control the maximum iteration difference among workers. 
Further, SSP offers a shortsighted solution to the problem, as it does not consider the com-
putational capacity of each worker (i.e., how fast it is), merely relying on the number of 
iterations that each worker has completed.

To ameliorate these shortcomings, we propose ElasticBSP, a model that aims at relax-
ing the strict synchronization requirement of the predominant BSP to reduce worker wait-
ing time and thus increase the iteration throughput, and at the same time limiting the staled 
gradients and their staleness values in the iterative stochastic gradient descent (SGD) 
convergent process. Compared to SSP, the proposed model considers the computational 
capacity of workers; it can therefore offer more flexibility and adaptability during the train-
ing phase, without sacrificing the accuracy of the trained DNN model. The key idea of 
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ElasticBSP is that the server deals with online sequential decision making about the opti-
mal future time to impose a synchronization barrier, whereas BSP and SSP solely rely on 
counting the number of completed iterations of workers to determine a synchronization. 
The decisions of ElasticBSP are the solutions to an online optimization with lookahead 
problem (Dunke, 2014). As such, the time a synchronization barrier is imposed varies and 
each superstep can permit a different number of iterations per worker, offering elasticity 
(see Fig. 2). ElasticBSP is realized by an efficient method, named ZipLine that fast solves 
the optimization problem. It materializes the ElasticBSP model. ZipLine consists of two 
phases. First, R future iteration intervals of each worker are predicted at run time based 
on their most recent intervals, assuming a stable environment (the lookahead). Then, a 
one-pass algorithm operates over the predicted intervals of all workers and determines the 
next optimal synchronization time (i.e., a time that minimizes the overall workers’ wait-
ing time). Our experiments show that the algorithm can effectively balance the trade-off 
between the accuracy and the convergence speed to accommodate different environments 
or applications. Notably, ElasticBSP, materialized by the proposed optimized version of 
ZipLine, converges faster and achieves higher accuracy than BSP, SSP and ASP for large-
sized DNNs using moderately small learning rates.

Fig. 2   Vanilla BSP and our proposed ElasticBSP. Each barrier represents the time of weight synchroniza-
tion among workers and a superstep represents the time period between consecutive barriers. In BSP the 
superstep is fixed to a number of k iterations and all workers have to wait for each other at the end of their k 
iterations ( k = 1 is shown, which is typical). In ElasticBSP, the time the barrier is imposed varies and each 
superstep can allow a different number of iterations per worker. These values are determined at run time 
by our proposed ZipLine method that achieves minimum overall waiting time of all workers (Color figure 
online)
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An earlier version of this work introduced the ElasticBSP scheme and a general version 
of the ZipLine algorithm (Zhao et al., 2019b). In this extended version, we present opti-
mized versions of the ZipLine algorithm, a comprehensive analysis of the methods includ-
ing mathematical proofs on the correctness, as well as extensive experiments. It is impor-
tant to note that ElasticBSP focuses on optimization of the synchronization scheduling 
over the parameter server framework for distributed training and can be applied to other 
distributed machine learning methods based on SGD optimization. As such, it is orthog-
onal to other DNN optimization techniques, such as the learning rate optimization (Liu 
et al., 2019). The major contributions of this work are as follows:

•	 We propose ElasticBSP, a novel synchronization model for scaling the training of dis-
tributed deep learning models. ElasticBSP replaces the strict synchronization require-
ment of other BSP-like models with an online sequential decision making about the 
best time to impose the next synchronization barrier. The model guarantees conver-
gence when the number of iterations of the training phase is large.

•	 We provide theoretical results about the correctness and performance of the ZipLine, a 
one-pass algorithm that can efficiently materialize the ElasticBSP model. ZipLine per-
forms online optimization with lookahead to decide the next best synchronization time. 
It outperforms sensible baselines that exhibit polynomial time complexity.

•	 We propose two optimizations of ZipLine: ZipLineOpt and ZipLineOptBS. The former is an 
algorithmic optimization that relies on a pruning technique to reduce the search space of the 
solution. The latter is an implementation optimization that employs an advanced data struc-
ture offering fast search operations and manages to achieve linearithmic time complexity.

•	 We present a thorough experimental evaluation of our ElasticBSP model materialized 
by ZipLine on four deep learning models (varying in size and structure) on three popular 
image classification datasets (varying in class size, sample size and image resolution). 
The results show that ElasticBSP converges much faster than BSP and to a higher 
accuracy than BSP and other state-of-the-art alternatives when the learning rate is not 
large. In particular, ElasticBSP demonstrates a superior performance on the large-sized 
DNNs with respect to convergence speed and accuracy using small step sizes.

The remainder of the paper is organized as follows. Section 2 provides a brief background 
of the state-of-the-art synchronization models and their limitations under the parameter 
server framework. Section 3 introduces our proposed ElasticBSP synchronization model 
and its properties. Section 4 formally defines the problem of interest and provides problem 
analysis. In Sect. 5, we first present algorithmic details of sensible baselines; then we pre-
sent our proposed method ZipLine, and its two optimized variants ZipLineOpt and ZipLi-
neOptBS that can realize ElasticBSP. Section 6 presents a thorough experimental evalua-
tion of the methods. We review the related work in Sect. 7 and conclude in Sect. 8.

2 � Background

In this section, we first present a synchronization cost model of training a deep learning 
model, assuming the parameter server framework; in particular, cost related to the wall-clock 
idle time of processors. Then, we briefly present the three most closely related state-of-the-art 
synchronization models employed by the server for achieving parallel Stochastic Gradient 
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Descent (SGD) computation through synchronous (or asynchronous) data communication 
between the server and workers, and discuss their main advantages and limitations.

2.1 � Synchronization cost model

In the parameter server framework, the server becomes aware of a worker’s iteration inter-
vals through the contiguous timestamps of the worker’s push requests. Formally, given a 
worker p ∈ [1, n] , a single iteration interval Tp

iter
 consists of computing time Tp

comp and com-
munication time Tp

comm (see examples in Figs. 2 and 3). In addition, we know that the com-
munication time can be broken down into data transmission time Tp

trans and waiting time 
T
p

wait
 until the synchronization occurs. During data transmission, a worker sends gradients 

to the server and the server sends weights back to the worker. We ignore lower level com-
munication since the size of the exchanged data at low level (e.g., TCP/IP) is significantly 
smaller than that of gradients and weights. The time cost of a single iteration of a worker p 
is:

where �p
iter

 , �pcomp , �
p

trans and �p
wait

 represent the associated length of a period Tp

iter
 , Tp

comp , T
p

trans 
and Tp

wait
 respectively.

Note that �pcomp is a constant since the hardware computational capacity is fixed and the 
batch size does not change — each iteration computes a single batch. Also, �ptrans is a con-
stant since workers are training the same model and both the weights and the gradients are 
of the same data size. On the other hand, �p

wait
 is a variable that can be controlled by the 

parameter server.
Recall that each worker has to wait for the signal from the server to pull the weights 

after a synchronization (aggregation) operation in BSP. Let us denote as tp the time point that 
the worker p started waiting and tsync the time point that the synchronization completes (i.e., 
imposed barrier ends). Then Tp

wait
= [tp, tsync] and its length �p

wait
= tsync − tp . Therefore, from 

the optimization perspective, for n workers in a distributed system, the cost of applying one 
synchronization barrier b at time tsync is dominated by the longest waiting time of any of the 
n workers, say �b

wait
= max(�

p

wait
), p ∈ [1, n] for a superstep � ending with a barrier b. Assum-

ing that there is a set B of synchronization barriers defined by |B| synchronization timestamps 
during the training period, the synchronization cost function of n workers is defined as:

We aim to find the optimal set B:

We propose the ZipLine method to minimize every �b
wait

 in the training phase.

2.2 � Synchronization models for parallel SGD

DNNs learn to estimate a model using an optimizer based on a training dataset via an itera-
tive convergent algorithm. The most effective optimizer for training DNNs is the stochastic 

(1)�
p

iter
= �

p
comp

+ �
p

trans + �
p

wait

(2)csync = c(n,B) =

|B|∑

b=1

�
b
wait

(3)B∗
= argmin

B

csync
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gradient descent (SGD). SGD iteratively updates the model weight w in sequential fash-
ion (Zinkevich et  al., 2010): wt

= wt−1
− � ⋅ (gt−1 + ��(wt−1

)) , where t represents the tth 
iteration, g is the gradient(s) of the loss function with respect to the weights w and � is the 
regularizer. Parallel SGD (Zinkevich et al., 2010) refers to SGD running in a distributed 
environment. Assuming a distributed environment and the data parallelism approach of a 
parameter server framework are used as we demonstrated in Fig. 1, the entire DNN model 
is replicated to n workers, while the server maintains globally shared weight parameters. 
During the training, each worker trains the replica model using its assigned data shard, 
sends the computed gradients to the server (via a push operation) and retrieves updated 
weights from it (via a pull operation). The following represent state-of-the-art synchroni-
zation models for training DNNs.

Bulk Synchronous Parallel (BSP)  In BSP, the server updates the weight w in two steps. 
First, it aggregates the gradients gp, p ∈ [1, n] from n workers in iteration t − 1 such that 

gt−1 =
1

n

n∑

p=1

gt−1
p

 . Second, it updates the weight wt−1 for next iteration t,

After the weight update, it signals n workers that the weight wt is available to pull. The 
synchronization of workers is mandatory per iteration, but costs extra time on waiting for 
the stragglers; that is because of the first aggregation step in which the server does not 
reduce the gradient gt−1 until it receives gradient gt−1

p
 from all n workers. After the second 

step, all the workers receive the same (synchronized) weights. In this way, the server is 
controlling the gradient updates and makes parallel SGD logically function as serial SGD 

(4)wt
= wt−1

− � ⋅ (gt−1 + ��(wt−1
))

Fig. 3   Iteration intervals measured by timestamps of contiguous push requests from workers. A dotted line 
represents the time a push request arrives at the server from a worker. An iteration interval consists of gra-
dient computing period (solid block) and communication period (blank block). All workers’ ending times-
tamps can be mapped onto a timeline. Each timestamp on the timeline is associated to one of the workers. 
A set which is represented by the bracket always keep n unique values (colors) of workers. ZipLine scans 
the points from left to right on the timeline, takes one color point into the set per iteration (Color figure 
online)



	 Machine Learning

1 3

on a single computer. The synchronization in BSP guarantees the data consistency of w as 
shown in Fig. 2. This strategy works very well when all the workers have similar speed.

