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Abstract—Mining large-scale trajectory data streams (of mov-
ing objects) has been of ever increasing research interest due to
an abundance of modern tracking devices and its large number
of critical applications. In this paper, we are interested in mining
group patterns of moving objects. Group pattern mining describes
a special type of trajectory mining task that requires to efficiently
discover trajectories of objects that are found in close proximity
to each other for a period of time. In particular, we focus on
trajectories of pedestrians coming from motion video analysis
and we are interested in interactive analysis and exploration of
group dynamics, including various definitions of group gathering
and dispersion. Towards this end, we present a suite of (three)
tensor-based methods for efficient discovery of evolving groups of
pedestrians. Traditional approaches to solve the problem heavily
rely on well-defined clustering algorithms to discover groups
of pedestrians at each time point, and then post-process these
groups to discover groups that satisfy specific group pattern
semantics, including time constraints. In contrast, our proposed
methods are based on efficiently discovering pairs of pedestrians
that move together over time, under varying conditions. Pairs of
pedestrians are subsequently used as a building block for ef-
fectively discovering groups of pedestrians. The suite of proposed
methods provides the ability to adapt to many different scenarios
and application requirements. Furthermore, a query-based search
method is provided that allows for interactive exploration and
analysis of group dynamics over time and space. Through
experiments on real data, we demonstrate the effectiveness of our
methods on discovering group patterns of pedestrian trajectories
against sensible baselines, for a varying range of conditions. In
addition, a visual testing is performed on real motion video to
assert the group dynamics discovered by each method.

Index Terms—Trajectory mining, group pattern mining, pedes-
trian behavior

I. INTRODUCTION

Advances in location acquisition and tracking devices have
given rise to the generation of enormous trajectory data con-
sisting of spatial and temporal information of moving objects,
such as persons, vehicles or animals [1]. These trajectories can
either be physically constrained (e.g., a pedestrian walking on
a sidewalk) or unconstrained (e.g., a bird’s flight). Mining
trajectory data to find interesting patterns is of increased
research interest due to a broad range of useful applications,
including analysis of transportation systems, location-based
social networks, and pedestrian behavior [2]–[4].

The primary focus of this research is on discovery of
pedestrian group patterns through mining moving pedestrian
trajectories. Group pattern mining describes a special type
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Fig. 1: Four pedestrian trajectories are highlighted in this scene
of a train station. Pedestrians #23 and #24, have met for some
time and then exited the station following different routes.
Pedestrians #53 and #54 walked and exited the station together.

of trajectory mining task that seeks to efficiently discover
moving objects that are found in close proximity to each
other for a period of time. This is an important step towards
understanding pedestrian behavior, including group gather-
ing (people coming together) and group dispersion (people
distributing over a wider area). To motivate our problem
domain, Fig. 1 provides a simple visual example of some
interesting group dynamics. It depicts a train station scene
taken from a video surveillance camera, where four pedes-
trian trajectories are highlighted. By careful analysis of the
trajectories one can gather that pedestrians #23 (yellow) and
#24 (green), met each other in the station for a while, and
then exited the station following alternate routes. Meanwhile,
pedestrians #53 and #54 (white) walked and exited the station
together (i.e., continuously stayed within close proximity to
each other). Enabling this kind of analysis and understanding
pedestrian grouping patterns can support a variety of useful
applications ranging from monitoring physical areas [5], such
as shopping malls, train stations, and airports to supporting
pedestrian behavioral studies [6], [7]. In fact, crowded scenes
would render the analysis more challenging, as individuals
are often intermixed with the crowd. Motion video analysis
raises additional challenges for the problem of interest. For
example, the actual proximity of two pedestrians depends on
the amount of video’s perspective distortion (i.e., pedestrians
far from the camera appear smaller than pedestrians closer to
it). We address these problems in a data preprocessing phase



and discuss potential implications. Our methods are orthogonal
and can be applied to any trajectory data (not necessarily
coming from motion video).

