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The Role of Preprocessing for Word
Representation Learning in Affective Tasks
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Abstract—Affective tasks, including sentiment analysis, emotion classification, and sarcasm detection have drawn a lot of attention in
recent years due to a broad range of useful applications in various domains. The main goal of affect detection tasks is to recognize
states such as mood, sentiment, and emotions from textual data (e.g., news articles or product reviews). Despite the importance of
utilizing preprocessing steps in different stages (i.e., word representation learning and building a classification model) of affect
detection tasks, this topic has not been studied well. To that end, we explore whether applying various preprocessing methods
(stemming, lemmatization, stopword removal, punctuation removal and so on) and their combinations in different stages of the affect
detection pipeline can improve the model performance. The are many preprocessing approaches that can be utilized in affect detection
tasks. However, their influence on the final performance depends on the type of preprocessing and the stages that they are applied.
Moreover, the preprocessing impacts vary across different affective tasks. Our analysis provides thorough insights into how
preprocessing steps can be applied in building an effect detection pipeline and their respective influence on performance.

Index Terms—Word Representation, Language Representation, Pretrained Language Models, Affective Tasks, Text Preprocessing,
Word Embeddings, Emotion Classification, Sentiment analysis, Sarcasm Detection.

✦

1 INTRODUCTION

A FFECTIVE tasks such as sentiment analysis, emotion classi-
fication and sarcasm detection have enjoyed great popularity

in recent years. This success can be largely attributed to the
availability of vast amounts of user-generated natural language
data and the wide range of useful applications, spanning from hate
speech detection to monitoring the sentiment of financial markets,
news articles, and tweets [1], [2], [3].

Most recent models of affect analysis typically employ pre-
trained word (or sentence) embeddings that have been obtained
under the assumption of the distributional hypothesis [4], [5], [6].
The distributional hypothesis suggests that two words occurring
frequently in similar linguistic contexts tend to be more seman-
tically similar, and therefore should be represented closer to one
another in the embedding space. However, while such embeddings
are useful for many natural language processing (NLP) tasks, they
are known to be less suitable for affective tasks in particular [7],
[8], [9]. For example, the pretrained word2vec embeddings [4]
estimate the pair of words ‘happy’ and ‘sad’ to be more similar
than the pair ‘happy’ and ‘joy’, which is counterintuitive, and
might affect the performance of the models that depend on it.

To address the limitations of traditional word embeddings in
affective tasks, several techniques have been proposed, including
task-specific fine-tuning [5], retrofitting [10], representing emotion
with vectors using a multi-task training framework [11] and
generating affective word embeddings [9], [12], [13], to name a
few. Another approach for improving the performance of word
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vectors includes optimization of preprocessing hyperparameters
such as context window size and subsampling [14]. While these
strategies have demonstrated evidence of improving the accuracy
performance in tasks such as word similarity, word analogy, and
others [15], studying their effectiveness in affective tasks has not
received considerable attention and remains less explored.

Our work is motivated by the observation that pre-processing
factors such as stemming, removing stopwords, and many others
make up an integral part of nearly every improved text clas-
sification model, and affective systems in particular [16], [17].
However, little work has been done towards understanding the
role of pre-processing techniques applied at different stages of
affective systems. To address this limitation, the overarching
goal of this research, is to perform an extensive and systematic
assessment of the effect of a range of linguistically motivated
pre-processing techniques (e.g., stemming, stopword removal) as
applied to the training corpora before computing the text repre-
sentations, and evaluated on three categories of affective tasks,
including sentiment analysis, emotion classification and sarcasm
detection. Towards that end, we systematically analyze the effec-
tiveness of applying pre-processing to large embedding-training
corpora before learning word embeddings, an approach that has
largely been overlooked by the community. We investigate the
following research questions: (i) what is the effect of integrating
pre-processing techniques earlier into word embedding models,
instead of later on in a downstream classification model? (ii)
which pre-processing techniques yield the most benefit in affective
tasks? (iii) what is the effect of customizing or modifying the most
common pre-processing methods for learning word representation
learning applied to the embedding-training phase for affective
tasks? (iv) does text pre-processing downstream classification
datasets, customized for a specific affective task, provide any
improvement over using text pre-processing techniques for a
general affective task? (v) which combinations of pre-processing
factors are best suited for each affective task? (vi) which com-
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Fig. 1. Framework of applying pre-processing in different stages in the affect prediction system: (a) Pre and/or (b) Post.

binations of pre-processing techniques are more beneficial when
they are applied to the embedding-training phase and/or which
are more suited when applied to the classification datasets? (vii)
does task-specific pre-processing of word embeddings provide any
improvement over state-of-the-art pre-trained word embeddings,
and if yes, by how much?

Figure 1 illustrates our proposed framework of applying pre-
processing in different stages of developing a classification model
for affect detection, where pre-processing occurs in two places: (a)
at the embedding-training phase (Pre), and (b) at the classification
model building phase (Post). Pre-processing techniques in (a) are
applied to the embedding-training corpus of the embedding model
(e.g., Wikipedia) and in (b) to the classification dataset (e.g., IMDb
movie reviews).

In brief, the main contributions of our work are as follows:

• We conduct a comprehensive analysis of the role of
pre-processing techniques in affective tasks (including
sentiment analysis, emotion classification and sarcasm
detection), employing seven different models, across nine
datasets;

• We perform a comparative analysis of the performance of
pre-trained word embedding models when pre-processing
is applied at the embedding-training phase (i.e., training
corpus) and/or at the downstream task phase (i.e., classifi-
cation dataset).

• We investigate the usefulness of customizing or modifying
the most common pre-processing methods for learning
word representation. In particular, we propose different
combinations of pre-processing factors to investigate the
effectiveness of various sets of pre-processing methods in
different affective tasks.

• We conduct extensive experiments which demonstrate
that applying customized pre-processing on embedding-
training corpora and task-specific pre-processing for each
affective task on classification datasets can significantly
enhance the model’s performance.

• We evaluate the performance of our best pre-processed
word vectors (those that are obtained by training on a cor-
pus to which pre-processing methods have been applied)
against some state-of-the-art pre-trained word embedding
models.

• We make our source code and data publicly available to
encourage reproducibility of the results1.

An earlier version of this work was published in [18], where
we reported our initial results on this investigation. This paper
extends the investigation as follows. In this extended version,

1. https://github.com/NastaranBa/preprocessing-for-word-representation.

we propose additional task-specific pre-processing factors in-
cluding Extended Parts-of-Speech (pos-ext), Keeping Punctua-
tion (k-punc), Emoticons (emojis), Custom Stopwords (stop-c),
and Lemmatization (lemma) and different combinations of pre-
processing factors suitable for each affective task namely , Pre-
processing Factors (Set A), Pre-processing Factors (Set B), Pre-
processing Factors (Set C) applied either to embedding-training
corpora (i.e. at the embedding-training phase) or to classification
tasks (i.e. with downstream task datasets) or both. In the previous
ACL version of the paper we investigated a smaller set of factors
and their combinations and also the investigation was not tailored
to specific affective tasks, but the general affective task. We
also utilize four additional word embedding models, namely,
FastText (CBOW), FastText (Skip-gram), GloVe and ELMo in this
extended version. Additionally, we investigate the effects of our
models on an additional Sentiment Multi-class Classification eval-
uation dataset (The Stanford Sentiment Treebank dataset (SST-5))
which is different from our other three traditional binary sentiment
classification datasets by having five sentiment labels including
very negative, negative, neutral, positive, or very positive, with
score values ranging from 1 to 5 accordingly.

The rest of the paper is organized as follows: Section 2
presents an overview of the related work. Section 3 elaborates
on the pre-processing techniques studied in this work. Section 4
describes the experimental evaluation framework. In Section 5, a
comprehensive analysis and discussion of the results is provided.
Lastly, Section 6 concludes the paper with key insights of the
research.

2 RELATED WORK

In this section, first, we provide an overview of related work on
sentiment/affect analysis, and then present pre-processing classi-
fication datasets and pre-processing embedding-training corpora,
and how our work aims to bridge the gap between those efforts.

2.1 Sentiment and Affect Analysis

Although affect analysis can be considered as a classification
problem, it is a suitcase of many NLP sub-tasks. For example,
Cambria et al. [19] organized the involved sub-problems into a
three-layer structure (i.e., syntactic, semantics, and pragmatics)
and identified 15 NLP sub-task problems. Recently, there has been
a growing interest in sarcasm [20], polarity [21], and aspect [22]
detection in pragmatics layer sub-tasks. While sarcasm detection
can be seen as a classification task, it requires a deep understand-
ing of natural language. Therefore, deep models have been used
widely to extract features for sarcasm detection task [20], [23].
In sentiment/polarity analysis, some approaches focus on binary
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classification of polarity, and others pay attention to fine-grained
categorization predicting intensity of the sentiment [24].

The other important line of research is aspect-based sentiment
analysis, where the goal is to detect the sentiment polarities (e.g.,
positive, negative, and neutral) of different aspects in a sentence
(e.g., food, service). Recent works [25], [26] utilize Graph Neural
Networks (GNNs) based on the dependency trees to capture the
long-term syntactic dependencies from contextual words to aspect
words. For example, Linag et al. [27] constructed a graph upon
the dependency tree and affective common-sense knowledge in
a sentence. The dependency graph is fed into a GNN-based
model, learning a graph representation of the sentence. Laing
et al. [28] argued that the dependency tree may introduce noisy
association. To alleviate the noise effect, they proposed a graph
attention network, which exploits the syntax information of the
constituent tree and models the sentiment-aware context of each
aspect and sentiment relations across aspects. Zhang et al. [28]
argued that the general contextual embedding trained based on
the next sentence prediction and masked language model can
capture the semantics of the overall sentences and hardly pay
attention to relevant information for the specific aspects in the
sentence. Therefore, they suggest dynamic reweighting BERT [5],
considering the aspect aware semantics in the building pre-train
model.