Asynchronous Parallel (ASP) ASP (Dean et al., 2012; Recht et al., 2011) is an alterna-
tive approach on updating the weight w. It is based on the idea of the workers working 
independently and the server updating the weights immediately as soon as any gradient 
becomes available. In this fashion, weight synchronization is not required and the waiting 
time of workers is eliminated. With no synchronization, the weight updates on the server 
become asynchronous gradient updates. See the examples in Figs. 3 and 8a. It appears as 
if ASP is better than BSP since it removes the control costs and waiting time overhead. 
Besides, the number of weight updates of ASP becomes n times more than that of BSP for 
n workers (by Eqs. 4, 5), which means ASP enjoys larger iteration throughput. However, 
the weight updates become chaotic:

Here t represents the iteration of the fastest worker(s) whereas s is the iteration of the 
slower worker(s). The gradients computed at iteration s = t − c by the slower worker(s) 
then become stale for c iterations, where c denotes the iteration difference; c also represents 
the staleness value of the staled gradients of the slower worker(s). If c is large, the staled 
gradients add noise to the iterative weight updates (see an intuitive example in Fig. 8a) and 
when there are many c-staled gradients present, it renders to a convergence uncertainty 
(Zhou et al., 2018). We further elaborate it in Sect. 4.2 as we also consider limiting the 
staled gradients in designing our algorithm.

Stale Synchronous Parallel (SSP) SSP (Cui et  al., 2014; Zhao et  al., 2019a) provides 
an intermediate solution to BSP and ASP; it addresses the straggler problem of BSP and 
mitigates the gradient staleness problem of ASP. It achieves that by allowing workers to 
run independently but ensuring that the fastest worker(s) do not run � iterations further 
than the slowest worker(s). In other words, SSP uses a threshold � to constrain the iteration 
difference c among workers at any moment during the training so that c ≤ � . Note that � 
has to be fixed to a small number, otherwise SSP might behave as ASP. Since c is bounded 
by a small � , the harm that the staled gradients bring to the convergence is reduced. In (Ho 
et al., 2013; Zhao et al., 2019a) authors provide theoretical analysis to prove that SSP guar-
antees convergence for a large number of iterations with a small �.

The SSP scheme works as follows: it counts the number of iterations each worker has 
completed. When the fastest worker is running its tth iteration and the slowest worker is 
running its ( s = t − � − 1)th iteration, the fastest worker has to wait for the slowest worker 
to reach its ( t − �)th iteration. In this way, SSP achieves a synchronization between the 
fastest and slowest workers by setting barriers that put a stop to the fastest workers. After 
the synchronization, the fastest and the slowest workers compute the gradients based on the 
same weight w. Since � is small, the model will converge for a large number of iterations 
(Ho et al., 2013).

3 � ElasticBSP model

Motivated by the limitations of the current state-of-the-art synchronization models in the 
parameter server setting, we propose Elastic Bulk Synchronous Parallel (ElasticBSP), a 
novel synchronization model, to ameliorate drawbacks of current models without sacrific-
ing their benefits. ElasticBSP offers elasticity in the sense that the distance between two 

(5)wt
= wt−1

− � ⋅ (gs−1
p

+ ��(wt−1
)), p ∈ [1, n], s ≤ t



Machine Learning	

1 3

consequent synchronization barriers is not fixed (as in BSP), but is determined online (at 
runtime). Also, the waiting time is not determined by a fixed iteration difference between 
the fastest and the slowest workers (as in SSP), but based on an optimal synchronization 
strategy that minimizes the overall worker waiting time. There are two key properties of 
ElasticBSP:

•	 The server deals with online sequential decision making regarding the optimal time 
that the next synchronization barrier should be imposed (a time point when the mini-
mum waiting time for the entire system is achieved). Each decision is the solution of 
an online optimization problem that utilizes information about the most recent time 
interval of each worker available to the server to predict their R future intervals (the 
lookahead). The need for looking into only R future intervals comes from the need to 
control the decision algorithm’s run time, since the run time can increase exponentially 
as R increases. A bound in R also ensures that ElasticBSP does not behave as the ASP 
model, but provides a convergence guarantee and maintains an accuracy similar to that 
of SSP.

•	 The theoretical analysis about the convergence of ElasticBSP follows the theoretical 
analysis of DSSP (Zhao et  al., 2019a). In DSSP, an upper bound s′ exists as a fixed 
staleness threshold in the entire training phase and guarantees the convergence when 
the iteration number is large and s′ is small. In an analogous manner, in ElasticBSP 
a small iteration difference � exists that is defined within the R future intervals. The 
parameter � serves as the upper bound s′ defined in some period � (a superstep) and 
the convergence is guaranteed when the iteration number is large (similarly to the case 
of DSSP). A new s′ is defined for every next period � . By the end of each period � , the 
synchronization barrier b is posed to all the workers where gradient aggregation is car-
ried out on the server, similarly to BSP — the model weights are then synchronized and 
will be available to all workers in the next iteration.

Consider the illustrative example of Fig. 42, where n=10 workers need to synchronize. 
The server first predicts the R=15 future iteration intervals for each worker (dots in dis-
tinct color) based on their latest two contiguous push timestamps. Intervals between dots 
of the same color represent iteration intervals of a worker. Then, a decision needs to be 
made about the optimal time to impose a synchronization barrier that minimizes the overall 
waiting time for the 10 workers in wall-clock time. The squared dots (in red) in the exam-
ple represent the intervals of each worker that inform the optimal synchronization time 
(minimum waiting time), determined by the distance between the leftmost and rightmost 
red square dots. In particular, the rightmost red square dot is where a barrier b shall be 
imposed. In Fig. 4, worker 9, represented by the leftmost red dot, will be the first to arrive 
in the barrier b and wait for the synchronization to occur. Note that for each worker, the 
respective red square dot might represent a push timestamp that occurs at a different itera-
tion than that of other workers. In ElasticBSP, the server maintains this information and 
learns the best time to signal the workers to perform a pull operation and synchronize 
the weight parameters. In Fig. 4, pull will be broadcasted by the server shortly after the 
rightmost red square dot, which represents the time that the slowest worker (i.e., worker 4) 
uploaded the gradients to the server, and therefore aggregation of gradients is possible.

2  The time points depicted in Fig.  4 were generated by our synthetic data generator that is described in 
Sect. 6.1.
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4 � The problem

In this section, we formally define the problem of interest. Part of the originality of our 
work can be attributed to the fact that we formalize the problem as an online optimization 
with lookahead problem. Online optimization with lookahead is an optimization paradigm 
that utilizes a limited preview of future input data (lookahead) to inform sequential deci-
sion making under incomplete information. For distributed deep learning, this optimiza-
tion paradigm provides a better description of a parameter server’s informational state than 
other well-established synchronization models that assume nothing is known about the 
future. Specifically, the solution to the optimization problem will provide a prediction of 
the optimal time t∗

sync
 to impose the next synchronization barrier b. Our approach to tack-

ling the straggler problem via synchronous paradigms is fundamentally different from cur-
rent approaches that either strictly control the time to impose a synchronization barrier (i.e, 
BSP) or determine it based on ad hoc runtime decisions (i.e, SSP).

Recall that during the execution, the parameter server receives push requests coming 
from n workers. Once a request is received, the server keeps a record of the worker p and 
associates it with a timestamp representing the time of the request. Modern data centers 
and distributed services provide high-availability (HA) solutions ( 99.999% available time) 
(Benz & Bohnert, 2013). It is therefore realistic to assume a running environment with 
a stable network and machines, where the duration of subsequent iterations of a worker 

Fig. 4   Predicting the time to synchronize. The sky blue triangles in the first column are the starting points 
of the predicted future iterations at which we have learned the most recent iteration intervals of all workers. 
Each dot represents the ending time of an iteration. Workers (labelled from 0 to 9) have unique color. Start-
ing from them, we predict next R=15 future iteration intervals of the 10 workers. The objective is to find the 
dots of distinct colors that are closest to each other (i.e., dots vertically aligned near any time-spot). Three 
strategies are shown for comparison: ZipLine ( min_d in red squares), a random barrier pick ( rnd_d in grey 
blue diamonds) and vanilla BSP ( bsp_d in sky blue triangles). min_d , rnd_d and bsp_d represent the over-
all workers’ waiting time cost in milliseconds in wall-clock time. ZipLine has the minimum cost (599ms) 
(Color figure online)



Machine Learning	

1 3

(including batch processing, gradient computing and data communication) are relatively 
stable in the foreseeable future.

This assumption allows to heuristically estimate the R future iteration intervals of each 
worker within some duration (see Figs. 3 and 4) based on their most recent iteration inter-
val history. Thus, R can not be too large due to the bound of the duration. For instance, if a 
worker p arrives at time t and presents an iteration interval �p

iter
 , then the future R iterations 

can be estimated to occur at time t + �
p

iter
, t + 2 ⋅ �

p

iter
,… , t + R ⋅ �

p

iter
 . After a completion of 

a synchronization, we then estimate the R future iteration intervals for each worker based 
on their most recent historical data, the problem is then to determine the best time spot 
within the R future iterations to impose the new synchronization barrier – a time spot that 
will minimize the waiting time for all workers (see Fig. 5).