There are many definitions of group patterns studied in the
literature. The flock pattern [8] refers to groups of trajectories
that stay and move together, as a cluster, under a predefined
threshold of distance, over a certain time period. This pattern
is not sufficient to deal with moving objects that divert in a
wide area (potentially leaving a group and joining other groups
over time). Another group pattern is the moving cluster [9],
which defines the group as a sequence of spatial clusters that
appear in consecutive snapshots of the object movements, such
that two consecutive spatial clusters share a large number of
common objects. However, this pattern does not require that
the group’s members are unique throughout the snapshots (i.e.
it is not required to have the same members in the clusters).
The convoy pattern [10] tries to merge the two concepts, such
as the group consists of at least m objects moving together
for at least k consecutive time instants. The gathering pattern
[11] is another group pattern that focuses on adjacent clusters
that move close to each other over time.

In the case of studying pedestrian groups, there is no
single group pattern that can exactly describe the pedestrian
group behavior, so more flexible definitions of groups are
encouraged. In principle, pedestrians who intentionally walk
together are considered a group. Accordingly, to model this
kind of group pattern we should take into consideration the
time dimension, and allow a group of pedestrians to be formed
and dispersed over time. In addition pedestrian groups are
typically small. For example, some studies observed that
pedestrian groups usually consist of two to four members,
while groups of size five or higher are considered rare cases
[12]. Therefore emphasis should be given in methods that
efficiently find small clusters. Recently, R. Lan et al. [13]
presented a new group pattern, called evolving group pattern
that defines an evolving group as a dense group of trajectories
that share common behavior in most of the time and change
gradually over time. Similarly, Q. Fan et al. [14] introduced
a platform for mining co-movement trajectory patterns. In
fact, it relaxes the “moving together” constraint, by allowing
individual objects to join or leave a group at different times.
This group pattern, while not exactly the same, is conceptually
closer to the type of group patterns that we want to discover
in this work. Briefly, our group pattern definition is based
on what consists a pair over time. Then, pairs are used as
building blocks to define larger groups (see Section II for
details). Starting with pairs, allows to define more versatile
strategies of group pattern discovery. It also allows to improve
the time performance by considering only relevant pairs in the
grouping phase.

Towards this end, we present a suite of three tensor-based
methods for efficiently discovering pairs and groups of moving
objects that are intentionally traveling together in space and
time. Our methods assume that the (x, y) coordinates of the
motion trajectory for each pedestrian are given at each time
point —we argue that this assumption is valid based on the

rapid development of location-tracking devices (e.g., GPS)
and vision-based pedestrian detection and tracking techniques
(refer to representative works of vision-based detection and
tracking technologies [5], [15]). The first method, called
locTgroups, is a local spatial-only method that finds pairs at a
certain time point. The second method, called globTgroups, is
a global spatio-temporal method that finds pairs similar to the
flock pattern. Based on these two methods, we derive a novel
third method, called timeWgroups that utilizes a time window
in order to find pairs. Once pairs are in place, all three methods
utilize the same grouping method that finds groups.

There is a key idea that differentiates our approach to
existing approaches. Existing methods operate in the following
two phases: In the first phase, they utilize a spatial cluster
algorithm (typically DBSCAN [16], any of its variants or other
from the rich literature [1]) to discover groups (clusters) of
objects at any specific time point. Then, in a second phase,
they discover groups that follow the semantics of a specific
group pattern by post-processing already discovered groups
of phase 1. While this approach works, it inherits limitations
of the clustering algorithms themselves, and it doesn’t exploit
the group pattern semantics up front. The latter is especially
important when the time dimension is critical for a group
pattern. In contrast, our approach is to first discover pairs of
pedestrians that spatially move together over a certain time
interval, then utilize the pairs to discover groups. That way, our
methods provide more flexibility and can deal with different
group pattern semantics, including flock, evolving groups and
more, under the same framework.

Trajectory data sets are typically very sparse so representing
the data using a simple tensor would contain a large number
of zero values (this is because not all pedestrians move at the
same time interval). To improve efficiency, we represent the
data as a sparse tensor. A sparse tensor allows to keep large-
data sets in memory and provides significant improvements in
terms of time performance by utilizing optimized and scalable
matrix operations, provided in many existing toolkits and
software packages [17].

In summary, the major contributions of this work include:

• a novel framework for optimized tensor-based methods
for group pattern discovery of pedestrian trajectories.