Due to the finer granularity of aspect-based sentiment analysis,
the cost of annotation and creating large-scale labelled data is
much higher than conventional sentiment analysis. He et al. [29]
cast aspect-based sentiment prediction into a multi-task learning
paradigm. They considered three related sub-tasks, namely, As-
pect term Extraction (AE), Opinion Extraction (OE), and aspect-
level sentiment classification. They argued that using multi-task
learning has some challenges, such as imbalance label distribution
(some sub-tasks may not have enough training). Therefore, they
proposed a self-training method generating pseudo labels, to miti-
gate the impacts of insufficient and imbalanced data. The pseudo-
label approaches [30] trust the generated fake labels by a teacher
network trained by a small number of samples and try to address
the lack of enough training data. To address the noisy pseudo
labels, they proposed a novel meta-weightier generating sub-task-
specific weights used to evaluate the quality of the pseudo-labelled
data. The model consists of a teacher, a student, and an extra
meta-weighter model, which are trained jointly. In another work,
Zhang et al. [31] showed that the method based on pseudo labels
are limited to fit a uniform granularity situation. As such, they
proposed a dual-granularity pseudo labeling framework leveraging
the labels from both granularities (i.e., general sentiments, and
aspect-based sentiments).

Although models based on deep neural network architectures
can provide the most accurate predictions in many domains in-
cluding affect analysis, they mostly lack the interpretability and
the advantage of symbolic domain knowledge. Neurosymbolic
frameworks aim to mitigate the issue by combining learnable
neural parameters and symbolic knowledge bases. They not only
can improve sentiment prediction [32], but they can increase
interpretability. Li et al. [33] proposed a neurosymbolic model for
Emotion Recognition in Conversation (ERC). They argued that
we need to learn different types of dependencies (e.g., speaker-
utterance) in a dialogue. The proposed a model fusing symbolic
dependency knowledge, concept-level commonsense, and senti-
ment knowledge. They exploited relational graph convolutional
networks, relation-aware concept representations, and convolu-

tional self-attention techniques for this purpose. Their experiment
results show the state-of-the-art performance on three benchmark
datasets. In another work, Camberia et al. [34] proposed a common
sense-based neuro-symbolic framework for sentiment analysis.
They used subsymbolic techniques such as auto-regressive lan-
guage models as well as kernel approaches to build a hierarchical
common-sense knowledge graph. The main idea is to translate an
input sentence into a sentence expressed by a set of primitives
in the knowledge graph, and then connect these primitives to
their corresponding emotions and polarity labels. The proposed
approach predicts the polarity on the fly upon the building blocks
of meaning in comparison to classic approaches associating polar-
ity to a static list of affect words. They showed that the suggested
model is more interpretable, trustworthy, and explainable while
having comparable accuracy to other state-of-the-art models.

2.2 Pre-processing Classification Datasets (Post)
Pre-processing is a vital step in natural language processing and
therefore, evaluation of pre-processing techniques has long been
a part of many NLP systems in general, and affective models in
particular. [35] indicated that, despite its popular use in Twitter
sentiment analysis, the use of pre-compiled stoplist has a negative
impact on the classification performance. [36] analyzed various
pre-processing methods such as stopwords removal, stemming,
negation, emoticons, and so on, and found stemming to be
most effective for sentiment analysis. Similarly, [37] found that
lemmatization increases accuracy. [38] observed that removing
stopwords, numbers, and URLs can reduce noise but does not
affect performance, whereas replacing negation and expanding
acronyms can improve the classification accuracy.

Pre-processing techniques such as punctuation and negation
[39] or pos-tagging and negation [40] make up a common compo-
nent of many emotion classification models [17], [41]. One of the
earliest works [16] preserved emotion words and negative verbs
during stopwords removal, replaced punctuation with descriptive
new words, replaced negative short forms with long forms, and
concatenated negative words with emotion words to create new
words (e.g., not happy → NOThappy ). Although stemming may
conflate the affective connotation of some words, it has been
shown to improve classification accuracy overall [16], [42]. Nega-
tions have also been found to be beneficial, whereas considering
intensifiers and diminishers did not lead to any improvements [43].

[44] also highlight the importance of pre-processing when
using user-generated content, with emoticons processing being
the most effective. Along the same lines, while [45] found pos-
tags to be useful, [46] ignored pos-tagging because of its effect of
reducing the classification accuracy. In the task of emotion classi-
fication, [47] examined the role of four pre-processing techniques
as applied to a vector space model based on tf-idf trained on a
small corpus of tweets, and found stemming, lemmatization and
emoji tagging to be the most effective factors.

The aforementioned works describe pre-processing techniques
as applied directly to the classification datasets in affective sys-
tems, i.e., Post. In contrast, we examine the effectiveness of
directly incorporating these known effective pre-processing tech-
niques further “upstream” into the embedding-training corpus, i.e.,
Pre.

2.3 Pre-processing Embedding-Training Corpora (Pre)
Through a series of extensive experiments, particularly those
related to context window size and dimensionality, [14] indicate

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2023.3270115

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: York University. Downloaded on September 25,2023 at 23:14:17 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 4

that seemingly minor variations can have a large impact on the
success of word representation methods in similarity and analogy
tasks, stressing the need for more analysis of often ignored pre-
processing settings. [15] also present a systematic analysis of
context windows based on a set of four hyperparameters, including
window position and stopwords removal, where the right window
was found to be better than left for English similarity task, and
stopwords removal substantially benefited analogy task but not
similarity.

A general space of hyperparameters and pre-processing factors
such as context window size [48], [49], dimensionality [49], syn-
tactic dependencies [50], [51], [52] and their effect on NLP tasks
including word similarity [48], tagging, parsing, relatedness, and
entailment [53] and biomedical [54] has been studied extensively
in the literature. The main conclusion of these studies, however, is
that these factors are heavily task-specific. Therefore, in this work
we explore pre-processing factors of generating word embeddings
specifically tailored to affective tasks, which have received little
attention.

A recent study which investigated the role of tokenizing,
lemmatizing, lowercasing and multiword grouping [55] as applied
to UMBC WebBase training corpus and evaluated on sentiment
analysis found simple tokenization to be generally adequate.

Distinct from prior works, we examine a much larger suite of
pre-processing factors grounded in insights derived from numer-
ous affective systems, trained over two different training corpora
using seven different word embedding models. We evaluate the
effect of the pre-processed word embeddings in three distinct
affective tasks including sentiment analysis, emotion classification
and sarcasm detection.

2.4 Task-specific Pre-processing

Sentiment Analysis. Haddi et al., [56] investigated the role of
different combination of text pre-processing methods (e.g., HTML
tags removal, non-alphabetic signs removal, whitespace removal,
POS-tagging, abbreviation expansion, stemming, stopwords re-
moval, spell correction, and negation handling) in sentiment
analysis and found that reducing noise through pre-processing
improved the performance of the classification task. Carrillo et
al., [57] proposed a model of negation, intensifiers, and modality
especially conceived for sentiment analysis tasks by handling
negation with an antonym dictionary which replaces the to-be-
negated word with its antonym (e.g., “not good” replaced with
“bad”). Furthermore, Jianqiang and Xiaolin [58] showed that the
most effective pre-processing methods for sentiment classification
include replacing negative mentions (e.g., “won’t” into “will not”),
removing URL links, spelling correction, removing punctuation,
removing stopwords, and stemming.

Sarcasm Detection. The results in [59], [60], [61] demonstrate
the importance of sarcasm indicators. For instance, Burgers et al.,
[60] introduced a set of sarcasm indicators such as emoticons (i.e.,
“:p”, “:)”), spelling correction, interjections (i.e., “ah”, “hmm”),
exclamation marks (e.g., “!”, “?”), quotation marks, and intensi-
fiers words (e.g., “too”, “greatest”, “best”, “really”) that explicitly
signal if an utterance is sarcastic. POS-tagging, stemming [62],
[63] and lemmatization [64], [65] have also been found useful for
sarcasm detection. However, most of these indicators will be re-
moved by applying the pre-processing factors such as punctuation
removal, stopwords removal and retaining selective POS tagged
words (i.e. by retrieving only four classes) [18].

Emotion Detection. In the task of emotion classification,
Agrawal and An [66] observed that stemming and POS-tagging of
the text improved the accuracy. Goddar et al., [67] indicated that
interjections such as “yay” and “wow” can be useful indicators
of different emotions and help in improving the classification
performance. Furthermore, Mulik et al., [47] found stemming,
lemmatization and emoji tagging to be the most effective factors.
Similarly, other studies have also assessed the effects of intensi-
fiers, interjections [68], [69], POS-tagging, negation, punctuation
[70], and emoticons [69] in emotion detection.

3 PROPOSED METHODOLOGY

This section describes various combination of pre-processing fac-
tors for embedding-training corpus and the classification datasets,
as well as the suggested order in which to apply these pre-
processing factors.

We experiment with three sets of pre-processing factors
namely (Set A), (Set B), and (Set C). Details of each set of
pre-processing factors are described in the following sub-sections.

3.1 Pre-processing Factors (Set A)
In this section we describe the first set of pre-processing tech-
niques called (Set A), which are the most common and known
effective pre-processing techniques based on prior research as
applied either directly to classification datasets in affective systems
or incorporating such pre-processing further “upstream” into the
embedding-training corpus. In addition to the most common pre-
processing methods, we also consider negation since negation is a
mechanism that can transform a positive argument into its inverse
rejection [71] and improper processing of negation in sentences
may lead to misclassification of affect in affective systems. Note
that in Set A pre-processing we apply the same pre-processing
factors at different stages of the affective systems.

The details of each pre-processing technique used in this set
are as follows:

Basic: A group of common text pre-processing applied at the very
beginning, such as removing HTML tags, removing numbers, and
lowercasing.

Punctuation Removal (punc): This step removes all common
punctuation from text such as “@%*=()/ +” using the NLTK
regexptokenizer2.

Spellcheck (spell): A case can be made for either correcting
misspellings and typos or leaving them as they are, assuming that
they represent natural language text and its associated complexi-
ties. In this step, we perform spell checking3 to identify misspelled
or unknown words and generate a list of suggested replacements
for an identified misspelled or unknown word. If there is only one
option for correction, we use it; otherwise, we rank the multiple
suggested replacements according to their frequency in the ukWac
corpora4, and select the most frequent one for replacement.