Note that this assumption is not limiting our approach. In practice, if a worker does 
not behave in a predictable way, say due to a failure, it will be taken out of the distributed 
computation (and will be ignored by our method). Similarly, if a minor fluctuation in the 
duration of an interval occurs, for example due to a network glitch of any of the workers, 

Fig. 5   The flow of prediction and synchronization of ElasticBSP with three workers consists of two 
phases: (i) the monitoring phase, and (ii) the prediction phase. The purpose of the monitoring phase is to 
allow the server to learn the iteration interval of all the workers. It requires at least two push requests per 
worker. The prediction phase consists of predicting the R future iterations of each worker and using ZipLine 
to get the optimal time to impose the next synchronization barrier. Once a synchronization occurs, the two 
phases repeat again. This example illustrates that even of one of the workers (round orange) has different 
speeds between synchronizations, ElasticBSP can still find the optimal next synchronization time, since it 
always uses the most recent history of workers. The solid objects (square, circle and diamond) are occurred 
iteration interval timestamps of three workers, the hidden objects are their estimated future timestamps of 
iterations. The lower figure shows what happens after the completion of a synchronization at the barrier 
in the upper figure under the same wall clock time line. Note that the “circle" worker suddenly changed to 
shorter iteration interval during the monitoring phase at the lower figure (Color figure online)
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our method might be affected by an erroneous prediction which might cause a sub-optimal 
imposition of a synchronization barrier. Nonetheless, that error will not be carried for-
ward to the next decision. That is because we always use the most up-to-date history of 
worker time intervals to find the time to impose the next synchronization barrier which also 
accommodates the occasional network bandwidth shifts and peak hours users activity. As 
such, the effect to the overall approach will be negligible (if any).

4.1 � Problem definition

Consider the parameter server framework and let n be the number of workers. For 
each worker p ∈ [1, n] , the server predicts R future iteration intervals and stores a set 
Sp = {e

p

1
, e

p

2
, ..., e

p

R
} , where ep

i
, i ∈ [1,R] represents the ending timestamp of the i-th 

iteration of worker p.3 We only need to store ending timestamps (and no starting times-
tamps), as they are the only ones required for determining a synchronization time. From 
each of the n sets Sp, p ∈ [1, n] , we pick one element ep

j
, j ∈ [1,R] to construct a new 

set Z = {e
p

j
}, p ∈ [1, n] of |Z| = n ending timestamps (one for each worker). The small-

est timestamp in Z ( min(Z) ) corresponds to the fastest worker and the largest times-
tamp in Z ( max(Z) ) corresponds to the slowest worker, respectively. Then, the difference 
dZ = max(Z) −min(Z) represents the waiting time of the fastest worker if Z is used to 
impose a synchronization barrier. Note that tsync = max(Z) represents the time point to 
impose the synchronization barrier b and dZ = �

b
wait

 represents the waiting time overhead if 
barrier b is imposed. As it becomes clear, any set Z can determine the time tsync and repre-
sents one candidate solution to the optimization problem. From the space of all candidate 

Fig. 6   ZipLine scans the points (push timestamps) on the timeline as in Fig. 9 and evaluates all 141 pos-
sible sets Z (each of which consists of distinct workers) of the example from Fig. 4 in ascending order. For 
each set Z, the overall worker waiting time dZ is obtained and plotted on y-axis. ZipLine finds the optimal 
set Z∗ that minimizes dZ∗ (i.e., 599 milliseconds) which lies at the 97th combination (highlighted in red) 
(Color figure online)

3  Note that ep
i
 is a triple in our proposed algorithm, containing a timestamp value, the worker id p and the 

iteration id i of the worker p, where i and p are meta data used to identify to whom the timestamp value 
belongs to. For simplicity, we may ignore p and i and consider ep

i
 as a timestamp value when the meta data 

are clear.
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solutions, we are looking for the optimal one Z∗ (as shown in Fig. 6) that exhibits the mini-
mum dZ∗ and determines the optimal t∗

sync
 at which we will impose the next synchronization 

barrier b. The following formalizes the problem.

Problem 1  Given n workers, each represented by a set Sp = {e
p

1
, e

p

2
, ..., e

p

R
} , where ep

i
 is the 

ending time of the i-th future iteration of worker p, p ∈ [1, n] and R ∈ ℕ , find a solution Z 
containing one element from each Sp , such that dZ is minimized.

Hence, our objective function is:

Knowing Z∗ , we can determine the optimal time t∗
sync

= max(Z∗
) to impose the next syn-

chronization barrier b. At the end of the distributed training of a model, a set B of syn-
chronization barriers will have been imposed and the overall waiting time overhead can be 
derived by Eq. (2).

4.2 � Choosing Z∗ for ElasticBSP

It is possible that more than one Z∗ exists among all possible Z’s derived from the n sets Sp 
(see example in Fig. 7). In this case, the Z∗ with the earliest (smallest) timestamp is pre-
ferred for ElasticBSP. Figure 8 illustrates the reason by depicting two cases.

Figure 8a illustrates how SGD is working asynchronously under the parameter server 
setting. For instance, two workers are shown with different processing speeds on a mini-
batch (one iteration), where worker p2 runs faster than worker p3 . If synchronization 
between p2 and p3 happens at every iteration following BSP, then no delayed gradients 
updates are introduced. On the contrary, in the case of asynchronous gradient updates, 
noise might be injected (i.e., staled gradients with large staleness value (Ho et al., 2013)) to 
SGD and lead to divergence, especially when the noise is accumulated over a large number 
of iterations. Intuitively, synchronizing as early as possible reduces the staled gradients and 
decreases their staleness. Theorem 1 and Corollary 1 formalize this intuition. In a nutshell, 
in the case of asynchronous gradient updates, the longer it takes for a synchronization bar-
rier to be imposed, the more stale the gradients will be, potentially rendering the weight 
convergence uncertain.

In Fig. 8b, there are 5 workers and two equivalent optimal solutions are considered ( Z∗

A
 

and Z∗

B
 ). In each solution, a different number of iterations have been completed by each 

worker since last synchronization. In Z∗

A
 , the iteration difference diter between the faster and 

slower workers is 10, whereas in Z∗

B
 the difference is 4. According to Fig. 8(b), Z∗

B
 will have 

fewer staled gradient updates than Z∗

A
 , because its iteration difference diter (i.e., 4) is smaller 

than that of Z∗

A
 (i.e., 10). We show that if the workers have different processing speeds 

Z∗
= argmin

Z

dZ
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(on an iteration), then the iteration difference diter among them increases as asynchronous 
gradient updates last longer (i.e., the synchronization barrier is imposed at the later time). 
Therefore, if multiple Z∗ s with the same dZ∗ exist, we prefer to impose a synchronization 
barrier represented by the earliest time t∗

sync
.

Fig. 7   A plot of the cost dZ of candidate solutions Z evaluated by ZipLine. As ZipLine iteratively scans the 
elements of � from the leftmost to the rightmost element on the timeline, we compute dZ the cost of each 
candidate solution Z (the smaller the cost dZ the better the solution Z). The run is based on the SmallR data-
set of Table 2, for n=1,000 and R=15. There are 15,000 elements in � . ZipLine evaluates a total of 13,795 
candidate solutions, FullGridScan 15,000 candidate solutions and GridScan only 15 candidate solutions. 
We only plot the dZ values that have a cost of less than 1600 milliseconds; we highlight the optimal dZ∗ and 
a few sub-optimal dZ s. Red triangles indicate dZ∗ (Color figure online)

(a) (b)

Fig. 8   a shows how staled gradients � bring noise to the weight updates. The noise may drift the weight 
convergence away from the optimal direction (i.e., to poor local minima of the loss function). b Suppose 
we have two optimal solutions Z∗

A
 and Z∗

B
 . Each column lists the number of iterations each worker has com-

pleted in each solution. Both solutions Z∗

A
 and Z∗

B
 have equal dZ . The solution with the smaller iteration dif-

ference diter (i.e., 4) introduces fewer staled gradients to the model weights and therefore is preferred (Color 
figure online)
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Theorem 1  (The earlier the synchronization barrier is imposed, the less stale the gradients) 
Consider two workers pi and pj , i, j ∈ [1,m] , m ∈ ℕ and i ≠ j , and their iteration intervals 
tpi and tpj , respectively, where tpi < tpj (i.e., pi is faster than pj ). Let the difference of the 
number of iterations they complete within a time period t be given by diter = t

tpi

−
t

tpj

 . Then, 

within a time period t′ > t , we have diter′ > diter , where diter′ is the iteration difference 
within t′.

Proof  Suppose we have two workers pi, pj, i, j ∈ [0,m], i ≠ j and their iteration intervals 
being tpi = �tpj , � ∈ (0, 1) (i.e., pi being faster than pj ). Within a time period t, their itera-
tion difference is given by diter = t

tpi

−
t

tpj

=

t(tpj
−tpi

)

tpi
tpj

=
t(1−�)

tpi

 ①. Within a longer time period 

t� = t + k, k > 0 , their iteration difference is given by diter� = (t+k)(1−�)

tpi

 ②. Therefore, for a 
longer run time t′ > t , the iteration difference is given by ② − ① = k(1−𝜆)

tpi

> 0 since 
� ∈ (0, 1) . 	�  ◻

Intuitively, if a synchronization period (a superstep) lasts longer, then a larger iteration 
difference among workers is introduced by asynchronous gradients updates.

Corollary 1  Since less staled gradients have less negative impact to the rate of convergence 
(Ho et  al., 2013), early synchronization is preferred in asynchronous parallel training 
phase for better convergence with respect to the rate and the accuracy.

5 � Methodology

To address Problem 1, we first investigate a brute-force approach, naive search. Since naive 
search cannot scale to a large number of workers, we develop an optimized version of it 
named FullGridScan as a baseline. Then, we introduce our proposed method ZipLine and 
its optimized variants ZipLineOpt and ZipLineOptBS and compare them with the baselines. 
Table 1 summarizes the computation and space complexity of the different approaches. 