• a novel time window based method, timeWgroups, for
efficiently and effectively finding groups of pedestrians
with variant group pattern semantics.

• a thorough evaluation of group pattern discovery methods
on large-scale real data, for a varying range of conditions.
In addition, a visual testing is performed on real motion
video to assert the groups discovered by each method.

• a novel tool that supports interactive exploration of group
dynamics over time by end-users.

• making source code, data, sample rendered videos
and an online interactive demonstration publicly
available to encourage reproducibility of results.
They can all be accessed at the following website:
https://sites.google.com/view/pedestrians-group-pattern/.



TABLE I: Table of notations

Symbol Meaning
G Pedestrian group

(x, y) Pedestrian’s position in the 2D Cartesian coordinate
systems

pi Trajectory of pedestrian number i

M
Sparse tensor contains all pedestrians’ data over a
certain period of time

N , n Number of pedestrians
t Given time point
V Time period
w Time window size
Dl Distance between two pedestrians
Dg Global distance between two pedestrians’ trajectories
Dw Maximum distance over w time window
τ Predefined threshold

ANG
Average number of identified groups (in the video)
per time unit according to certain proximity distance
threshold τ

AGS

Average group size (in the video) per time unit
defined as number of pedestrians assigned to a group
in the frame divided by the number of identified
groups in that frame

ρ Density of groups
v Feature vector extracted from a pair of pedestrians

m
Number of the random samples picked from a tra-
jectory

xt, yt
x and y coordinates of all pedestrians’ trajectories at
time t

Φ A mapping function of pedestrian indices

The remainder of this paper is organized as follows: Section
II introduces notation and formally defines the problem. Our
methods and overall framework are presented in Section III.
Section IV provides details of our experimental evaluation.
In Section V we present an interactive tool for exploration
of group dynamics. After reviewing the related work in
Section VI, we conclude in Section VII.

II. PROBLEM DEFINITION

In this section, we state the problem by giving the
definitions of pedestrian groups and pairs that we aim to find.
Table I lists the symbols we will use and their meanings.
Given (x, y) coordinates of the motion trajectories for N
pedestrians over V time points, the goal is to find pedestrian
groups at any given time interval. The initial phase of the
problem definition is the understanding of the pedestrian
group’s characteristics. The evolving group pattern is the most
appropriate group pattern to describe the pedestrian group.
However, other group patterns can be more appropriate for
specific applications. In criminal investigation, for example,
it can be more interesting to sieve through video archives
and find activities of coherent pairs of pedestrian that have
happened in the past. Accordingly, the flock pattern would be
more suitable to describe this kind of pedestrian groups.

Definition 1: (Coherent pair) Given two pedestrian trajec-
tories (pi,pj), i, j ∈ [1..N ], where N is the total number
of pedestrian over the given time period, (i, j) is considered
a coherent pair, iff the average distance between them, over
the entire given time, is below a fixed threshold. Intuitively,

Fig. 2: Coherent pair follows similar path over time (red/blue
arrows). Non-coherent pair (green/yellow arrows).

the coherent pair is a pair of pedestrians’ trajectories that
intentionally appear, travel, and disappear together over time.

Definition 2: (Coherent group) is a group of pedestrians;
each one of them belongs to one or more coherent pairs, such
that each pair shares a common pedestrian with at least one of
the group pairs, i.e. G = {1, 2, ..., k}, ∀i ∈ {1, ..., k}∃j,m ∈
{1, ..., k} : (i, j) and (i,m) are coherent pairs.

Definition 3: (Pedestrian pair) Given two pedestrian tra-
jectories (pi,pj) over a time window of size w, where w ≥ 1,
the pair (i, j) is considered a pedestrian pair iff the maximum
distance between pi and pj , during this time window, is below
a certain threshold.

Definition 4: (Pedestrian group) is a group of pedestrians
that belong to one or more pedestrian pairs over w time
window. As w approaches to 1, the pattern becomes more
susceptible to local changes over time. On the other hand, a
larger w, that is close to the entire trajectory length, forms a
coherent group. In other words, the pedestrian group is a dense
group of pedestrians that intentionally walk together and can
be gradually changed over time.