Negation (neg): Negation is a mechanism that transforms a
positive argument into its inverse rejection [71]. Specifically in the
task of affective analysis, negation plays a critical role as negation
words can affect the word or sentence polarity causing the polarity
to invert in many cases. Our negation procedure is as follows:

2. https://www.nltk.org/ modules/nltk/tokenize/regexp.html
3. https://pypi.org/project/pyspellchecker/
4. https://www.sketchengine.eu/ukwac-british-english-corpus/
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(i) Compilation of an antonym dictionary: The first stage involves
compiling an antonym dictionary using the WordNet corpus [72].
For every synset, there are three possibilities: finding no antonym,
one antonym or multiple antonyms. The first two cases are trivial
involving unambiguous replacements. In the case of the third op-
tion (ambiguous replacement), which also appears to be the most
common case, amongst the many choices available, we consider
the antonym with the highest frequency in the ukWac corpus, as
described in the previous section, and finally the antonym of a
word is picked at random from one of its senses in our antonym
dictionary.
(ii) Negation handler: Next, we identify the negation words in
tokenized text5. If a negation word is found, the token following it
(i.e., the negated word) is extracted and its antonym looked up in
the antonym dictionary. If an antonym is found, the negation word
as well as the negated word are replaced with it.

As an illustration, consider the sentence “I am not happy
today” in its tokenized form [‘I’, ‘am’, ‘not’, ‘happy’, ‘today’].
First, we identify any negation words (i.e., ‘not’) and their
corresponding negated words (i.e., ‘happy’). Then, we look up
the antonym of ‘happy’ in our antonym dictionary (i.e., ‘sad’)
and finally, replace the phrase ‘not happy’ with the word ‘sad’,
resulting in a new sentence “I am sad today”.

Parts-of-Speech (pos): Four parts-of-speech classes, namely
nouns, verbs, adjectives and adverbs have been shown to be more
informative with regards to affect than the other classes. Thus,
using the NLTK pos-tagger, for each sentence in the corpus we
retain only the words belonging to one of these four classes, i.e.,
the tags corresponding to NN*, VB*, JJ*, and RB*.

Stopwords (stop): Stopwords are generally the most common
words in a language typically filtered out before classification
tasks. Therefore, we remove all the stopwords using the NLTK
library.

Stemming (stem): Stemming, which reduces a word to its root
form, is an essential pre-processing technique in NLP tasks. We
use the NLTK Snowball stemmer for stemming the text.

3.2 Pre-processing Factors (Set B)
In this section we describe the second set of pre-processing tech-
niques called (Set B) as applied either directly to classification
datasets in affective systems or incorporated further “upstream”
into the embedding-training corpus. Note that in (Set B) we also
apply the same pre-processing factors at different stages of the
affective systems.

It is possible that not all of the most common pre-processing
methods in (Set A) are equally effective in all three affective
tasks. For instance, some might even harm the classification results
according to previous studies, such as stemming and stopwords
removal when applied at the embedding-training phase [18]. In
addition, others [73], [74] demonstrated that the contribution of
use/non-use of stopwords depends on the corpus they are applied
to for a downstream task and that for some corpora, various pre-
processing methods might be even irrelevant such as removing
punctuation or stopwords. One of the possible explanations for the
phenomenon that stopword removal or stemming at training phase
on embedding-training corpora may harm the performance results
in affective tasks is that while applying them at the classification
datasets can help clean the dataset and reduce the noises, but

5. https://pypi.org/project/negspacy/

not applying these two pre-processing factors “upstream” into
the embedding-training corpus may help the word embedding
models to better understand the context. Moreover, previous
studies demonstrated the effectiveness of affect indicators such
as interjections (i.e.,“ah”, “hmm”), exclamation marks (e.g., “!”,
“?”), quotation marks, emoticons (i.e., “:p”, “:)”), and intensi-
fiers words (e.g., “too”, “greatest”, “best”, “really”) in affective
tasks [59], [60], [63], [64], [65], [75]. However, most of these
indicators will be removed by applying pre-processing factors
such as punctuation removal, stopwords removal and POS tagging
(i.e. by retrieving only four classes which we considered in the
previous section (Set A). Towards that end to systematically an-
alyze the effectiveness of different combination of pre-processing
techniques in our three affective tasks, we modify some of the pre-
processing factors in (Set A) and also add new pre-processing
methods which potentially can be more effective in affective tasks
to build a new set that is called (Set B) for our experiment.

Details of each pre-processing technique used in this set is as
follows:

Basic , Negation (neg) and Spellcheck (spell): We keep these
pre-processing factors the same as in the previous section from
(Set A).
Extended Parts-of-Speech (pos-ext): In addition to the four
classes mentioned earlier, i.e., nouns, verbs, adjectives, and ad-
verbs, interjections have also served as useful features, especially
in affective tasks. Thus, using the NLTK pos-tagger, for each
sentence in the corpus we extend the set of POS-tags that we
retain, i.e., NN*, VB*, JJ*, RB*, as well as UH*.
Keeping Punctuation (k-punc): Since some studies indicate the
benefits of punctuation in affective tasks [76], [77], we keep all
the special characters, exclamation marks and punctuation. During
tokenization, we make sure there are spaces between words and
punctuation to keep the punctuation in separate tokens. Moreover,
in the case of consecutive punctuation marks (e.g. !!!, :-) ), we
keep all of them in the same token.
Emoticons (emojis): The abundance of emoticons and emojis in
user-generated social media posts and reviews provides evidence
of their propensity for expressing a range of different emotions,
and they have been proven to be very effective in various affective
tasks [78], [79]. Therefore, we convert the emoticons and emojis
into text (e.g., converting to “tired face” and to “smirking
face” or ;) to “wink face”) using the Demoji module6, a library for
converting emojis into associated text strings.

3.3 Pre-processing Factors (Set C)

While in the previous sets, (Set A) and (Set B), we considered
pre-processing techniques as applied either directly to classifi-
cation datasets in affective systems or incorporated these pre-
processing techniques further “upstream” into the embedding-
training corpus, in this section we focus on creating a number of
pre-processing factors that can be applied to classification datasets
in affective systems. Based on the insights derived from prior
literature, in this section, we propose a number of task-specific
pre-processing factors called (Set C) to be applied to classifica-
tion datasets in addition to the pre-processing techniques described
earlier. Some illustrative examples of task-specific pre-processing
are shown in Table 1. Note, in (Set C) we apply different pre-
processing factors for each affective task directly to classification

6. https://pypi.org/project/demoji/
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TABLE 1
Example of case studies of different pre-processing in affective tasks.

Affective Task Pre-Processing Example

Sentiment Analysis

Negation Correction I won’t walk again. → I will not walk again.
Negation I feel not good. → I feel bad.
Intensifiers This work is extremely hard.
Interjections Wow, Is this your house?.

Sarcasm Detection

Emoticons Awesome failure!
Keeping Punctuation Time for you medication or mine ??!!
Intensifiers Sarcasm detection is too easy!
Interjections Oh, I’m nicer in sleep.

Emotion Detection

Emoticons Are you serious now??
Keeping Punctuation We are not friends anymore???!!!
Interjections Yay! We are going out tonight.
Intensifiers This is the best experience I’ve ever had.

datasets and we apply pre-processing techniques in (Set B) as
described earlier further “upstream” into the embedding-training
corpus7.

Details of additional pre-processing techniques used in this set
is as follows:

Basic, Negation (neg), Spellcheck (spell), Extended Parts-
of-Speech (pos-ext), Keeping Punctuation (k-punc) and
Emoticons (emojis): we keep these pre-processing factors the
same as in the previous section from (Set B).
Custom Stopwords (stop-c): Sometimes there are benefits to
keeping stopwords, especially when removing them will exclude
the intensifiers ( e.g. “too”, “really”) which are helpful indicators
of affect as indicated by prior literature. Therefore, we experiment
with further variations of stopwords removal including either not
removing the stopwords at all or employing a custom stopwords
list which helps us retain the intensifier words in text8.
Lemmatization (lemma): An alternative to stemming is the
process of lemmatization, a morphogically-informed process of
removing inflectional endings in order to reduce a word to its
lemma. This may not only help to reduce the noise in text due
to variability but also provide a more abstract affective meaning
of a sentence. We lemmatize the text using NLTK Wordnet
Lemmatizer9. Before finding the correct lemma, part-of-speech
tagging must be performed. For instance, “working”, “worked”,
and “works” are all lemmatized to “work” in a verb form. When
a certain word can belong to more than one grammatical category,
depending on its part-of-speech tag within the sentence (e.g., noun
or verb), all the related lemmas are kept.

Inspired by prior literature with some illustrative examples in
Table 1 we create a number of task-specific pre-processing in
this set for each affective task. As it was mentioned earlier, in
contrast to pre-processing factors in (Set A) and (Set B) that
apply the same pre-processing factor at different stages of the
affective systems regardless of the downstream task, in this section
we conduct our experiments by applying pre-processing factors in
(Set B) to embedding-training corpora and the following task-
specific sequences of pre-processing to classification datasets for
each affective task:

7. For settings which include stemming/lemmatization, the embedding-
training corpora is also stemmed/lemma in order to obtain a compatible
vocabulary.

8. List of intensifier words are collected from:
https://github.com/wyounas/homer and [80]

9. https://www.nltk.org/ modules/nltk/stem/wordnet.html

Sentiment Analysis: Basic, punc, spell, neg, pos-ext,
c-stop, and stem.
Sarcasm Detection: Basic, spell, neg, pos-ext, k-punc,
emojis, lemma, or stem.
Emotion Detection: Basic, spell, neg, pos-ext, k-punc,
emojis, lemma, or stem.

Note, for sarcasm detection and emotion detection datasets we
apply lemmatization and stemming separately and we report the
best results.