Table 1   Summary of 
computation and space 
complexities of methods

Algorithm Computation Space

GridScan (heuristic) O(R2n) O(Rn)

FullGridScan O(R2n2) O(Rn)

Zipline O(Rn2) O(Rn)

ZiplineOpt Best: O(Rn) , Worst: O(Rn2) O(Rn)

ZiplineOptBS Best: O(Rn) , Worst: O(Rn log n) O(Rn)
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5.1 � Exhaustive search methods

Naive search  In order to find the minimum difference dZ∗ , a straightforward approach is 
to use a brute-force search method. The method determines the optimal solution Z∗ by 
first constructing all candidate solutions Z. Each Z contains one element from each set 
Sp = {e

p

1
, e

p

2
, ..., e

p

R
}, p ∈ [1, n],R ∈ ℕ . Since there are n sets Sp (one for each worker), and 

each set Sp has R elements, there are Rn candidate solutions in total. Then, for each candi-
date solution Z, it computes its dZ value. The solution Z∗ for which the minimum value dZ∗ 
is yielded, is the optimal solution. The computation complexity of naive search is O(Rn

) . 
The space complexity is O(Rn

) to store the Rn possible solutions. 

GridScan Since naive search is not practical, we present an optimized heuristic brute-
force method, GridScan (Algorithm 1) as a baseline. GridScan will eventually serve as the 
basic component of FullGridScan. Let the future R iteration timestamps of n workers form 
a n × R matrix M , where each row of the matrix Mp represents a worker p, p ∈ [1, n] and 
each row element Mp,i = e

p

i
, i ∈ [1,R] represents each of the R predicted iteration interval 

points (timestamps). Now, observe that for any designated element in M , we can search 
for elements belonging to the remaining rows that have timestamps close to the timestamp 
of the designated element (as shown in line 10). Then, the elements found in the remaining 
rows along with the original designated element form a candidate solution Z, for which we 
can obtain dZ.

Accordingly, we can consider a designated row, and we can iteratively consider all its R 
elements and define R candidate solutions Z, each one associated to each of the designated 
elements of the designated row. Following this procedure, the optimal solution Z∗ will be 
the one that exhibits the minimum dZ∗ . To guarantee we do not miss any early element (on 
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the timeline), we set the designated row to be that with the minimum (earliest) timestamp 
(i.e., Mp,1 ) (see line 4). Finding the designated row costs �(n) . The total computation com-
plexity is O(R2n) . The outer loop iterates over the R elements of the designated row and 
the inner loop iterates over the R elements of each of the remaining n − 1 rows to construct 
candidate solutions. During the search, we only need to maintain the currently best solution 
Z∗ (i.e., n elements) and the associated dZ∗ . Therefore, it requires space complexity �(n) . 
Along with the storage of the Rn elements of the matrix M , the space complexity is O(Rn).

FullGridScan  In GridScan, R candidate solutions Z are constructed, each associated 
with a dZ . Due to its design, it is possible that GridScan will miss some solutions with 
a smaller dZ . In order to discover potentially better solutions during the search, we also 
implement FullGridScan as a better baseline than GridScan. FullGridScan iterates over all 
n rows (i.e., workers) of the matrix M , each time defining a designated row Mp, p ∈ [1, n] 
and applying GridScan using Algorithm 1, but skipping line 4. Therefore, FullGridScan 
considers Rn candidate solutions compared to the R candidate solutions considered by 
GridScan. As FullGridScan needs to apply GridScan n times, its computation complexity 
is O(R2n2) . The space complexity of FullGridScan remains the same as GridScan.

5.2 � Search by ZipLine

We are now in position to describe ZipLine, our proposed method to solve the optimization 
problem. Given n workers each represented by set Sp = {e

p

1
, e

p

2
, ..., e

p

R
} where p ∈ [1, n] , R 

is the number of future iterations being considered, and ep
i
 is a triple ⟨t, p, i⟩ in which t is the 

ending timestamp of the ith future iteration of worker p (that is, p and i are the meta data 
identifying each time point ep

i
 ), ZipLine (Algorithm 2) determines the optimal solution Z∗ 

in two steps:
Step 1  (Initialization). We first merge the elements of all sets Sp = {e

p

1
, e

p

2
, ..., e

p

R
} , 

p ∈ [1, n],R ∈ ℕ into a set � such that � = ∪
n
p=1

Sp . Note that since ep
i
 is a triple ⟨t, p, i⟩ , 

there are no duplicate elements in merging all sets Sp into � . We then sort the elements in 
� in the ascending order of their timestamp t. Thus, the elements in � are ordered by time, 
where the leftmost element represents the earliest event. In case of multiple elements hav-
ing the same timestamp value, the order of these elements can be arbitrary, which does not 
affect the final solution. To enable the optimization strategy in ZipLineOptBS (described in 
Sect. 5.3.2), here we sort the elements having the same timestamp value in ascending order 
by their worker id.

We then initialize Z with n elements of � , by iteratively taking the leftmost element of 
� and putting it into Z, while making sure that the n elements in Z have unique p values 
(that is, the n elements in Z come from n workers) (line 5–9). This is achieved by continu-
ously adding the leftmost element of � to Z, one at a time, and replacing the element of Z 
having the same p value as the newly added element from � until we have n elements in 
Z. This process is the same as if we pick one element of each Sp starting from the leftmost 
of each Sp and these picked elements are most adjacent to each other with respect to their 
timestamps. Then, we compute dZ of the candidate solution Z (i.e., the difference between 
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minimum and maximum timestamps of Z, representing a worker’s waiting time). Initially, 
Z∗

= Z and dZ∗ = dZ.
Step 2 (Iterative procedure). Starting from the leftmost element the method iteratively 

scans all elements of � one at a time, until � is empty (line 13-23). At each iteration, the 
method constructs a candidate solution Z. Recall that a candidate solution Z must contain 
one element from each set Sp = {e

p

1
, e

p

2
, ..., e

p

R
}, p ∈ [1, n],R ∈ ℕ (see Fig. 9). As new ele-

ments are evaluated, the method only needs to check the worker id p of each element ep
i
 in 

the current solution Z. This is to prevent adding an element to the solution that comes from 
the same set Sp (i.e., same worker p). Whenever a new element is added to a solution Z, the 
previous element of Z that has the same p value with the newly added element from � is 
removed/replaced. For each solution Z, the associated dZ is computed by searching for the 
element of Z that has the smallest timestamp and taking the difference between the times-
tamp of the new element and the smallest timestamp. If dZ is smaller than the current dZ∗ , 
then we set Z∗

= Z and dZ∗ = dZ.
At the end of the process, after Rn iterations (the size of � ), the optimal solution Z∗ that 

exhibits the smallest dZ∗ is found. At each iteration, the removal or replacement operation 
of an element costs O(n) . Also, since the elements in Z may not be sorted after the replace-
ment operations, it takes O(n) to find the element in Z with the earliest timestamp to com-
pute dZ . Therefore, the total computation complexity of ZipLine is O(Rn2) . The algorithm 
only uses �(n) space to store Z∗ and O(Rn) for the storage of all elements in � , therefore 
the space complexity is O(Rn) . 

Fig. 9   ZipLine scans all elements on the timeline, from left to right, one element at a time. When a solu-
tion Z of n distinct elements is formed, dZ is computed. At the end of the process the optimal solution Z∗ 
is found that yields the minimum d∗

Z
 . If multiple solutions exhibit the same d∗

Z
 s, then the solution Z that 

occurred first (chronologically) is selected by Corollary 1. In this example, d6 and d10 have the same mini-
mum value — Z6 associated with d6 is chosen as the optimal solution (Color figure online)
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5.2.1 � ZipLine optimality

We claim that our greedy algorithm, ZipLine, leads to an optimal solution and we provide a 
formal proof of the claim.

Theorem 2  (ZipLine optimality) ZipLine leads to an optimal solution Z∗.

Proof  (Sketch) The proof is based on propositions of two lemmata. Lemma 1 claims that 
ZipLine always finds an acceptable solution. Lemma 2 claims that there is not a better one. 	
� ◻

Lemma 1  ZipLine always finds an acceptable solution. An acceptable solution Z includes 
one element from each set Sp = {e

p

1
, e

p

2
, ..., e

p

R
}, p ∈ [1, n],R ∈ ℕ.

Proof  In Algorithm 2, a candidate solution Z is first initialized in the while loop in Lines 
5–9 to contain n elements of � where n is the number of workers, and Line 7 ensures 
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that there are no two elements in Z having the same p value (i.e., coming from the same 
worker). That is, the initialized Z contains n timestamps, one from each worker. Thus, it 
is an acceptable solution. Other candidate solutions are formed in Lines 14-19, which also 
ensures that Z contains n elements and no two elements have the same p value. Thus, all 
candidates are acceptable solutions. Therefore, ZipLine finds an acceptable solution. 	� ◻

Lemma 2  ZipLine produces a solution Z∗ that is no worse than other solutions X. In other 
words, for any acceptable solution X ≠ Z∗ , it holds that dX ≥ dZ∗.

Proof  Assume that X = ⟨x1, x2,… , xn⟩ is an acceptable solution, where n is the number of 
workers , xi ∈ � , different xi ’s have different p values (i.e., they come from different work-
ers), and x1 < x2 < ... < xn (ordered according to the timestamp). There are two possible 
cases: 

1.	 There exists o ∈ � , such that o ∉ X and xj < o < xk (where x < y means that x comes 
before y in � ), where j, k ∈ [1, n] and j < k . There are three situations in this case:

•	 o’s worker id (i.e., its p value) is identical to that of x1 . In this situation, Lines 7-8 
and Lines 17-18 in Algorithm 2 would replace x1 with o, resulting in a better can-
didate solution Z with dZ ≤ (xn − x2) ≤ (xn − x1) = dX (where xn − x2 or xn − x1 is 
the difference in timestamps between xn and x2 or xn and x1 ). That is, Z is a better or 
equally-good solution compared to X.