As we deal with a big amount of trajectory data, we use an
efficient data structure to represent the pedestrians’ trajectories
over time. We store all trajectories in a big sparse tensor M ∈
RN×V×2), where N is the number of pedestrians’ trajectories
over time V . At any given time point t, M(i,t) = (xit , yit ),
where xit , yit are the (x, y) coordinates of pedestrian i at t.
Our objective is to solve the following problems:

Problem 1: Given a set of pedestrian trajectories (pi,pj),
i, j ∈ [1..N ], find the coherent pairs and coherent groups of
pedestrians in a certain time interval (globTgroups).

Problem 2: Given a set of pedestrian trajectories (pi,pj),



Fig. 3: A visual summary of the three proposed grouping
methods: locTgroups, globTgroups, and timeWgroups.

i, j ∈ [1..N ], find the pedestrian pairs and pedestrian groups
in a certain time interval (locTgroups and timeWgroups).

III. METHODOLOGY

In our problem domain, a large number of moving objects
is expected to appear at the same time point (e.g., a train
arrives). Since the performance is critical, dealing with such
huge data requires that we adopt a straightforward approach
to find groups with different patterns semantics. We use the
Euclidean distance as a metric to measure the distance between
trajectory pairs. Then a recursive algorithm is applied to extend
pairs to groups. In this section, we present the details of the
proposed methods to find pedestrian pairs and groups. As
discussed earlier and later in Section VI, existing approaches
rely on well-known clustering methods (e.g., DBSCAN) to
first find groups (clusters) at any time point. In contrast, we
consider the temporal nature of trajectories upfront by splitting
the process of finding the groups into two steps: i) finding pairs
over time, and ii) extending the discovered pairs to discover
groups. This approach allows to define alternate strategies
for group patterns (i.e. coherent group and pedestrian group)
using the same framework.

A. Finding Pair Patterns

Finding pairs operates as a building block in our framework
for finding both coherent groups and pedestrian groups. Given
a sparse tensor (M ∈ RN×V×2) that contains N pedestrians’
trajectories over time V , M captures the (x, y) coordinates of
each trajectory per time point. Using this representation, we
present the following three methods to find pair patterns:

1) Local Spatial Pairing of Trajectories (locTgroups):
Given Nt pedestrians at a time point t, we first define the
proximity measure between two pedestrians i, j ∈ [1..Nt],
in which we use the Euclidean distance Dl(p

t
i,p

t
j) (Equ. 1)

between two trajectories pi and pj in space such that:

Dl(p
t
i,p

t
j) =

√
(xti − xtj)2 + (yti − ytj)2. (1)

TABLE II: Comparison between the proposed three methods:
locTgroups, globTgroups and timeWgroups.

Comparison locTgroups globTgroups timeWgroups
On-line 3 7 w time delay
Group gathering/dispersion 3 7 3
Spatial proximity 3 3 3
Temporal proximity 7 3 3

Any two pedestrians that have distance below a predefined
threshold τ will form a pair at the particular time point t.
In some real application, τ should reflect the real proximity
distance allowed. For example, in motion video a pedestrian’s
x, y coordinates are the pixel coordinates in each video frame
(i.e., still image). For such motion video application, there
should be a way to map dimensions of pixel units (image plane
space) to meter units (real world space). Also the threshold τ
can be dynamic based on factors such as density of trajectories
and other application-specific factors. More analysis of the
impact of τ is presented in Section IV.

2) Global Spatio-temporal Pairing of Trajectories (globT-
groups): Given pedestrian i ∈ N , we are interested to find the
coherent pairs of the pedestrian i over the entire time period
V (see Fig. 2). However, since i appears for a certain period
of time Ti, we limit the search space into the NTi pedestrian
trajectories overlapping with the pedestrian i’s trajectory. To
find the spatio-temporal coherent pairs, we average the Eu-
clidean distance over time as a proximity measure between
two pedestrian trajectories using the following equation:

Dg(pi,pj) =

∑Ti

t=1Dl(p
t
i,p

t
j)

Ti
, (2)

where Dg(pi,pj) is the average distance between pedestrians
i and j. After constructing Dg , any two trajectories can be
considered as a pair if their distance is under a predefined
threshold τ .