Sequence of Pre-processing Factors: While some pre-processing
techniques can be applied independently of each other (e.g.,
removing stopwords and removing punctuation), others need a
more careful consideration of the sequence in which they are
applied in order to obtain a more stable result. For instance,
pos-tagging should be applied before stemming in order for the
tagger to work well, or negation should be performed prior to
removing stopwords. To this end, we consider the following
ordering when combining all the aforementioned pre-processing
factors: spellchecking, negation handling, pos classes, removing
stopwords, lemmatization/stemming.

4 EXPERIMENTAL SETUP

In this section, we present the embedding-training corpora, the
word embedding models, the affective evaluation datasets, and the
evaluation classification set up used in our experiments.

4.1 Embedding-Training Corpora

For evaluating the effects of the proposed pre-processing factors,
we consider two types of plain text corpora originating from two
different domains, including,
(i) News: This corpus consists of 142,546 news articles sourced
from 15 American publications, spanning from 2013 to early
201810.
(ii) Wikipedia: Comparatively a much larger corpus than the
News, this corpus consists of 23,046,187 articles from English
Wikipedia 11.

The details of the two corpora are summarized in Table 2
including their vocabulary and corpus sizes before (i.e., Basic) and
after applying all the various pre-processing settings. Although,

10. https://www.kaggle.com/snapcrack/all-the-news
11. https://www.kaggle.com/jkkphys/english-wikipedia-articles-20170820-

sqlite
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TABLE 2
Details of the embedding-training corpora (for ‘Vocab’ and ‘Corpus’, the

‘size’ indicates the size of the vocabulary and the total number of
tokens in the corpus, respectively. The % column includes the reduction

in the vocabulary and corpus size after applying the various
pre-processing factors as compared to the corpus).

Corpus Processing Vocab Corpus
size % size %

News

Basic 155K 100 123.2M 100
spell 149K 96 123.2M 100
stem 137K 88 123.2M 100
punc 147K 95 111.0M 90
neg 152K 98 90.7M 73
stop 150K 97 75.6M 61
pos 154K 99 70.7M 57

All - punc 151K 97 93.7M 76
All - pos 140K 90 90.5M 73
All - stop 150K 97 75.3M 61
All 110K 71 55.2M 49
All - stem 110K 71 58.1M 47
All - spell 110K 71 56.4M 46
All - neg 110K 71 54.3M 44

Wikipedia

Basic 5.1M 100 8.1B 100
All - punc 4.9M 96 7.2B 89
All - pos 4.8M 94 7.0B 86
All - stop 4.9M 96 6.8B 84
All - stem 4.3M 84 6.4B 79
All - spell 4.6M 90 6.1B 75
All 4.6M 90 5.6B 69
All - neg 4.6M 90 5.0B 62

as expected, the corpus size reduces after applying any pre-
processing factor, it is especially worth noting that for certain pre-
processing such as POS (pos) and stopwords removal (stop),
a dramatic reduction in corpus size is observed (as indicated
by the % ratio of pre-processed pos or stop to Basic listed
under ‘Corpus’), without any significant loss in vocabulary. Such
a reduction in corpus size inherently implies a non-trivial effect
with regards to training time, a phenomenon we plan to explore in
more detail in our future work.

4.2 Word Embedding Models
We obtain our pre-processed word representations by training
seven different word embedding models from scratch. These
include,
(i) word2vec CBOW (Continuous Bag-of-Words), and (ii)
Skip-gram: While CBOW takes the context of each word as the
input and tries to predict the word corresponding to the context,
skip-gram reverses the use of target and context words, where the
target word is fed at the input and the output layer of the neural
network is replicated multiple times to accommodate the chosen
number of context words [4]. We train both these models on both
News and Wikipedia embedding-training corpora. The minimum
number of words is set to 5 for News and 100 for Wikipedia with
window sizes set to 5 and 10, respectively, and dimensionality set
to 300.
(iii) FastText CBOW, and (iv) Skip-gram: FastText is another
word embedding method that is an extension of the word2vec
model [81]. Instead of learning vectors for words directly, FastText
represents each word based on sub-word character n-grams. The
settings for training these models are the same as those for
word2vec models, with the size of n-gram set to 3.
(v) GloVe: Global vectors for word representations [82] is a
global log-bilinear regression model for the unsupervised learning

of word representations where it creates a global co-occurrence
matrix by estimating the probability of a given word that will
co-occur with other words. We train the model with the same
parameters as the original paper via adaptive gradient descent
(AdaGrad), setting dimensionality to 300, number of epochs to
100 and batch size to 2048.

(vi) ELMo: ELMo (Embeddings from Language Models) is
a character-based bidirectional contextual language model [83],
where the embedding for a given word might vary based on the
different contexts in which the word appears. The hyperparameters
for training this model are the same as the original model, with the
LSTM dimensionality of 4096, 10 epochs and number of negative
samples batch of 8192.

(vii) BERT: BERT is another bidirectional contextualized model
using the transformer architecture for learning unsupervised pre-
trained language representations [5]. We train the model using
the BERT large uncased architecture (24-layer, 1024-hidden, 16-
heads, 340M parameters) with the same settings for parameters as
found in the original paper.

We train these models using 16 TPUs (64 TPU chips), Ten-
sorflow 1.15, 1TB memory on Google Cloud and two 32 GPUs
cluster of V100/RTX 2080 Ti, 1TB memory using Microsoft
CNTK parallelization algorithm12 on Amazon server. For a large
model such as BERT, it takes upto 4-5 days for each run of the
training.

4.3 Evaluation Datasets

To extrinsically evaluate the quality of our pre-trained language
representations, we conduct a series of experiments on a number
of datasets for three downstream affective tasks, namely sentiment
analysis, emotion classification and sarcasm detection. Some il-
lustrative examples of text are shown in Table 3 while Table 4
presents the details of all the evaluation datasets.

Sentiment Analysis: This popular task involves classifying
text as positive or negative, and we use the following three datasets
for evaluation: (i) IMDB: This dataset13 includes 50,000 movie
reviews for sentiment analysis, consisting of 25,000 negative and
25,000 positive reviews [84]. (ii) Semeval 2016: This sentiment
analysis in Twitter dataset14 consists of 14,157 tweets where
10,076 of them are positive and 4,081 negative [85]. (iii) Airline:
This sentiment analysis dataset15 consists of 11,541 tweets about
six U.S. airlines from February 2015, with 9,178 tweets labeled as
positive and 2,363 negative.

Sarcasm Detection: Detecting sarcasm from text, a challeng-
ing task due to the sophisticated nature of sarcasm, involves
labeling text as sarcastic or not. We use the following three
datasets: (i) IAC: A subset of the Internet Argument Corpus [86],
this dataset contains response utterances annotated for sarcasm.
We extract 3260 instances from the general sarcasm type.16.
(ii) Onion: This news headlines dataset 17 collected sarcastic
versions of current events from The Onion and non-sarcastic
news headlines from HuffPost [87], resulting in a total 28,619

12. https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-
machines

13. http://ai.stanford.edu/ amaas/data/sentiment/
14. http://alt.qcri.org/semeval2016/task4/index.php
15. https://www.kaggle.com/crowdflower/twitter-airline-sentiment
16. https://nlds.soe.ucsc.edu/sarcasm2
17. https://github.com/rishabhmisra/News-Headlines-Dataset-For-Sarcasm-

Detection
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TABLE 3
Some examples of text instances from the evaluation datasets.

Text Label Dataset

· I must admit that this is one of the worst movies I’ve ever seen. I thought Dennis Hopper had a little more
taste than to appear in this kind of yeeeecchh... [truncated]

negative IMDB

· everything was fine until you lost my bag. negative Airline
· Been saying that ever since the first time I heard about creationsism not-sarcastic IAC
· ford develops new suv that runs purely on gasoline sarcastic Onion
· Remember, it’s never a girl’s fault, it’s always the man’s fault. sarcastic Reddit
· The ladies danced and clapped their hands for joy. happy Alm
· At work, when an elderly man complained unjustifiably about me and distrusted me. anger ISEAR
· if this heat is killing me i don’t wanna know what the poor polar bears are going through sadness SSEC

TABLE 4
Details of the evaluation datasets.

Task Dataset Genre Total

Sentiment
IMDB reviews 50,000
SemEval tweets 14,157
Airline tweets 11,541

Sarcasm
IAC response 3,260
Onion headlines 28,619
Reddit comments 1,010,826

Emotion
Alm fairy tales 1,206
ISEAR narratives 5,477
SSEC tweets 1,017

records. (iii) Reddit: Self-Annotated Reddit Corpus (SARC)18 is
a collection of Reddit posts where sarcasm is labeled by the author
in contrast to other datasets where the data is typically labeled by
independent annotators [88].

Emotion Classification: A multiclass classification task, this
involves classifying text into a number of emotion categories
such as happy, sad, and so on. The following datasets are used
in our evaluation: (i) Alm: This dataset contains sentences from
fairy tales marked with one of five emotion categories: angry-
disgusted, fearful, happy, sad and surprised [89]. (ii) ISEAR:
This dataset contains narratives of personal experiences evoking
emotions [90]. We use a subset of the data consisting of five
categories: sadness, anger, disgust, fear, joy. (iii) SSEC: The
Stance Sentiment Emotion Corpus [91] is the re-annotation of
the SemEval 2016 Twitter stance and sentiment corpus [92] with
emotion labels including anger, joy, sadness, fear, surprise. 19.

4.4 Evaluation Classification Setup
For binary classification, such as sentiment analysis and sarcasm
detection, the loss function used is the binary cross-entropy along
with sigmoid activation:

ξ = − 1

N

N∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi))

where y is the binary representation of true label, p(y) is the
predicted probability, and i denotes the ith training sample.

For multiclass emotion classification, the loss function used is
categorical cross-entropy loss over a batch of N instances and k
classes, along with softmax activation:

ξ = − 1

N

N∑
i=1

k∑
j=1

yij log (p(yij))

18. SARC v0.0: https://nlp.cs.princeton.edu/SARC/0.0/
19. SSEC: http://www.romanklinger.de/ssec/

where p(y) is the predicted probability distribution, p(yij) ∈
[0, 1].