•	 o’s worker id (i.e., its p value) is identical to that of xn . ZipLine would form a candi-
date solution Z before reaching xn since x1,… , o,… , xn−1 form a candidate solution 
(that is, it contains n timestamps, one from each worker), controlled by the while 
loops (Lines 5-9 and Lines 15-19). Since dZ = (xn−1 − x1) ≤ (xn − x1) = dX , Z is a 
better or equally-good solution compared to X.

•	 o’s worker id is identical to that of an element x ∈ X , where x1 < x < xn (i.e., 
x ∈ {x2, ..., xn−1} ). Assuming that o is from the same worker as xj where 1 < j < n , 
ZipLine would choose between o and xj the one with the later timestamp to form 
a candidate Z due to the while loops in Lines 5–9 and Lines 15–19. In this case, 
dZ = xn − x1 = dX . That is, Z is as good as X.

2.	 There does not exist a triple o ∈ � such that o ∉ X and xj < o < xk (where x < y means 
that x comes before y in � ), where j, k ∈ [1, n] and j < k (that is, xi ’s are next to each 
other in the sorted � ). In this case, X would be a candidate generated by ZipLine (Lines 
5–9 and Lines 15–19 in Algorithm 2 ensure this).

Since ZipLine returns the candidate Z∗ with the lowest dZ∗ among all the candidates it gen-
erates, ZipLine returns a solution no worse than X. 	�  ◻

Lemmas 1 and 2 prove our claim stated in Theorem 2 that ZipLine leads to an optimal 
solution Z∗.

5.3 � ZipLine optimizations

As ZipLine scans through new elements of � , a new candidate solution Z′ is formu-
lated every time by replacing an element of the previous candidate solution Z with the 
new element. Recall that a candidate solution Z must contain one element from each set 
Sp = {e

p

1
, e

p

2
, ..., e

p

R
}, p ∈ [1, n],R ∈ ℕ . Satisfying this condition and searching for min(Z�

) 
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in Z′ to compute dZ′ dominate the cost of ZipLine. Since the elements in Z′ may not be 
ordered according to their timestamps due to the replacement operations in previous itera-
tions, the search for min(Z�

) costs O(n) . Thus, the cost of ZipLine becomes O(Rn2) for scan-
ning through the Rn elements in �.

Below, we discuss two optimizations that manage to effectively reduce the ZipLine cost 
to O(n log n) , by reducing the cost of the replacement operation and the search of min(Z�

) 
in Z′ to O(log n) . The first optimization takes advantage of the fact that elements are sorted 
in the time axis, from the earliest to the latest to prune the search space of finding the 
min(Z�

) . The second is an implementation optimization that utilizes a more efficient data 
structure to boost the search process.

5.3.1 � Search space pruning optimization (ZipLineOpt)

In this version of ZipLine, we utilize an array data structure to store and keep the elements 
of a candidate solution Z′ in the temporal order of their arrival at the array. When a new 
element of � is evaluated by ZipLine, we know that the oldest element in the array has the 
minimum timestamp and the most recently added element has the maximum timestamp. To 
determine the min(Z�

) there are two cases: (i) with probability �, � ∈ (0, 1) , the oldest ele-
ment in the array has the same color as the newly added element, and therefore we simply 
remove the oldest element and set the new minimum timestamp to be the one succeeding 
it in the array. After adding the new element, we can compute dZ′ directly due to random 
access to the array data structure. Thus, the cost of searching for min(Z�

) is reduced to O(1) 
with probability � ; (ii) with probability 1 − �, � ∈ (0, 1) , the oldest element in the array 
does not have the same color as the newly added element, and therefore there is no need to 
re-compute the dZ′ , since it is larger than dZ by Theorem 3.

Theorem  3  Suppose ei ∈ Z and e1 < e2 < ... < en where i ∈ [1, n] and |Z| = n and let 
dZ = en − e1 . Now, assume we add a new element e′ , where e′ ≥ en to formulate a new solu-
tion Z′ . To satisfy that |Z�| = n , we need to remove the element ej from Z that has the same 
color as e′ . If j > 1 , then dZ′ ≥ dZ , where dZ� = e� − e1.

Proof  Let d� = e� − en . We know d′ ≥ 0 as e′ ≥ en . By definition, 
dZ� = e� − e1 = d� + en − e1 = d� + dZ ≥ dZ . 	�  ◻

In either case, we still have to remove the element of the same color from the array data 
structure before adding the new element; otherwise, ZipLine collapses and better candi-
dates may be missed. To do so, for case (i) we just need to add the new element to the end 
of the array and treat the current second element of Z as the first one. For case (ii), we need 
to traverse the array Z until the element with the same color as the new element is found, 
which is then removed by shifting the elements after the found element by one spot. This 
search and delete operation costs O(n) and occurs with probability 1 − � . At last, we add 
the new element to Z and move on to the next element in � . We call this variant of ZipLine 
as ZipLineOpt. The main difference between ZipLine and ZipLineOpt is that in ZipLineOpt 
Z is kept sorted so that there is not need to search Z for min(Z) (i.e., the smallest timestamp 
value in Z) to compute dZ and we can take advantage of the case (i) with probability �.

Since � has Rn elements, the computation cost of ZipLineOpt becomes 
� ⋅O(Rn) + (1 − �) ⋅O(Rn2) . Table 4 shows that empirically it is the fastest when n ≤ 100.
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5.3.2 � Implementation optimization (ZipLineOptBS)

To further optimize ZipLineOpt, we focus on the case of 1 − � which requires O(n) traversal 
of the array Z to remove the element of the same color as the newly added element. The 
optimization is achieved by making use of the auxiliary data structure M that is used to 
hold all the SP

i
 ’s for p = [1 ∶ n] and i = [1 ∶ R] before forming � . Specially, M is a n × R 

matrix that stores the R future timestamps of n workers, each row holding the R timestamps 
of a worker. M was used to construct � and was not used after � was constructed by the 
ZipLine or ZipLineOpt algorithm. In this optimized version of the algorithm (denoted as 
ZipLineOptBS), we use M to help locate the element in Z that has the same color with the 
new element from �.

For every element of � , its color (or worker id), its iteration index i (the ith future itera-
tion of a worker p) and the timestamp associated to that index i are stored as an element 
of the matrix M . Thus, for any new element ep

i
 of � to be added to Z, we can retrieve that 

worker’s previous element ep
i−1

 from M in O(1) based on its worker id p ∈ [1, n] and itera-
tion index i ∈ [1,R] . Once we get the timestamp of the worker’s previous iteration ep

i−1
 , we 

can locate it in the array Z by the timestamp value using a binary search (BS) algorithm, 
since the elements of Z are sorted (in an ascending order). The BS reduces the search cost 
to O(log n) . Thus, the cost of the 1 − � case is reduced to (1 − �) ⋅O(Rn log n) . The use of 
the auxiliary data structure M with binary search (BS) allows ZipLineOptBS to bring the 
cost of ZipLine down to � ⋅O(Rn) + (1 − �) ⋅O(Rn log n) , where � ∈ (0, 1).

In a rare case in which a few contiguous elements of different colors (i.e., different 
workers) in Z have the same timestamp value, the algorithm can still find the target ele-
ment by locating the first and the last elements with the same timestamp in the array Z 
in O(log n) and then traversing only between the two to find the one with the same color 
(worker id) as the target element by following the worker id order. Due to the fact that the 
elements with the same timestamp value are ordered by their worker id, this search opera-
tion costs O(log k), k ≤ n using the binary search.

6 � Experimental evaluation

In this section, we run experiments that aim to evaluate: 

A.	 The runtime performance of the ZipLine algorithm and its variants compared to two 
sensible baselines, FullGridScan and GridScan. We also evaluate the scalability perfor-
mance of ZipLine as a function of the number of workers n and the parameter R.

B.	 The performance of the ElasticBSP model compared to the BSP, ASP and state-of-art 
synchronization models, such as SSP. We are interested in finding which one converges 
faster and/or to a higher accuracy, and also which one is able to complete a fixed number 
of epochs faster.

6.1 � ZipLine performance

Dataset To evaluate the performance of algorithms, we generate synthetic data-sets based 
on various realistic scenarios of the number of workers n and values of the parameter R. 
For each worker we randomly define its iteration interval to be in the range of 1000ms to 
1500ms. Note that the iteration interval depends on the computational complexity of the 
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DNN model, the mini-batch size and the GPU model. Therefore, whether the time unit is 
millisecond or second does not affect the computing time of the algorithm as long as the 
total number of time points generated is same.

We built a generator4 which takes the number of workers n and the iteration interval 
range as arguments to simulate iteration interval time points of the n workers. The genera-
tor simulates the iterations of all the workers for a short period and outputs the time points 
of the iterations of all the workers close to the same time window. Our algorithms then 
take the generated data of the recent time window such as the last two iteration time points 
(gradient push requests timestamps in practice) to predict the next R future iterations for 
all the workers and start to search the optimal synchronization time window which yields 
the least waiting time of all the workers. The iteration interval ip assigned to each worker p 
is randomly sampled from an uniform distribution in range 1000 to 1500 milliseconds as 
we specified earlier. The initial time sp of each worker is obtained by adding a base starting 
time to a randomly generated small number sampled from an uniform distribution in range 
10 to 50 milliseconds. We add this small number to simulate latency between independent 
parallel processes initializing on the different computers in a cluster. To estimate the jth 
iteration time point in the future for worker p, we calculate j ⋅ ip + sp . Table 2 lists the dif-
ferent configurations of the datasets for n and R.

SmallR ( R = 15 ) is used to evaluate the performance of algorithms as a function of the 
number of workers n. LargeR ( R = 150 ) is used to evaluate the scalability of the algo-
rithms as a function of R.