3) Time Window Based Pairing of Trajectories (timeW-
groups): For the previous two methods, there are some
strengths and weaknesses summarized in Table II. The local
spatial method (locTgroups) can be more easily adapted to
real-time applications, in which case, it can process suffi-
cient amount of time points with less computational power.
Furthermore, this method can be easily extended by imple-
menting some incremental algorithms such as adopting speed,
acceleration, and direction. It is also capable to capture the
group gathering and group dispersion dynamics. However, this
method computes only the spatial proximity and ignores the
temporal one. On the other hand, the global spatio-temporal
method (globTgroups) is efficient in finding coherent pairs
in space and time. However, this method runs in an off-line
manner, in which it requires the entire video to be available
beforehand. It is also not able to capture the group gathering
and group dispersion dynamics.

By comparing and discussing the shortcomings of the
previous two methods, the task now is motivated towards
compromise and overcome the shortcomings. Towards this
end, we propose a novel method, timeWgroups, that finds pairs
efficiently in space and time, and naturally captures the group



Algorithm 1 Grouping of Pedestrian Pairs

1: procedure GETGROUPS(D, τ ) . Group pedestrians
using distance function D and proximity threshold τ

2: P(i, j)← 1, for all i, j ∈ [1..N ] where D(i, j) < τ
3: V (i)← 0, for all i ∈ [1..N ]
4: Groups← [] . Identified pedestrian groups
5: NG ← 0 . Number of identified groups
6: for all Pedestrian i ∈ [1..N ] do
7: Gi ← FindGroupOf(i);
8: if Gi 6= φ then
9: NG ← NG + 1

10: Groups(NG)← Gi

11: return Groups

12: procedure FINDGROUPOF(i) . Recursively find the
group of pedestrian i

13: Global V , P
14: if V (i) then return φ

15: V (i)← 1;
16: Gi ← φ
17: for all k where P(i, k) = 1 do
18: if V (k) 6= 1 then
19: Gk ← FindGroupOf(k)
20: Gi ← Gi ∪Gk

21: if Gi 6= φ then Gi ← Gi ∪ {i}
22: return Gi

gathering/dispersion dynamics. We use a step time window of
size w. The distance between pi and pj over w time window
is calculated by the following equation:

Dw(pi,pj) = max
{t→t+w−1}

{Dl(p
t
i,p

t
j)}. (3)

Finally, a visual summary of the three proposed grouping
methods locTgroups, globTgroups, and timeWgroups is illus-
trated in Fig. 3.

B. Recursive Grouping of Pairs

Given a trajectory pi of pedestrian (i) and using the pairwise
proximity distances found by any of the previous methods, we
group together all the pedestrians (k) that are paired with the
pedestrian (i). Formally, the group of pedestrian (i) is:

Gi = {i} ∪ {Gk : k 6= i,D(pi,pk) < τ}

where D ∈ {Dl, Dg, Dw} is the distance metric defined ac-
cording to locTgroups, globTgroups or timeWgroups methods,
respectively. Until all the pairs are visited, we keep expanding
the group (G) by adding all the pairs of the group members
recursively as described in Algorithm 1.

The algorithm starts by initializing two global variables P
and V in lines 2 and 3, respectively. P is a boolean matrix of
size N ×N that takes the value 1 when two pedestrians i, j
are in one pair, otherwise it takes the value 0. V is a vector of
size N that keeps a record of whether a pedestrian i has been
visited or not. In line 4 an empty array Groups, which will

TABLE III: Details of the dataset

Resolution (px) 1, 920 × 1, 080

Annotated frame count 6000

Annotated pedestrian count 12, 684

Average pedestrian number per frame 123

Max pedestrian number per frame 332

Number of data points 1, 266, 502

contain the identified groups, is initialized. The algorithm will
call at line 7 the function FindGroupOf(i) which will initially,
at line 14, verify that pedestrian i was not visited before.
Then recursively iterates through the pairs of pedestrian i to
find all their groups and return the union of all these groups.
If pedestrian i has been visited, then the function returns an
empty set, meaning that the pedestrian already belongs to a
group (or does not have not been been paired).