The optimizer is Adam [93], all loss functions are sample-
wise, and we take the mean of all samples (epoch = 5, 10, batch
size = 64, 128). All sentiment and sarcasm datasets are split
into training/testing using 80%/20%, with 10% validation from
training. For the smaller and imbalanced emotion datasets, we use
stratified 5-fold cross-validation. We use a dropout layer to prevent
overfitting by ignoring randomly selected neurons during training.
We use early stopping when validation loss stops improving with
patience = 3, min-delta = 0.0001. The results are reported in
terms of weighted F-score (as some emotion datasets are highly
imbalanced), where F-score = 2 p.r

p+r , with p denoting precision,
and r is recall.

5 DISCUSSION AND ANALYSIS

In this section, we analyze the impact of different sets of pre-
processing techniques in word representation learning on affect
analysis.

5.1 Effect of Pre-processing Factors (Set A)

A primary goal of this work is to identify the most effective
set of pre-processing factors for training word embeddings that
can be useful for affective tasks. Table 5 details the results of
our experiments comparing the performance of individual pre-
processing factors in (Set A) as well as those of ablation studies
(i.e., including all the factors but one) on News corpus. To see
whether the best method significantly improves the Basic method,
a paired t-test is conducted, whose p-value is shown beside the
best method in the first column. The t-test result indicates that
there is a significant difference between the results of the best
method and those of the Basic method.

Observing the performance of the individual factors on the
News corpus, we note that even a single simple pre-processing
technique can bring improvements, thereby validating our intuition
of incorporating pre-processing into embedding-training corpora
of word representations. Second, negation (neg) processing ap-
pears to be consistently the most effective factor across all the
9 datasets, indicating its importance in affective classification,
followed by parts-of-speech (pos) processing where we retained
words belonging only to one of four POS classes. On the other
hand, removing stopwords (stop), spellchecking (spell) and
stemming (stem) yield little improvement and mixed results.
Interestingly, applying all the pre-processing factors is barely
better or in some cases even worse (Onion, Reddit and SSEC)
than applying just negation. Finally, the best performance comes
from combining all the pre-processing factors except stemming
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TABLE 5
Evaluating the effect of pre-processing (Set A) using CBOW and Skip-gram word embedding models trained on the News corpus. The overall
best results in terms of F-score are in bold. The best result among the ones under one pre-processing setting is underlined. The p-value from a

paired t-test is shown beside the best method, which compares the results from the best method and the ones from the Basic method. Both t-tests
show a significant difference between the two methods.

Training Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec (CBOW)

Basic 83.99 55.69 60.73 65.74 68.23 59.42 36.81 55.43 51.76
stop 84.43 55.72 61.37 66.03 68.17 59.27 36.81 56.01 52.33
spell 86.20 55.93 61.96 66.00 69.57 60.00 36.88 56.41 52.14
stem 86.92 55.72 61.86 65.89 68.49 59.72 36.94 55.84 51.89
punc 86.99 56.41 62.08 65.93 69.85 60.28 36.94 56.89 52.03
pos 85.66 56.83 62.75 66.32 70.25 60.63 37.02 57.04 53.19
neg 88.98 57.29 63.81 66.87 71.12 60.91 37.22 57.39 54.15

All 89.96 57.82 64.58 67.23 70.90 60.84 37.43 57.72 53.71
All - neg 84.67 55.00 61.58 66.02 69.73 59.94 36.91 55.89 51.94
All - pos 85.69 56.31 64.29 66.97 70.48 60.15 37.19 56.27 52.16
All - punc 86.41 56.88 63.01 66.75 70.01 60.00 37.01 57.19 52.43
All - spell 88.23 56.41 63.87 67.23 70.83 60.27 37.22 57.41 53.41

(p < 0.0005) All - stop 90.01 60.82 66.84 67.20 72.49 62.11 38.96 59.28 55.00
All - stem 88.12 60.82 67.12 69.25 72.13 61.73 38.00 59.00 55.42

Word2Vec (Skip-gram)

Basic 83.07 54.23 61.47 65.51 68.01 59.75 35.87 55.64 51.49
stop 83.23 55.47 62.00 65.62 68.00 59.84 35.94 55.76 51.62
spell 85.90 55.48 62.00 65.61 69.76 60.28 36.10 55.93 52.30
stem 86.00 55.33 61.89 65.60 68.72 59.50 36.00 55.69 51.40
punc 86.68 55.79 62.38 65.89 70.00 60.44 36.41 56.81 52.71
pos 85.91 56.28 63.25 66.24 69.81 60.85 36.44 56.23 52.94
neg 87.28 56.89 63.72 66.87 70.59 61.27 36.87 57.34 53.10

All 88.36 57.04 64.91 66.94 70.73 61.12 37.10 57.92 53.58
All - neg 83.26 54.00 61.95 66.00 69.88 60.00 36.94 55.97 51.89
All - pos 86.21 55.22 65.12 66.06 69.88 61.00 37.00 56.42 52.10
All - punc 85.57 55.99 64.29 66.29 70.00 60.98 37.01 57.02 52.53
All - spell 86.00 56.98 65.00 66.25 70.25 0.61 37.04 57.69 52.86
All - stop 88.74 60.93 67.00 68.57 72.20 62.02 38.92 59.18 55.18

(p < 0.0001) All - stem 88.42 60.67 67.39 69.08 72.00 62.36 37.44 59.48 55.23

(All-stem). Moreover, when the models are trained on a different
corpus, i.e., Wikipedia, the results of which are summarized
in Table 6, in all but one case (GloVe being the outlier), we
note that the best performance is obtained by combining all the
pre-processing factors except stemming (All-stem) or except
removing stopwords (All-stop). In addition, we need to note
that FastText works well with rare words. Thus, even if a word
was not seen during training, it can be broken down into n-grams
to get its embeddings. However, ELMo is character-based, which
means that the model does not have a pre-defined vocabulary of
words used for training, but it rather extracts the word embeddings
from the constituent characters of the words. These differences can
make the word embedding model more robust and generalizable
to downstream tasks. Moreover, the p-values from the paired t-
test shown in Table 6 indicate that the best method is significantly
better than the Basic method in terms of F-score. In addition,
considering that the Wikipedia corpus is almost 160 times bigger
than the News corpus, it is unsurprising that the word embeddings
obtained from the former yield considerably better results, consis-
tent across all nine datasets.

5.2 Evaluating Application of Pre-processing Factors
in (Set A) on Embedding-Training Corpora (Pre) vs. on
Downstream Classification Dataset (Post)
We investigate the difference between applying pre-processing
methods in (Set A) to the embedding-training corpora for gener-
ating word embeddings Pre and applying the same pre-processing
methods in this set to the classification datasets Post. As an
example, during Pre, we first apply the pre-processing techniques
(e.g., all but stemming) to the embedding-training corpus (e.g.,

Wikipedia), generate word embeddings, then convert a classifica-
tion dataset (e.g., IMDB) into word embedding representation, and
finally classify using LSTM. Conversely, for Post, we first gen-
erate word embeddings from a embedding-training corpus (e.g.,
Wikipedia), then apply the pre-processing techniques (e.g., all
but stemming) to the classification dataset (e.g., IMDB), which is
then converted to word vector representation, and finally classified
using LSTM 20.

The results of this experiment are presented in Table 7, where
we observe that incorporating pre-processing techniques into the
embedding-training corpora before generating word vectors (Pre)
outperforms the technique where pre-processing is only applied to
the classification datasets (Post) across all nine datasets of the
three affective tasks. Interestingly though, pre-processing both the
bodies of text (Both) appears to be of little benefit using this
set of pre-processing methods, suggesting the importance of pre-
processing embedding-training corpora used for obtaining word
embeddings using the pre-processing methods in (Set A). In
addition, as shown in Table 7, there is a significant difference
between the averages of Pre and Post for six out of seven
models, while there is a significantly large difference between the
averages of Pre and Both for four models. Figure 2 summarizes
the results obtained for all three tasks in terms of (a) absolute F-
scores and (b) relative improvement (best pre-processing methods
in set A over Basic pre-processing). The IMDB dataset achieves
the highest F-score overall, most likely because it consists of
movie reviews which are much longer than the text from other
genres. As expected, the binary classification task of sentiment

20. For settings which include stemming, the classification data is also
stemmed in order to obtain a compatible vocabulary.
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TABLE 6
Evaluating the effect of pre-processing (Set A) using different models trained on the Wikipedia corpus. The p-value from the paired t-test is

shown in the first column beside the best method, which compares the results from the best method and those from the Basic method.