Environment All experiments about ZipLine’s runtime performance were run on a server 
with 24x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and 64GB ram. The running 
environment was Ubuntu 16.04. The algorithms and the datasets generator were developed 
in C++11.

6.1.1 � Zipline ability to find the optimal solution

We have provided theoretical results about the optimality of Zipline in Sect. 5.2.1. Here, 
we provide empirical evidence of Zipline’s ability to find the optimal solution and compare 
it to the ones found by the competitive algorithms. We experiment with the datasets of 
Table 2. For each run scenario, we compute the dZ∗ of the solution Z∗ that each algorithm 
is able to find (Table 3), along with the associated computation time cost (Table 4). The 
results reported are an average of 10 runs. The results suggest that the family of the ZipLine 
methods always finds the optimal solution Z∗ – same as the one found by the exhaustive 
method, FullGridScan. But, it is able to do so one or two orders of time faster (depend-
ing on the ZipLine variant considered). This is because the search space of candidate solu-
tions evaluated by FullGridScan is much larger than that of ZipLine. On the other hand, the 

Table 2   Synthetic datasets with 
varying number of n and R 

SmallR n 10 100 200 400 600 800 1000
R 15 15 15 15 15 15 15

LargeR n 10 100 200 400 600 800 1000
R 150 150 150 150 150 150 150

4  The code of the generator is available at https://​github.​com/​xingz​haoo/​Elast​icBSP.

https://github.com/xingzhaoo/ElasticBSP
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GridScan heuristic, while is comparable to ZipLine in terms of speed, consistently fails to 
find the optimal solution. Among the variants of ZipLine, ZipLineOptBS adds some over-
head compared to ZipLineOpt for fewer workers, but as the number of workers increases, it 
is able to compensate the cost.

6.1.2 � ZipLine scalability

The number of candidate solutions Z formed by elements of the Matrix M:n × R increases 
exponentially to the number of workers n and polynomially to the value of the parameter R 
(i.e., Rn ), as described in Sect. 5.1. We have showed in Table 4 that as the number of work-
ers n increases, the computation time of FullGridScan increases much faster than that of 
the ZipLine family of algorithms. We have also discussed that for a fixed number of work-
ers, as R increases the computation time of FullGridScan increases much faster.

Table 3   Search accuracy comparison on dZ∗ — the least waiting time in milliseconds/ms found by algo-
rithms

Bold italics shows the largest waiting time of an algorithm found, the larger number indicates the worse 
performance with respect to the search result
Bold highlights the worst performance

Number of workers (n) 10 50 100 500 1000 10 50 100 500 1000 Success
Predicted iterations (R) 15 15 15 15 15 150 150 150 150 150 rate

ZipLine 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
ZipLineOpt 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
ZipLineOptBS 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
FullGridScan 599 1103 1228 1351 1403 518 1055 1175 1307 1382 100%
GridScan 599 1103 1345 1357 1405 518 1103 1253 1344 1401 30%

Table 4   Average computation 
time of algorithms in 
microseconds/�s for finding 
an optimal solution for one 
synchronization

We ran the simulation generator to get the data for one synchroniza-
tion decision, ran 10 trails on the data for each method with different n 
and R, and then take the average of 10 runs
Bold shows the minimum computing time cost of an algorithm. The 
smaller number indicates the better performance of an algorithm
Bold italics denotes the exception—despite GridScan achieves some 
of the best performance (i.e., minimum computing time cost), it only 
provides a 30% chance to find the correct result empirically

Algorithm 10 Workers 100 Workers 1000 Workers

R=15 R=150 R=15 R=150 R=15 R=150

ZipLine 1.49e2 1.32e3 6.37e3 4.99e4 2.53e5 2.38e6
ZipLineOpt 0.90e2 8.08e2 2.46e3 1.93e4 9.39e4 7.78e5
ZipLineOptBS 1.24e2 1.15e3 2.65e3 2.30e4 7.68e4 5.66e5
FullGridScan 1.54e3 4.67e4 8.13e4 2.15e6 4.04e6 2.07e8
GridScan 1.68e2 5.50e3 1.11e 3 4.38e4 7.45e 3 2.57e 5
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To further elaborate on the behavior of the ZipLine variants, in Fig. 10 we provide an 
illustration of their run time comparison (we do not plot FullGridScan to improve the com-
parative analysis of the ZipLine variants). It can be observed that when n is small (e.g., 
below 100), ZipLineOpt is faster than ZipLineOptBS. But, as n increases (e.g., above 200), 
ZipLineOptBS outperforms ZipLineOpt. That is because ZipLineOptBS has to maintain two 
auxiliary data structures and accessing the second one (the table M ) introduces extra cost, 
compared to ZipLineOpt. However, this extra cost is amortized into many scan iterations 
when the number of elements of � is large (i.e., Rn) (i.e., most iterations are very fast 
and only few of them are expensive). Observe in Fig. 10 that for R=150, ZipLineOptBS 
grows significantly slower than ZipLineOpt. Same trend is depicted for R=15 as well – as 
n increases, ZipLineOptBS outperforms ZipLineOpt. Therefore, we recommend to employ 
ZipLineOpt when n is small (e.g., n ≤ 100) and employ ZipLineOptBS otherwise. Most 
research and industrial labs can typically afford a GPU cluster with 4 to 8 nodes (work-
ers), in which scenario ZipLineOpt is preferred. The GridScan heuristic can serve as an 
alternative when one is willing to sacrifice accuracy (i.e., finding optimal solution) to gain 
in scalability.

6.2 � Distributed deep learning using ElasticBSP

We compare the performance of ElasticBSP with BSP, SSP and ASP5 by training DNN 
models from scratch on a parameter server setting. For SSP, we set its threshold parameter 
to s=3 to ensure it convergences and achieves higher accuracies, as suggested in Ho et al. 

Fig. 10   Computation time cost comparison of ZipLine and its variants. The cost of ZipLine and its vari-
ants increases as the number of workers n and the value of parameter R increases. Both ZipLineOpt and 
ZipLineOptBS outperform the basic ZipLine. For larger values of R ( R ≥ 100 ), ZipLineOptBS outperforms 
ZipLineOpt (Color figure online)

5  BSP is predominantly used in industry and is supported by PyTorch, TensorFlow and MXNet. The latter 
two also support ASP. SSP is available in Petuum and we implemented it into MXNet. Other state-of-the-
art synchronous models for the parameter server framework that are not used in practice or incompatible 
with MXNet are not included.
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(2013). For ElasticBSP, we set R = {15, 30, 60, 120, 240} . In case of training large-sized 
DNN models on large-scale datasets of higher image resolution, we additionally consider 
R = {480, 960} . We ran each experiment three times and report the median result of the 
overall test accuracy.

Platform We implemented ElasticBSP with ZipLineOpt into MXNet (Chen et al., 2015) 
which supports the BSP and ASP models. The running environment is Ubuntu 16.04.

Cluster Environment We use the GPU cluster maintained by SOSCIP6, which consists of 
16 IBM POWER8 machines. Each machine has 4 NVIDIA P100 GPUs, 512 GB ram and 
2 × 10 cores. Each machine connects directly to a switch with 100 Gbps bandwidth (shared 
by all the 16 machines). Since this GPU cluster is shared by many users from a number of 
institutions, we are only allowed to use up to 4 machines at a time and each job can only 
take up to 24 hours. Thus, our experiments were run on 4 IBM POWER8 machines. Note 
that although this is a homogeneous environment where the speeds of GPUs are the same, 
the straggler problem still exists in our experiments mainly due to communication delays. 
Communication delays arise when users’ activities on the network are intensified which 
fully occupies the switch memory and overloads the CPU of the switch.

Datasets & DNN models We first train a 5-layer convolutional neural networks down-
sized from AlexNet (Krizhevsky et al., 2012), ResNet-50 and ResNet-100 (He et al., 2016) 
on two image classification datasets CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 
2009) with 28 × 28 pixels resolution. Then, we move on to train a larger DNN model, 
VGG-16 (Simonyan and Zisserman, 2014) on the large dataset ImageNet 1K (Deng et al., 
2009) with 256 × 256 pixels resolution.

6.2.1 � C3F2‑Net on CIFAR‑10

Since CIFAR-10 has smaller pixels resolution ( 28 × 28 ) than ImageNet 1K, we downsized 
the AlexNet (8 layers) to a smaller sized neural networks containing 3 convolutional layers 
and 2 fully connected layers with smaller widths. We name this 5-layer DNN model C3F2-
Net to distinguish it from AlexNet7.

To train C3F2-Net, we set the mini-batch size to 128, the number of epochs to 400, 
the learning rate to 0.001 and the weight decay to 0.0005. This setting is the same as the 
one for AlexNet in (Krizhevsky et al., 2012) except for the learning rate which was set to 
0.0001 in (Krizhevsky et al., 2012)8. The aforementioned setting is applied to all the dis-
tributed synchronization models that we compared with for a fair comparison.

As can be observed in Fig. 11, ElasticBSP converges faster and to higher accuracy than 
the rest of the synchronization models. BSP converges to a higher accuracy than ASP and 
SSP, but is slower. Regarding the effect of the parameter R of ElasticBSP, as R increases, 

8  We did not use 0.0001 as the learning rate is because it led to too long training time. Note that other set-
tings may lead to better predictive performance. However, hyperparameter tuning for a deep model is not 
a focus of this paper, and thus we did not search for the best setting of the parameters for our method. We 
focus on comparing the synchronization methods in terms of their convergence rate and converged accuracy 
under the same hyperparameter setting. Different methods may reach their best performance under different 
settings.