C. Tensor-based Optimization

Each method operates on different data size; the
locTgroups receives on-line trajectory information at a single
time point. While, the timeWgroups waits until it receives w
time points. Eventually, the globTgroups requires the entire
trajectories data to be available. Pedestrians trajectories have
a sparse representation, since their trajectories are not aligned
in time. Based on that, we perform the following steps for
performance optimization:

• At each time interval, we reduce the computations by
applying the algorithms on the existing pedestrians at that
interval using a map function

Φ : Φ(I)→ Isub,Φ(Isub)
−1 → I,

where I is the indices of N pedestrians in M and Isub ⊂
I : |Isub| <<|I| that contains the existing pedestrians.

• We use optimized matrix operations to calculate the
distances in Eq. 1 2, and 3, as following: let xt and yt be
column vectors represent the x and y coordinates of Nt

pedestrians’ locations at time t, respectively. We construct
Xt,Yt ∈ RNt×Nt matrices, such that:

Xt =
[
xt xt ... xt

]
, (4)

Yt =
[
yt yt ... yt

]
. (5)

In that way, the distances between all pedestrians’ at time
t can be calculated by the following equation:

Dt =
√

(Xt −XT
t )2 + (Yt −YT

t )2, (6)

where Dt is the distances matrix between all pedestrians
at time t.



Fig. 4: Left and right maps show the trajectories before and
after filling the unreported stationary positions respectively.
Yellow cell indicates the reported (x, y) coordinates of moving
pedestrian and the blue cell indicates the unreported position
of stationary pedestrian.

Fig. 5: High perspective distortion. The pedestrian closer to
camera is about two times larger than the one farther.

IV. EXPERIMENTAL EVALUATION

Experimental Setup: All methods were implemented in Mat-
lab on an Intel® coreTM i-7 6700 @ 3.40GHz machine with
16 GB RAM.
Data: We use the dataset proposed by Shuai Yi et al. [18]
that contains real-scene crowd data. The trajectory dataset was
extracted from one hour of video recorded by a surveillance
camera that captures walking pedestrians at a train station.
Data points were manually annotated every 2/3 second for
12,684 trajectories. It is worth mentioning that pedestrian tra-
jectory is usually collected using GPS and/or some pedestrian
tracking techniques in video streams. In this dataset on average
there are around 123 pedestrians per video frame with the most
crowded frame containing 332 pedestrians. Table III provides
a summary of this dataset. Eventually, visualization videos of
the following experiments are available in the following link:
https://goo.gl/qFF9t5.
Preprocessing: In surveillance video, pedestrians move to-
ward and away from the camera, and there is a noticeable
amount of perspective distortion. This distortion results in
objects’ foreshortening, where the objects closer to camera
appear larger than faraway objects with similar dimensions in
real-world. This perspective distortion does not give the actual

distance between pedestrians, which may affect the accuracy
of the proximity measure. To overcome this distortion, thus,
the x, y coordinates for each pedestrian are projected into the
ground plane using an estimated Homography [19] as sug-
gested by [20]. The proximity between pedestrians, thus, can
be calculated after the projection, to give the actual distance.
To roughly measure the amount of perspective distortion in
the dataset we use, we pick two pedestrians, one is close to
the camera whereas the other is faraway (Fig. 5). As shown
in Fig. 5, the pedestrian closer to the camera is about two
times larger than the pedestrian farther away. The impact of
the projection distortion is a video specific problem that we
had to address during the pre-processing phase, but it is out
of the scope of this research. Our group pattern discovery
methods are orthogonal and can be applied to any trajectory
data (not necessarily coming from motion video).

Since the dataset we use reported only (x, y) coordinates
of moving pedestrian. Another step was required to fill
the discontinuity in pedestrian trajectory. This discontinuity
happens when pedestrian stops moving (stationary pedestrian).
The intuitive step to fill the discontinuity, between any two
time points, is to replicate the last (x, y) coordinates for the
unreported position of stationary pedestrian. Fig. 4 shows
some pedestrian trajectories before and after filling the
unreported stationary positions.