Models Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec (CBOW)

Basic 84.91 56.89 68.11 69.15 71.02 63.58 45.22 59.73 55.84
All 88.41 60.25 71.39 71.57 73.61 65.27 48.81 62.48 57.42
All - neg 83.02 56.03 69.28 69.55 70.25 64.18 46.00 60.42 55.93
All - pos 85.69 57.21 71.00 70.08 72.29 64.82 47.53 62.28 56.25
All - punc 84.00 57.36 70.46 70.01 72.02 65.00 47.68 61.84 56.64
All - spell 86.19 58.26 70.98 70.59 72.85 65.00 47.29 61.63 57.00
All - stop 91.10 61.00 73.00 72.31 74.50 68.20 52.39 64.29 58.46

(p < 0.0001) All - stem 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28

Word2Vec (Skip-gram)

Basic 84.00 55.94 68.36 69.20 71.68 63.74 45.01 59.45 55.62
All 87.00 59.99 71.29 71.25 73.82 65.67 48.51 65.02 57.13
All - neg 84.97 56.11 69.00 70.17 70.04 64.55 46.28 60.54 55.86
All - pos 86.21 57.62 70.25 70.85 73.22 65.47 47.49 63.44 56.00
All - punc 85.00 57.20 70.00 70.77 72.00 65.00 47.10 61.72 56.49
All - spell 85.75 58.49 70.26 70.89 72.63 65.18 47.14 61.25 56.84

(p < 0.0005) All - stop 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14
All - stem 89.66 60.28 73.66 71.98 75.24 68.72 51.39 63.44 59.01

FastText (CBOW)

Basic 74.68 68.20 70.29 57.83 60.50 60.13 48.29 26.07 51.47
All 77.12 69.86 71.69 60.69 63.39 63.07 50.77 28.42 53.89
All - neg 75.01 68.90 70.83 58.81 61.25 61.74 49.21 27.89 52.04
All - pos 78.51 69.17 70.26 60.57 61.94 62.29 49.86 28.06 52.71
All - punc 76.92 69.37 71.14 60.19 62.71 62.78 50.44 28.30 53.65
All - spell 76.85 69.73 71.00 59.90 62.18 62.41 50.04 28.00 53.65
All - stop 80.37 71.08 72.39 62.74 64.79 64.33 53.37 30.24 55.28

(p < 0.0005) All - stem 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74

FastText (Skip-gram)

Basic 75.00 68.41 70.41 58.13 61.12 60.72 49.13 26.68 52.07
All 78.30 69.73 71.65 61.52 64.57 63.61 51.03 28.76 54.21
All - neg 75.86 68.59 70.75 59.33 62.03 61.58 50.00 28.04 52.84
All - pos 79.24 70.33 71.00 60.00 63.08 62.11 50.41 29.47 53.07
All - punc 78.01 69.51 71.10 60.94 64.00 62.84 50.94 28.01 53.67
All - spell 77.90 69.50 71.25 61.11 64.27 63.02 50.79 28.63 53.91

(p < 0.0001) All - stop 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32
All - stem 80.82 70.82 72.61 63.28 65.75 66.24 52.76 30.07 56.15

GloVe

Basic 83.51 69.12 70.01 69.48 70.21 62.76 54.31 64.77 56.33
(p < 0.0001) All 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70

All - neg 84.06 70.09 71.37 71.15 71.39 63.24 55.10 65.31 57.63
All - pos 85.33 72.76 72.19 72.35 72.06 65.07 56.33 62.82 58.12
All - punc 86.72 71.47 72.77 72.62 73.95 65.88 57.90 66.74 59.37
All - spell 86.48 71.28 73.61 72.69 73.70 65.79 58.04 66.70 58.42
All - stop 86.39 72.84 73.64 72.84 73.67 66.19 57.61 67.13 59.10
All - stem 86.25 73.00 73.41 72.33 73.61 66.25 58.93 66.05 59.33

ELMo

Basic 86.34 69.47 82.11 70.18 71.65 65.48 60.24 65.00 66.20
All 88.63 71.80 83.91 72.61 73.30 66.93 63.20 67.58 69.45
All - neg 87.00 70.21 82.79 71.58 72.00 66.10 61.06 66.10 67.24
All - pos 87.64 70.68 83.00 72.00 72.49 66.47 61.70 65.72 67.81
All - punc 88.41 71.67 83.27 72.40 73.17 66.71 62.47 67.00 68.73
All - spell 88.23 71.55 83.16 72.33 73.09 66.50 62.59 67.11 68.10

(p < 0.0001) All - stop 90.27 73.54 85.61 74.04 74.45 68.74 64.17 69.28 71.01
All - stem 89.45 72.30 85.02 73.10 74.20 67.59 64.78 68.52 70.33

BERT

Basic 90.11 70.82 90.23 71.19 76.30 59.74 57.81 65.70 65.39
All 91.86 71.76 91.73 73.66 78.72 62.60 59.74 67.80 67.49
All - neg 90.33 70.52 91.04 72.00 77.07 61.44 58.14 66.59 66.10
All - pos 91.01 71.20 91.66 73.31 78.45 62.04 59.01 66.25 68.13
All - punc 91.59 71.50 91.60 73.18 78.54 62.27 59.60 67.25 67.27
All - spell 91.78 71.13 91.34 73.02 78.40 62.00 59.44 67.21 67.30

(p < 0.0001) All - stop 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81
All - stem 92.19 71.94 92.03 74.49 77.93 63.74 60.16 68.00 67.05

analysis and sarcasm detection achieve comparable results, while
the multi-class emotion classification typically has much lower F-
scores. The most interesting observation, however, is noticed in
Fig. 2(b) where the emotion datasets show the highest relative
improvement, indicating that multiclass classification tasks may
benefit the most from applying pre-processing at word embedding
stage Pre. These observations motivate us to explore the idea of

using different sets of pre-processing methods as described in the
next subsections.

5.3 Effects of Pre-processing Factors in (Set B)

Now we turn our attention to the effects of pre-processing
factors in (Set B) for training word embeddings for affective
tasks. Table 8 details the results of our experiments comparing
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TABLE 7
Evaluating the effect of pre-processing (Set A) at embedding-training corpus (Pre) vs. at classification datasets (Post) and (Both) (F-score ). The

t-test results (p-values) indicate the statistically-significant difference between the averages of Pre and Post (first p-value), and those of Pre and
Both (second p-value).

Embedding-Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

(p < 0.0001; p > 0.5) Pre 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28

Word2Vec (CBOW) Post 87.49 59.33 71.28 69.87 74.20 67.13 47.19 62.00 56.27
Both 88.10 62.41 73.00 71.86 75.00 70.10 50.39 64.52 58.20

(p < 0.0001; p > 0.5) Pre 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14

Word2Vec (Skip-gram) Post 88.14 60.41 71.85 70.22 75.07 67.00 50.44 62.08 56.00
Both 89.33 61.25 73.58 71.62 75.48 68.74 51.68 65.29 58.03

(p < 0.0005; p > 0.5) Pre 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74

FastText (CBOW) Post 76.48 69.25 70.15 57.38 62.48 63.71 51.47 29.35 53.84
Both 79.72 70.54 72.26 61.00 65.27 65.20 52.36 30.65 55.49

(p > 0.05; p < 0.01) Pre 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32

FastText (Skip-gram) Post 80.01 76.16 71.40 58.70 64.22 63.76 51.49 29.74 54.38
Both 80.52 70.40 72.58 63.02 66.57 65.00 53.18 30.24 55.29

(p < 0.0005; p < 0.001) Pre 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70

GloVe Post 86.37 71.20 72.30 72.15 72.47 65.73 57.19 66.31 58.64
Both 87.00 72.48 74.18 73.01 73.61 67.32 58.66 67.29 59.14

(p < 0.0005; p < 0.01) Pre 90.27 73.54 85.61 74.04 74.45 68.74 64.17 69.28 71.01

ELMo Post 88.13 71.76 83.10 72.28 73.55 66.79 63.80 68.20 70.18
Both 90.14 72.57 85.00 73.61 74.20 68.07 64.39 68.79 70.83

(p < 0.0001; p < 0.001) Pre 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81

BERT Post 94.58 70.25 92.35 74.69 77.10 63.38 58.40 68.20 67.17
Both 94.63 72.41 93.00 75.19 78.69 65.17 60.33 69.06 68.43

Fig. 2. Average F-scores vs. relative improvement

the performance of applying all pre-processing factors (All) in
(Set A) on Wikipedia corpus and the best results of ablation
studies (e.g., All-stem using pre-processing methods in (Set
A) as compared to the pre-processing methods in (Set B) at
embedding-training phase for all the seven models. Observing the
performance of the pre-processing factors in (Set B) when we
apply them at the embedding-training phase, we note that the pre-
processing techniques in this set outperform the combination of

pre-processing (e.g. All, or All-stem) from (Set A) in most
settings consistently, thereby supporting our intuition that cus-
tomizing pre-processing methods and adding new pre-processing
factors that can be more beneficial for certain affective tasks can
bring additional gains over combination of general pre-processing
factors such as in (Set A).

5.4 Evaluating Application of Pre-processing Factors
in (Set B) on Embedding-Training Corpora (Pre) vs. on
Downstream Classification Dataset (Post)
In this experiment we compare the performance of models when
applying pre-processing methods in (Set B) to the embedding-
training corpora for generating word embeddings Pre and ap-
plying the same pre-processing methods to the classification
datasets Post. The results of these experiments are presented in
Table 9, where we observe similar behavior as in (Set A) that
incorporating pre-processing into the embedding-training corpora
before generating word vectors (Pre) outperforms pre-processing
classification datasets (Post) in majority of the cases across all
nine datasets of the three affective tasks. Interestingly, this time
customized pre-processing both the bodies of text (Both) using
pre-processing methods in this set appears to be more beneficial
(as second best results) compared to pre-processing both the bod-
ies of text using pre-processing methods in (Set A), suggesting
that an appropriate combination of pre-processing methods more
customized for affective tasks achieves better results than using
only general and most common pre-processing factors.

5.5 Evaluating Application of Pre-processing Factors
in (Set B) on Embedding-Training Corpora (Pre) vs.
Pre-processing Factors in (Set C) on Downstream Clas-
sification Dataset (Post)
This experiment investigates the effect of applying pre-processing
factors in (Set B) on embedding-training corpora and a num-
ber of task-specific pre-processing factors called (Set C) to be
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TABLE 8
Comparing the effect of pre-processing using Set B with Set A for training word embeddings (Pre) (F-score).