6  https://​www.​soscip.​org/
7  AlexNet was designed to train on ImageNet 1K with 1,000 classes and a million training samples, each 
sample has 256 × 256 pixels resolution. Since it takes long time to train AlexNet, to get results of 24 experi-
ments (3 runs per parallel paradigm) faster, we reduce the size and layers of AlexNet for CIFAR-10 with 10 
classes and 50,000 training samples, each sample of which only has 28 × 28 pixels resolution.

https://www.soscip.org/
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ZipLineOpt requires more computation time to determine the optimal synchronization 
time, for each synchronization barrier imposed. As a result, ElasticBSP with larger R has 
larger computation cost. This is done without any significant benefit to the accuracy, there-
fore smaller R values are preferred for smaller models.

Irrelevant to accuracy, the fastest model to finish the 400 epochs is SSP, followed by 
ASP, ElasticBSP (R={15, 30}) and BSP, meaning that ElasticBSP is faster than BSP due 
to the reduction in worker waiting time.

6.2.2 � ResNet‑50 and ResNet‑110 on CIFAR‑100

To train a ResNet model, we set the mini-batch size to 128, epoch to 300, learning rate to 
0.5, decayed by 10 after epoch 200 for both ResNet-50 and ResNet-1109. The results are 
shown in Figs. 12 and 13. For ResNet-50 in Fig. 12, ElasticBSP converges faster and to 
a slightly higher accuracy than BSP. Besides, ElasticBSP converges to a slightly higher 
accuracy than ASP and SSP. ResNet-110 has a similar model size to ResNet-50, but takes 
much more computing time due to its deeper convolutional layers. Thus, when computa-
tion time is long and communication time is relatively short, there is little opportunity to 
save on communication time during training. As shown in Fig. 13, ElasticBSP converges 
at a similar rate to BSP, but reaches to slightly higher accuracy. Regarding the effect of the 
parameter R of ElasticBSP, as R increases to 120, its training time becomes slightly larger 
than that of BSP due to extra computation time required by ZipLineOpt to compute the 
time to impose a synchronization barrier.

ASP and SSP converge faster, but require more training time than ElasticBSP and BSP. 
Recall that ASP and SSP have no bulk synchronization barriers therefore have larger itera-
tion throughput causing faster convergence than ElasticBSP and BSP. But larger iteration 
throughput introduces more frequent communication between workers and the server, and 

Fig. 11   C3F2-Net on CIFAR-10 dataset ( n = 4 ) (Color figure online)

9  We tried the hyper-parameters setting in the original work (He et al., 2016) and did not get a better accu-
racy than our setting.
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leads to an increased number of weight updates. Meanwhile, weight updates have to be 
computed in order (as mentioned in Sect. 2). Thus, their tasks are queued on the server, 
which introduces extra delay. We further elaborate on this issue in Sect. 6.2.5. A discussion 
of why ASP and SSP converge faster but take more training time than BSP can be read in 
Zhao et al. (2019a).

On ResNet models, the faster model to finish the 300 epochs is ElasticBSP, followed 
by BSP, SSP and ASP. An exception is the ElasticBSP (R={120, 240}), which are slower 
than BSP on ResNet-110.

Fig. 12   ResNet-50 on CIFAR-100 dataset ( n = 4 ) (Color figure online)

Fig. 13   ResNet-110 on CIFAR-100 dataset ( n = 4 ) (Color figure online)
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6.2.3 � VGG‑16 on ImageNet 1K

In this experiment, we train VGG-16 on the ImageNet 1K dataset. We used the hyper-
parameters setting in the original work (Simonyan & Zisserman, 2014) except for the num-
ber of epochs. We set mini-batch size to 256, epoch to 19,10 learning rate to 0.01, decayed 
by 5 after epoch 10, 15, 18. Weight decay is set to 0.0005. The results are shown in Fig. 14.

Compared to distributed paradigms with zero staled gradient updates, such as BSP, 
ElasticBSP converges 1.77× faster and achieves 12.6% higher final accuracy. Compared 
to distributed paradigms with staled gradients updates, ElasticBSP is learning faster than 
SSP and ASP despite the fact that it also has staled gradient updates during training. We 
also observe that while both SSP and ASP complete the fixed 19 epochs faster than Elas-
ticBSP, they fail to learn. This is due to staled gradients that are constantly present in the 
training process. Note that for a fixed training time or fixed number of epochs (e.g., 19), 
ElasticBSP always converges to a higher accuracy than the other synchronization models.

VGG-16 is the largest model size in our analysis, containing 3 fully connected layers 
(FCLs) that are very sensitive to the staled gradient updates, similarly to the DNNs con-
taining 2 FCLs in Fig. 11 (both have similar learning curves). ASP is unable to learn due to 
the large number of staled gradients allowed during training. SSP can hardly learn despite 
it restricts the staleness of its gradients using within a small fixed staleness threshold (e.g., 
3).

Since VGG is the largest convolutional neural network model, we experimented with 
additional two larger values of R for ElasticBSP (i.e., R = {480, 960} ). We wanted to 
see if increasing the computation time of ZipLine and possibly introducing larger c-staled 
gradients (introduced by a larger R) might harm the convergence speed and accuracy of 

Fig. 14   VGG-16 on ImageNet 1K dataset ( n = 4 ) (Color figure online)

10  The GPU cluster that we used only allows a job to run up to 24 hours. Given this time constraint, with 
batch size 256, the most epochs VGG-16 can complete on ImageNet 1K using the baseline model (i.e., 
BSP) is 19. Without the time constraint, one can expect that all distributed paradigms may converge to a 
higher accuracy on ImageNet 1K.
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ElasticBSP. The results in Fig. 14 show there is only a small variance introduced by the 
different Rs, meaning that increasing the value of R does not significantly harm the perfor-
mance of ElasticBSP. This is due to the fact that the computation time of ZipLine is rather 
negligible compared to the data transmission time of the parameters.

On VGG-16 model, the fastest model to finish the 19 epochs is ASP, followed by SSP, 
ElasticBSP and BSP. An exception is ElasticBSP (R=15), which is slightly slower than 
BSP.

Lastly, we add DSSP (Zhao et  al., 2019a), which is Dynamic SSP (described in the 
related work section) for comparison. Figure  14 shows DSSP with the threshold range 
s ∈ [3, 15] is better than SSP but is inferior to ElasticBSP.

6.2.4 � ResNet‑50 on ImageNet 1K

Having observed the results of ResNet models on the small dataset CIFAR-100 with low 
pixels resolution in Sect.  6.2.2, we are curious about whether ElasticBSP has the same 
performance on a large dataset with high pixels resolution when training ResNet-50. In 
addition, we also include DSSP in the comparison.

The result in Fig. 15 shows that ElasticBSP with different R values have the similar per-
formance as BSP despite a few R values have a slightly faster convergence speed than BSP. 
This result is consistent with the results in Figs. 12 and 13 in which we observe ResNet-50 
has better performance than ResNet-110 in comparison with BSP. As the ratio of commu-
nication to computation time decreases, there is less room we can save on the training time. 
Note that ResNet-110 has 60 more convolutional layers than ResNet-50 which implies its 
computation time is approximately doubled. Now that we use the ImageNet 1K dataset, 
the increase of the dimension of the input data also increases the computation time of 
ResNet-50. In Fig. 12 the dimension of the input data is 784 versus the input data dimen-
sion 65,536 in Fig. 15 which sheds light on why ElasticBSP has better performance than 
BSP on CIFAR-100 than it is on ImageNet 1K for ResNet-50.

To train ResNet-50 on ImageNet 1K, we set the mini-batch size to 256 and epoch to 99 
since BSP can complete 99 epochs with the mini-batch size in 24 hours under the testing 

Fig. 15   ResNet-50 on ImageNet 1K dataset ( n = 4 ) (Color figure online)
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policy restriction (see the footnote in Sect. 6.2.3). We set learning rate to 0.2, decayed by 
10 after epoch 80, 90.11 The aforementioned setting is applied to all the distributed syn-
chronization models for a fair comparison.

In Fig. 15, both ElasticBSP and BSP complete 99 epochs, SSP completes 90 epochs, 
DSSP completes 82 epochs and ASP completes 78 epochs in 24 hours. We set the stale-
ness threshold s to 3 for SSP and the staleness threshold range s ∈ [3, 15] for DSSP. We 
can observe that ElasticBSP and BSP converge to higher accuracy than the others despite 
DSSP, ASP and SSP converges faster in descending order.

6.2.5 � Discussion

The results above, run on different sizes of DNN model architectures, provide empirical 
evidence that ElasticBSP converges to higher accuracy than BSP for large DNNs and can 
have less training time when R is not too large for the case of small-sized DNNs, and not 
too small for the case of large-sized DNNs.

In general, ElasticBSP works particularly well on DNNs with fully-connected layers 
(FCLs). As the size of the DNNs with FCLs grows larger, ElasticBSP shows its superior 
performance with respect to both convergence speed and accuracy. Note that the variation 
in the performance of ElasticBSP, BSP, SSP and ASP on different DNNs is expected. The 
performances of C3F2-Net and VGG-16 are similar to each other, but different from those 
of ResNets. C3F2-Net contains 2 FCLs and VGG-16 has 3 FCLs, whereas ResNets has no 
FCLs and therefore fewer model parameters (i.e., smaller size).

Convolutional layers (CVLs) require intensive computing time for matrix dot product 
operations while computing for FCLs use simple linear algebra operations (Zhao et  al., 
2019a). Training FCLs requires much less computation time compared to CVLs, while 
their representation consists of many more parameters than CVLs leading to larger model 
sizes. On the other hand, training convolutional neural networks without FCLs, such as 
ResNets, requires much more computing time, but consumes less communication time due 
to the smaller model size (compared to FCL networks). When the ratio of communication 
time to computation time is small, there is less room to save on the training time. More 
detailed analysis of the different behavior on DNNs with different ratios of computation to 
communication time can be found in Wang and Joshi (2019). In addition, FCLs are sensi-
tive to the staled gradient updates since their representation consists of a large number of 
parameters (many more than those of CVL representations that consist of shared param-
eters (Zhao et al., 2019a)). Zhao et al. (2019a) provide a thorough rationale on the different 
performances of ASP, BSP and SSP on distributed training of various DNN models, with 
or without FCLs.