Evaluation Criteria
We have evaluated the proposed methods using the follow-

ing criteria:
• ANG: Average Number of identified Groups per time

unit (e.g. one time point when using the locTgroups,
w time points with timeWgroups, and the entire time
interval using the globTgroups) according to certain
proximity distance threshold τ .

• AGS: Average Group size per time unit defined as the
average of number of pedestrians assigned to a group in
the frame divided by the number of identified groups in
that time unit for all the frames.

• ρ: Density of groups which is defined as

ρ =
AGS

ANG
. (7)

• Execution Time: The required time (in seconds) to pro-
cess the given set of trajectories.

A. Determination of Threshold (τ )

Considering only the spatial information of the pedestrians,
we can cluster them into groups based on the distance among
them using the three proposed methods. However, deciding the
minimum proximity (distance) τ is a critical factor that affects
the pedestrian groups discovered by each method. Therefore,
in order to find the suitable value of τ , we evaluated the
three grouping algorithms (locTgroups, globTgroups, and
timeWgroups) for different values of threshold τ (ranging
from 0.2 to 22 meters). The results are shown in Fig. 6.
Proximity threshold τ was represented in meters by estimating
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Fig. 6: Analysis of proximity threshold (meters) impact for the three proposed methods on: (a) the average number of identified
groups per time unit, (b) the average group size per time unit, (c) the density of the groups.

the pixel-to-meter ratio of an object in the scene that has a well
known height range (e.g. doors, or average height of persons).

As shown in Fig. 6a, for small values of τ the average
number of identified groups ANG of the pedestrians’ trajec-
tories is small since pedestrians that are not very closed to each
other are not going to be grouped. ANG keeps increasing with
increasing τ until it reaches a peak (at τ = 2, 3, 9.5 meters
for locTgroups, timeWgroups[w = 5], and globTgroups
methods respectively) then it starts decreasing. This is because
with large proximity distance threshold τ people relatively far
from each other are now considered to be in the same group
causing the size of the group to increase, while the number of
groups to decrease. The threshold that maximizes the average
number of groups for the globTgroups is quite higher than the
locTgroups and timeWgroups; that is because the globTgroups
has been designed to find coherent pairs and groups. As a
consequence, the number of groups is expected to be smaller
than the number of evolving groups. At τ = 9.5 meters, the
average number of groups is the max with the globTgroups,
that means there are some coherent groups of pedestrians that
follow the same path but are found far away from each other.

We can notice in Fig. 6b that the average size of the pedes-
trian groups AGS increases with the increase of proximity
threshold, as expected. It can also be seen that at max the AGS
for globTgroups method is very low (≈ 2.2) compared to the
other methods. This is due to the fact that normal pedestrians
movement is hardly ever coherent in larger groups.

Interestingly, the density of the groups (ρ) in Fig. 6c shows
a peak ≈ 5 at proximity threshold τ = 1.5 meter for the
locTgroups, and a peak ≈ 4 at proximity threshold τ = 2.5
meters for the timeWgroups with w = 5. This result of average
groups’ density obtained by the timeWgroups[w = 5 and τ =
2.5] meters, agree with the study presented by Mousaaı̈d et
al. [12] that found that the average number of pedestrians
in groups is usually less than or equal to four pedestrians.
Finally, the method globTgroups was excluded from density
calculation in Fig. 6c because of the very low number of the
average group size; this can be explained by the fact that the
coherent groups, by definition, have very hard constraints that
are rare to happen in the real world —groups of pedestrians

that intentionally walk together with a distance below a certain
threshold over the entire time interval usually consists of two
pedestrians, i.e. coherent pairs.

B. Determination of Window Size (w)
As aforementioned, when w = 1, the timeWgroups per-

forms exactly the same as the locTgroups, and when w = V ,
(V is the entire video frames), the timeWgroups finds the
coherent groups similar to the globTgroups. Consequently, the
window size (w) has an obvious impact in the timeWgroups
method in order to find the desirable group patterns.