Model Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec (CBOW) (Set A) All 88.41 60.25 71.39 71.57 73.61 65.27 48.81 62.48 57.42
(Set A) All - stem 88.76 62.19 73.25 72.36 75.69 68.53 50.28 65.33 59.28
(Set B) 90.67 62.74 74.33 73.08 76.52 69.15 53.18 66.19 60.51

Word2Vec (Skip-gram) (Set A) All 87.00 59.99 71.29 71.25 73.82 65.67 48.51 65.02 57.13
(Set A) All - stop 89.76 61.74 72.19 72.00 75.69 68.29 52.01 64.00 58.14
(Set B) 89.91 62.73 73.69 72.85 76.31 69.24 52.84 64.80 59.28

FastText (CBOW) (Set A) All 77.12 69.86 71.69 60.69 63.39 63.07 50.77 28.42 53.89
(Set A) All - stem 79.45 70.10 73.06 61.83 65.48 65.51 52.19 30.61 55.74
(Set B) 80.71 71.90 73.70 63.17 66.24 66.71 53.00 33.25 56.49

FastText (Skip-gram) (Set A) All 78.30 69.73 71.65 61.52 64.57 63.61 51.03 28.76 54.21
(Set A) All - stop 81.83 71.30 73.29 62.81 66.12 65.71 53.69 30.48 56.32
(Set B) 82.93 72.00 74.15 63.57 66.80 66.79 55.38 32.29 56.63

GloVe (Set A) All 87.32 73.22 74.39 73.14 74.19 67.29 58.51 67.34 59.70
(Set B) 86.73 73.41 74.00 74.23 74.27 68.40 59.80 66.85 60.11

ELMo (Set A) All 88.63 71.80 83.91 72.61 73.30 66.93 63.20 67.58 69.45
(Set A) All - stop 90.27 73.54 85.61 74.04 74.45 68.74 64.17 69.28 71.01
(Set B) 90.40 73.20 85.03 71.19 75.27 69.87 65.38 69.81 71.80

BERT (Set A) All 91.86 71.76 91.73 73.66 78.72 62.60 59.74 67.80 67.49
(Set A) All - stop 94.18 73.81 94.85 75.80 79.10 65.39 60.73 69.33 69.81
(Set B) 93.67 74.00 94.88 79.00 79.84 66.00 61.18 70.28 70.33

applied to classification datasets. In (Set C) we apply different
pre-processing factors for each affective task (explained in Section
3.3) directly to classification datasets and we apply pre-processing
techniques in (Set B) as described earlier (explained in Section
3.2) further “upstream” into the embedding-training corpus 21.
As an example, during Pre, for all three affective tasks, we
first apply the pre-processing techniques in (Set B) explained in
Section 3.2 to the embedding-training corpus (e.g., Wikipedia),
then generate word embeddings, then convert a classification
dataset (e.g., IMDB) into word embedding representation, and
finally classify using LSTM. Conversely, for Post, we first generate
word embeddings (using Basic pre-processing) from a embedding-
training corpus (e.g., Wikipedia), then apply the pre-processing
techniques used in (Set C) for sentiment analysis to all the three
classification datasets in sentiment analysis datasets (e.g., IMDB,
Semeval, and Airline), which is then converted to word vector
representation, and finally classified using LSTM.

The results of these experiments are presented in Table 10,
where we observe that pre-processing both the bodies of text
(Both) by applying customized pre-processing on embedding-
training corpora in (Set B) to generate the embedding and apply-
ing task-specific pre-processing methods from (Set C) on each
affective task dataset consistently achieves best results across all
nine datasets of the three affective tasks. This observation supports
our hypothesis that customized pre-processing of embedding-
training corpora and task-specific pre-processing of downstream
affective classification datasets may bring additional gains over
task-agnostic and generic pre-processing.

5.6 Sentiment Multi-class Classification

In this experiment we investigate how our proposed approaches
perform on a multi-class sentiment classification dataset called

21. For settings which include stemming/lemmatization, the embedding-
training corpora is also stemmed/lemmatized in order to obtain a compatible
vocabulary.

the Stanford Sentiment Treebank (SST5) dataset [94]. This is a
collection of 11,855 sentences extracted from movie reviews and
converted to parse trees with 215,154 different phrases. The (root)
sentences are divided into training (8,544), validation (1,101), and
testing (2,210). For the fine-grained (root) sentence classification
task (SST-5), we need to predict one of the five classes (negative,
weakly negative, neutral, weakly positive, or positive; scores range
from 1 to 5 accordingly) for each (root) sentence in the test set.

We first investigate the difference between applying the pre-
processing methods in (Set A) to the embedding-training corpora
for generating word embeddings (Pre) and applying the same
pre-processing methods in this set to the classification datasets
(Post), similar to our experiments in section 5.2. The results
of this experiment are presented in Table 12, where we observe
that incorporating pre-processing in this set into the embedding-
training corpora before generating word vectors (Pre) outper-
forms pre-processing classification datasets (Post) in four out
of seven models. Interestingly, pre-processing both bodies of text
(Both) appears to be beneficial using the pre-processing methods
in (Set A) for three models, namely, Word2Vec (CBOW), Fast-
Text (CBOW), and ELMo. This suggests that continuous Bag-
of-Words models and a character-based bidirectional contextual
language model will perform better using this set of pre-processing
methods for Both.

Table 13 shows the results of our experiments comparing the
performance of applying all pre-processing factors (All) in (Set
A), the best results of ablation studies using pre-processing factors
in (Set A), and embedding-training using factors in (Set B)
for all the seven models on Wikipedia corpus. Observing the
performance of the pre-processing factors in (Set B) applied in
embedding-training phase, we note that the pre-processing tech-
niques in this set outperform the combination of pre-processing
(e.g., All, or All-stem) using (Set A) in most cases consis-
tently. This shows that customizing pre-processing methods and
adding new pre-processing factors are more beneficial to affective
tasks than general pre-processing factors in (Set A).
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TABLE 9
Evaluating the effect of pre-processing (Set B) at embedding-training corpus (Pre) vs. at classification datasets (Post) and (Both) (F-score )

Embedding-Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec (CBOW)
Pre 90.67 62.74 74.33 73.08 76.52 69.15 53.18 66.19 60.51
Post 87.30 60.04 72.20 68.27 73.61 66.80 48.25 61.29 55.00
Both 88.13 61.70 72.69 70.08 74.12 68.48 50.23 65.37 58.00

Word2Vec (Skip-gram)
Pre 89.91 62.73 73.69 72.85 76.31 69.24 52.84 64.80 59.28
Post 88.01 60.22 70.25 71.13 74.28 67.45 50.62 62.00 55.70
Both 88.57 61.85 73.20 71.08 75.00 69.00 50.74 63.12 57.21

FastText (CBOW)
Pre 80.71 71.90 73.70 63.17 66.24 66.71 53.00 33.25 56.49
Post 77.30 70.10 71.27 56.80 65.30 63.78 52.67 30.27 54.18
Both 78.69 71.25 71.69 61.38 65.84 64.37 52.73 32.80 54.80

FastText (Skip-gram)
Pre 82.93 72.00 74.15 63.57 66.80 66.79 55.38 32.29 56.63
Post 78.20 67.84 70.33 59.67 63.80 61.30 51.27 30.69 54.70
Both 79.06 70.60 73.12 62.81 65.30 64.80 54.25 30.39 55.00

GloVe
Pre 86.73 73.41 74.00 74.23 74.27 68.40 59.80 66.85 60.11
Post 85.12 70.00 71.45 72.64 71.69 65.10 56.48 64.23 57.29
Both 87.29 73.00 73.14 73.45 73.59 67.48 58.29 66.70 58.76

ELMo
Pre 90.40 73.20 85.03 71.19 75.27 69.87 65.38 69.81 71.80
Post 86.25 70.33 82.20 69.48 73.02 66.40 63.14 67.40 69.28
Both 90.33 72.60 83.20 72.68 74.11 68.00 64.21 67.62 70.37

BERT
Pre 93.67 74.00 94.88 79.00 79.84 66.00 61.18 70.28 70.33
Post 91.83 70.12 92.00 74.04 76.81 62.71 58.02 67.90 66.80
Both 94.03 72.19 92.20 76.39 77.19 63.77 60.03 68.34 67.61

Now, we compare the performance of applying pre-processing
methods in (Set B) to the embedding-training corpus (Pre)
and applying the same pre-processing methods in this set to
the SST-5 classification dataset (Post). The results of these
experiments are presented in Table 14, where we observe similar
behavior as in (Set A). That is, incorporating pre-processing
into the embedding-training corpus before generating word vectors
(Pre) outperforms pre-processing classification datasets (Post)
in majority of the cases. Moreover, customized pre-processing
both the bodies of text (Both) using pre-processing methods in
(Set B) appears to be more beneficial (as first best results in 2
models and second best results in 3 models) compared to pre-
processing both the bodies of text using pre-processing methods
in (Set A), suggesting that an appropriate combination of pre-
processing methods customized for affective tasks achieves better
results than using only general and most common pre-processing
factors.

Finally, we investigate the effect of applying pre-processing
factors in (Set B) on embedding-training corpora and then ap-
plying the pre-processing techniques in (Set C) for sentiment
analysis in SST-5 dataset. The results of these experiments are
presented in Table 15, where we observe that pre-processing
both the bodies of text (Both) by applying customized pre-
processing on embedding-training corpora in (Set B) to gen-
erate the embeddings and applying task-specific pre-processing
methods in (Set C) to the sentiment analysis dataset (SST-5)
consistently achieves best results across all the seven models.
This observation supports our hypothesis that customized pre-
processing of embedding-training corpora and task-specific pre-
processing downstream affective tasks can bring additional gains
over task-agnostic and generic pre-processing.

5.7 Evaluating Proposed Model against State-of-the-art
Baselines
While not a primary focus of this paper, in this final experiment we
compare the performance of our pre-processed word embeddings

against those of three state-of-the-art pre-trained word embeddings
that have been specifically trained for affective tasks 22.

(i) SSWE: Sentiment Specific Word Embeddings (unified
model)23 were trained using a corpus of 10 million tweets to
encode sentiment information into the continuous representation
of words [7].

(ii) DeepMoji: These word embeddings24 were trained using
BiLSTM on 1.2 billion tweets with emojis [12].

(iii) EWE: Emotion-enriched Word Embeddings25 were
learned using 200,000 Amazon product reviews corpus using an
LSTM model [9].

From the results in Table 11, we notice that BERT is best in
seven out of nine datasets except one sarcasm dataset (Reddit),
and one emotion detection dataset (Alm), while ELMo generates
the second best results on five datasets and one best result on
emotion detection dataset (Alm). Overall, our analysis suggests
that task-specific pre-processing at each word embedding stage
(Both) works best for all the three affective tasks.