In effect, executing parallel SGD using ElasticBSP can be considered as a hybrid model 
alternating behaviors of an ASP-like and a BSP-like mode: An ASP-like mode occurs dur-
ing a synchronization period (a superstep � ) and a BSP-like mode occurs across different 
synchronization barriers b. During the ASP-like mode, staled gradients are generated by 
the stragglers that harm the convergence, which is traded off for large iteration through-
put. At the end of each � , a BSP-like mode is switched on which eliminates all the staled 
gradients by imposing a weight synchronization to all workers. Such a periodic clearing of 

11  We tried the hyper-parameters setting in the original work (He et al. 2016) and did not get a better accu-
racy than our setting.
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the staled gradients mitigates any significant harm to the convergence. The length of � is 
limited by ZipLine following Corollary 1. Therefore, staled gradients with small staleness 
values (due to small lengths of � ) function as a regularizer preventing the learned model 
overfitting the training set.

For DNNs with fully connected layers, we use a moderately small learning rate since 
a large learning rate (step size) amplifies the staled gradients in all asynchronous paral-
lel models and therefore accelerates the divergence. Nonetheless, this limitation does not 
affect the practical use of our ElasticBSP in a wide range of DNN models with fully con-
nected layers that require moderately small learning rates. BSP can use a large learning rate 
since it has zero staled gradients. However, this does not guarantee a faster convergence to 
a higher accuracy than it uses a moderately small learning rate since the landscape varies 
on different optimization functions (Wilson and Martinez 2001). A concrete example of 
moderately small learning rates achieving higher accuracies than large learning rates can 
be found in Wu et al. (2019).

7 � Related work

Several important works closely related to our research have already been cited throughout 
the manuscript. Here, we discuss more works that try to mitigate the slowdown caused by 
the straggler problem of BSP which is predominantly adopted in industry. These works use 
techniques from different areas. For instance, one uses reinforcement learning to find the 
optimal scheme, one uses a generative model to predict the best synchronization time, and 
another one uses adaptive learning rates to mitigate the harm of the staled gradients.

Speculative execution to avoid stragglers jobs Chen et al. (2016) deal with the straggler 
problem by adding k extra backup workers to the distributed training with n workers. In 
this approach, k + n workers are running to train the model. At each iteration, the server 
only accepts the gradient updates of the n workers that arrived faster and moves on to the 
next iteration. The gradients of the k slower workers are dropped. While this approach 
saves on waiting time (as the n faster workers are needed per iteration), the computing 
resources allocated to the k slower workers are wasted.

Bayesian prediction for synchronization   Teng and Wood (2018) use a large complex 
generative model, Bayesian Distributed SGD (BDSGD), to predict the optimal synchroni-
zation time or barrier for workers via first predicting the current run-time (iteration interval 
excluding communication time) of workers based on their historical (run-time) data distri-
butions, and then determine the optimal synchronization barrier according to the predicted 
workers’ run-times. Yet it follows Chen et  al. (2016)’s approach of dropping the gradi-
ents of the slower workers that arrive after the predicted optimal synchronization barrier. 
BDSGD assumes there is a correlation between run-times of workers in each synchroniza-
tion. Thus, it predicts the current run-time of each worker based on the posterior distribu-
tions (i.e., historical run-times of workers). BDSGD requires pre-training on its generative 
model for the run-time prediction and costs more computing resources per prediction in the 
actual DNN model training. Consequently, it increases the training time due to its predic-
tion time cost exceeding the workers’ run-time per synchronization. In practice, it has to 
reuse the result of the synchronization prediction in every few contiguous synchronizations 
to reduce the frequency of running the learned generative prediction model. BDSGD con-
verges to a similar accuracy as BSP with its complex prediction model. Our ElasticBSP 
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converges to a significantly higher accuracy than BSP on large DNNs despite it uses a 
greedy algorithm to solve the optimization problem.

Sparse synchronizations EASGD (Zhang et al., 2015) first proposed to reduce the com-
munication cost by allowing the workers to update weights locally per iteration and to 
synchronize with the server only at a fixed communication period. However, with fewer 
synchronizations, the divergence among local models can result in an error-convergence 
(Wang and Joshi 2019). ADACOMM (Wang & Joshi, 2019) uses periodic-averaging SGD 
(PASGD) for bulk synchronization in which workers are doing local updates for � itera-
tions before a weight synchronization. That way, the communication cost of both uploading 
gradients and downloading weights from the server occurs only once every � iterations. In 
practice, ADACOMM estimates the optimal � for a bulk synchronization of local weights 
based on the training loss, but does not address the straggler problem. In contrary to ADA-
COMM’s approach of assigning the same � to all workers, our ElasticBSP predicts the 
optimal synchronization time for all workers, where each worker can have a different �.

Auto-synchronization-RL   Zhu et al. (2020) proposed to address the straggler problem 
using reinforcement learning (RL) in full automation by formulating the synchronization 
policy as a RL problem. By using the deep Q-learning algorithm (Van Hasselt et al., 2016), 
the learned RL policies were able to speedup the training process on shallow DNNs and 
small datasets. Yet the authors admitted that the work has its limitations and it is not ready 
for the real-world scenario. Our ElasticBSP uses the lightweight but effective greedy algo-
rithm to minimize the waiting time caused by the stragglers. Therefore, we save the time 
cost of a few episodes required by RL on training the RL model to learn the policies before 
it can be deployed to the actual DNNs training. Besides, ElasticBSP demonstrates out-
standing performance on large DNNs and large datasets.

Auto-synchronization-DL Recently, Zhang et al. (2020) proposed AutoSync which auto-
matically optimizes the synchronization policies by first learning the representation of the 
target DNN models (to be trained) and the resource specifications (e.g., the networking 
topology of the cluster, the messaging partitioning and communication) using a few hun-
dreds of trail runs on a neural based simulator, and then starting to discover the optimal 
synchronization policy based on the learned simulator. The neural based simulator can be 
a linear model, a recurrent neural network or a graph attention network. Unlike the RL 
approach, AutoSync builds the fine-grained machine learning based pipeline to search the 
optimal synchronization strategy. AutoSync uses the similar synchronization cost model 
as our ElasticBSP to measure the synchronization time per iteration, and the similar 
approach to estimate an iteration interval of a worker. But these pieces of information are 
vectorized as a part of the representation feeding to the neural based simulator in AutoSync 
training. On the other hand, ElasticBSP utilizes them directly in the lightweight greedy 
algorithm to find the optimal synchronization time. Similar to the RL approach, AutoSync 
requires extra training time for its neural based simulator to learn the representation of the 
target DNN model and the resource specifications. On the contrary, ElasticBSP can be 
used directly to train DNN models without additional time cost and computing resources.

Dynamic soft synchronization Other than BSP, the straggler problem also exists in SSP 
despite that SSP was devised to solve the straggler problem in BSP. DSSP (Zhao et  al. 
2019a) introduces the dynamic staleness threshold to minimize the waiting time for SSP, 
which uses a fixed staleness threshold. By predicting the future iterations for the fastest and 
the slowest workers based on their most recent iterations, DSSP finds the optimal staleness 
threshold between pre-defined lower and upper thresholds of SSP per iteration for the fast-
est workers at run time to minimize the waiting time of the fastest workers. The prediction 
of the future R iterations of workers based on their most recent iteration history is also used 
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in our ElasticBSP. In our experiments, we demonstrated that ElasticBSP is superior to 
DSSP in terms of accuracy.

Adjusting the learning rate of staled gradients Dutta et al. (2018) promoted asynchrony 
(i.e., ASP) and provided a thorough analysis on the parallel SGD with and without synchro-
nization. They proposed an adaptive learning rate scheme to accelerate the convergence 
speed in wall-clock time for ASP. Similar to ElasticBSP, they measure iteration intervals 
(processing time) by using the consecutive push timestamps of each worker. In Dutta et al. 
(2018), the harm that the staled gradients bring to the convergence was diminished by tun-
ing down the learning rate according to the staleness value of the weight parameters at run 
time on the parameter server side. However, the tuning process is expensive on the comput-
ing resources for large DNNs and not scalable when the number of workers increases, since 
it requires the server to always keep a copy of the recently read weight parameters for every 
worker. The authors also confirm that the synchronization is critical to the convergence 
speed and aim to increase the synchronization frequency in the future.

8 � Conclusions

In this paper, we proposed ElasticBSP for distributed DNN model training, using the 
parameter server framework. Our model is orthogonal to other types of DNN training opti-
mizations. ElasticBSP is relaxing the bulk synchronization requirement of BSP and allows 
asynchronous gradient updates to a certain extent to ensure the quality of convergence and 
achieve higher accuracy. As a result, it increases the iteration throughput of the workers, 
limits the staled gradients to a small amount and their staleness values to a small number, 
which brings less harm to the convergence (Ho et al., 2013). ElasticBSP operates in two 
phases. First, R future iterations of each worker are predicted. Then, ZipLine (or any of its 
variants) is applied to determine the time to impose the next synchronization barrier that 
minimizes the overall workers’ waiting time. ZipLine is a one-pass algorithm with linearith-
mic complexity O(Rn log n) and adds a minimal overhead on the server, so it can be eas-
ily ported on popular distributed machine learning frameworks. The experimental results 
show that with a right value of R (tunable) for the size of the DNN model, ElasticBSP 
provides faster convergence than BSP for a number of DNNs while achieving higher (or 
comparable) accuracy than other state-of-the-art synchronization models in the parameter 
server setting, including ASP, SSP and BSP, on different datasets. Overall, our work pro-
vides theoretical and empirical evidence that ElasticBSP offers a better alternative.
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