6 CONCLUSIONS

We systematically examined the effect of pre-processing
embedding-training corpora used to induce word representations
for affect analysis. While all the pre-processing techniques in
the first set of pre-processing methods (Set A) improved the
performance to a certain extent, our analysis suggests that the most
noticeable increase is obtained through negation processing (neg).
The overall best performance using combination of pre-processing
factors in this set is achieved by applying all the pre-processing
techniques, except stopwords removal (All-stop or stem). See
section 3.3 for some insights. Interestingly, we observe in this
set that incorporating pre-processing into word representations

22. These vectors were obtained from their original repositories and have
been used without any modifications.

23. http://ir.hit.edu.cn/d̃ytang/paper/sswe/embedding-results.zip
24. https://github.com/bfelbo/DeepMoji
25. https://www.dropbox.com/s/wr5ovupf7yl282x/ewe uni.txt
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TABLE 10
Evaluating the effect of pre-processing (Set B) at embedding-training corpus (Pre) vs. pre-processing (Set C) at classification datasets (Post),

and (Both) (F-score )

Embedding-Training Corpus Processing IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

Word2Vec (CBOW)
Pre 90.67 62.74 74.33 73.08 76.52 69.15 53.18 66.19 60.51
Post 88.52 60.47 73.40 71.25 75.63 68.05 50.44 64.20 59.31
Both 90.81 63.30 75.07 74.69 77.80 70.51 54.20 67.48 61.02

Word2Vec (Skip-gram)
Pre 89.91 62.73 73.69 72.85 76.31 69.24 52.84 64.80 59.28
Post 89.10 62.03 72.45 71.62 75.69 68.14 51.66 62.70 58.00
Both 90.40 64.20 75.37 74.28 77.82 71.49 54.09 66.00 60.58

FastText (CBOW)
Pre 80.71 71.90 73.70 63.17 66.24 66.71 53.00 33.25 56.49
Post 78.29 70.18 71.02 60.39 66.18 65.01 53.00 33.28 55.70
Both 81.60 72.50 75.06 65.86 68.21 69.17 55.48 36.45 58.71

FastText (Skip-gram)
Pre 82.93 72.00 74.15 63.57 66.80 66.79 55.38 32.29 56.63
Post 80.83 69.38 72.65 62.30 65.30 64.27 55.18 31.40 55.80
Both 83.60 73.41 75.33 65.39 68.42 68.70 57.04 35.20 58.00

GloVe
Pre 86.73 73.41 74.00 74.23 74.27 68.40 59.80 66.85 60.11
Post 86.20 72.00 73.10 73.00 73.81 66.80 58.30 65.10 58.26
Both 87.23 75.08 75.14 74.40 76.31 70.25 61.40 68.71 62.30

ELMo
Pre 90.40 73.20 85.03 71.19 75.27 69.87 65.38 69.81 71.80
Post 88.67 72.80 84.61 70.39 74.69 68.80 64.20 68.07 70.30
Both 91.20 74.83 86.67 73.30 77.00 71.37 67.49 71.25 72.20

BERT
Pre 93.67 74.00 94.88 79.00 79.84 66.00 61.18 70.28 70.33
Post 93.10 73.24 92.60 75.00 78.20 64.80 59.34 69.18 69.52
Both 94.22 75.20 94.88 80.21 80.34 67.41 63.10 72.66 72.80

TABLE 11
Comparing against state-of-the-art word embeddings. The best score is highlighted in bold, the second best result is underlined (F-score).

Models IMDB Semeval Airline IAC Onion Reddit Alm ISEAR SSEC

SSWE 80.45 69.27 78.29 64.85 52.74 50.73 51.00 54.71 52.18
DeepMoji 69.79 62.10 71.03 65.67 70.90 53.08 46.33 58.20 58.90
EWE 71.28 60.27 67.81 67.43 70.06 55.02 58.33 66.09 58.94

Our best results:
FastText (CBOW) 81.60 72.50 75.06 65.86 68.21 69.17 55.48 36.45 58.71
FastText (Skip-gram) 83.60 73.41 75.33 65.39 68.42 68.70 57.04 35.20 58.00
Word2Vec (CBOW) 90.81 63.30 75.07 74.69 77.80 70.51 54.20 67.48 61.02
Word2Vec (Skip-gram) 90.40 64.20 73.37 74.28 77.82 71.49 54.09 66.00 60.58
GloVe 87.23 75.08 75.14 74.40 76.31 70.25 61.40 68.71 62.30
ELMo 91.20 74.83 86.67 73.30 77.00 71.37 67.49 71.25 72.20
BERT 94.22 75.20 94.88 80.21 80.34 67.41 63.10 72.66 72.80

appears to be far more beneficial than applying it in a downstream
task to classification datasets. The average F-scores across all
the datasets and all the embedding-training corpora (Pre: 68.79,
Post: 67.08, Both: 68.49), show a slight advantage afforded by
the Pre strategy. Moreover, while all the three affective tasks
(sentiment analysis, sarcasm detection and emotion classification)
benefit from our proposed pre-processing methods in (Set A),
our analysis reveals that the multi-class emotion classification task
benefits the most.

Further, we examined the role of pre-processing methods in
(Set B) by modifying and customizing the methods in (Set A)
for affective tasks and applying them to the embedding-training
corpora as well as classification datasets. Our analysis reveals
that an appropriate combination of pre-processing methods more
customized for affective tasks achieves better results than using
only general and most common combination of pre-processing
factors. We also observed that pre-processing both the bodies of
text (Both) by applying customized pre-processing on embedding-
training corpora in (Set B) to generate the embeddings and
applying task-specific pre-processing methods from (Set C) on
each affective task dataset consistently achieves best results across

all the nine datasets of the three affective tasks. This observa-
tion supports our hypothesis that customized pre-processing of
embedding-training corpora and task-specific pre-processing of
downstream affective datasets may bring additional gains over
task-agnostic and generic pre-processing. To supplement our anal-
ysis, we also compared the performance of our pre-processed word
embeddings against those of three state-of-the-art pre-trained word
embeddings that have been specifically trained for affective tasks.
The results provided evidence that BERT is best on seven out
of nine datasets except one sarcasm dataset (Reddit), and one
emotion detection dataset (Alm), while ELMo is the second best
on five datasets and best on one emotion detection dataset (Alm).
Overall, our analysis suggests that task-specific pre-processing at
each word embedding stage (Both) works best for all the three
affective tasks. Finally, one interesting future work item is to
investigate the effect of prepossessing when sub-word embedding
models, such as the one used in [6], [95]. Another research direc-
tion is to deal with noisy environments such as social networks.
Such an environment requires handling slang, abbreviations, and
emerging language patterns through dynamic language modeling
and domain-specific knowledge incorporation .
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TABLE 12
Evaluating the effect of pre-processing (Set A) at embedding-training
corpus (Pre) vs. at classification datasets (Post) and (Both) for Stanford

Sentiment Treebank dataset (F-score )

Embedding-Training Corpus Processing SST-5

Word2Vec (CBOW)

Basic 49.01
Pre 50.25
Post 49.70
Both 51.11

Word2Vec (Skip-gram)

Basic 50.03
Pre 53.34
Post 51.20
Both 52.01

FastText (CBOW)

Basic 43.25
Pre 44.93
Post 44.00
Both 45.82

FastText (Skip-gram)

Basic 40.71
Pre 44.28
Post 43.47
Both 42.86

GloVe

Basic 51.20
Pre 54.07
Post 53.07
Both 53.49

ELMo

Basic 51.39
Pre 53.19
Post 52.78
Both 53.67

BERT

Basic 57.06
Pre 59.61
Post 57.50
Both 58.14

TABLE 13
Comparing the effect of pre-processing using (Set B) with (Set A) for

training word embeddings (Pre) using Stanford Sentiment Treebank
dataset (F-score).

Embedding-Training Corpus Processing SST-5

Word2Vec (CBOW) (Set A) All 49.30
(Set A) All - stem 50.25
(Set B) 52.06

Word2Vec (Skip-gram) (Set A) All 51.08
(Set A) All - stop 53.34
(Set B) 55.00

FastText (CBOW) (Set A) All 43.41
(Set A) All - stem 44.93
(Set B) 45.19

FastText (Skip-gram) (Set A) All 41.63
(Set A) All - stop 44.28
(Set B) 45.08

GloVe (Set A) All 54.07
(Set B) 56.68

ELMo (Set A) All 52.74
(Set A) All - stop 53.19
(Set B) 52.81

BERT (Set A) All 57.89
(Set A) All - stop 59.61
(Set B) 60.57

TABLE 14
Evaluating the effect of pre-processing (Set B) at embedding-training
corpus (Pre) vs. at classification datasets (Post) and (Both) for Stanford

Sentiment Treebank dataset (F-score ).

Embedding-Training Corpus Processing SST-5

Word2Vec (CBOW)
Pre 52.06
Post 50.04
Both 51.13

Word2Vec (Skip-gram)
Pre 55.00
Post 52.18
Both 54.71

FastText (CBOW)
Pre 45.19
Post 44.23
Both 43.12

FastText (Skip-gram)
Pre 45.08
Post 44.17
Both 43.80

GloVe
Pre 56.68
Post 53.82
Both 54.27

ELMo
Pre 52.81
Post 51.65
Both 53.04

BERT
Pre 60.57
Post 59.27
Both 61.02

TABLE 15
Evaluating the effect of pre-processing (Set B) at embedding-training

corpus (Pre) vs. pre-processing (Set C) at classification datasets
(Post), and (Both) for Stanford Sentiment Treebank dataset (F-score )

Embedding-Training Corpus Processing SST-5

Word2Vec (CBOW)
Pre 52.06
Post 51.33
Both 53.09

Word2Vec (Skip-gram)
Pre 55.00
Post 53.90
Both 55.89

FastText (CBOW)
Pre 45.19
Post 45.13
Both 47.25

FastText (Skip-gram)
Pre 45.08
Post 44.61
Both 46.17

GloVe
Pre 56.68
Post 55.11
Both 56.83

ELMo
Pre 52.81
Post 51.60
Both 53.05

BERT
Pre 60.57
Post 61.79
Both 62.19
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