Considering the time window size w in grouping pedestrian
trajectories adds a temporal aspect to the grouping method,
besides the spacial aspect. This allows to filter pedestrians ac-
tivities based on both time and space. For example, pedestrians
crossing each other (walking in opposite direction) will not be
grouped together if the time they spent during crossing was
below the average pedestrian crossing time. If however the
pedestrians have a longer interaction compared to a normal
crossing, then they will be grouped together.

The results shown in Fig. 7 for the impact of varying
the window size w on the average number of groups ANG,
average group size AGS, and groups’ density ρ at different
values of τ affirms that conclusion. Increasing the window
size w effectively controls the time that pedestrians need to
spend close to each other in order for them to be considered
as a group. Hence, ANG and AGS decreases with increasing
w. Finally, our results for peak value of the group density (ρ)
matches the finding by Mousaaı̈d et al. [12]. That indicates
the effectiveness of the timeWgroups in effectively finding
evolving groups.

C. Time Performance
Based on the tensor-based optimization presented in Sec-

tion III-C, the proposed methods can be ran efficiently in a
reasonable execution time. Fig. 8 shows the total execution
time for the proposed methods to find the pedestrian groups
in the entire video (1 hour) at different proximity distance
threshold τ .

As the value of τ increases, the required time for the
grouping method increases, because high τ value means more
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Fig. 7: Analysis of window size and threshold impact for the timeWgroups proposed method on: (a) the average number of
identified groups per time unit, (b) the average group size per time unit, (c) the density of the groups.
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Fig. 8: Execution time of the proposed methods for finding the
pedestrian groups in the entire video (≈ 1 hour) for varying
proximity threshold τ .

pedestrians are considered as pairs, resulting in longer process-
ing time required by the grouping algorithm 1. However, after
a certain value of τ , the processing time is converging. This is
because we are getting the same groups, since no more pairs
are generated. This threshold corresponds to the maximum
distance between the pedestrians in the scene. It can be seen
that the timeWgroups method runs faster for larger window
size w because the grouping method needs to be executed
fewer times compared to smaller window size values.

V. INTERACTIVE EXPLORATION OF GROUP DYNAMICS

Interactive exploration of group dynamics of pedestrians in
motion videos is an important application. In this Section,
we describe the main features of an online tool that we have
developed to enable ad hoc search and retrieval of pedestrian
groups [21]. A live online demonstration of this tool can be
accessed at: https://goo.gl/qFF9t5.

The tool allows to extract information about pedestrians
given only their trajectories. A snapshot of the tool’s User
Interface (UI) is shown in Fig. 9. The interface comprises of

four panels: (A) a video frame panel showing the pedestrian
IDs and trajectories in the scene; (B) a frame slider at the top
to navigate video frames (i.e., a timeline slider) and provides a
summary of the number of pedestrians at each video frame; (C)
a video panel at the top left showing aggregated statistics and
insights about the current frame, and (D) a group information
panel, at the bottom left, that shows analysis of pedestrian
groups for different proximity threshold settings.

Using this service can reduce the time spent in searching
and analyzing videos and can also help researchers in this field
to validate the results of their algorithms. The tool visualizes
the results and helps answering several important questions:
• Showing the route of each pedestrian projected on the

scene.
• Identifying the entry/exit gates each pedestrian has used

to enter/exit the scene.
• Visualizing the location where pedestrians spent most of

their time in the scene.
• Reporting the length of a pedestrian stay in the scene.
• Querying about pedestrians who stayed in the station

more than the average time.
• Querying about where, when and who are other people

that a certain pedestrian has been moving close to.
As this tool deals with thousands of frames, several imple-

mentation optimizations had to be considered to enhance its
performance in terms of fast data loading and online updating
of the visualization. Moreover, some statistics are computed
on the browser to reduce data transfer requirements.

VI. RELATED WORK

Discovery of pedestrian groups is a special type of data
mining task that can facilitate pedestrian behavior analysis.
Our work is related to topics of trajectory-based pedestrian
group mining and to vision-based pedestrian group detection.

Trajectory-based Pedestrian Group Mining: The works
more related to our research has already been reviewed in
Section I, so here we expand to other related work of this broad
topic. Clustering the trajectories was utilized by Gaffney and
Smyth et al. [22] using a mixture regression model. However,



Fig. 9: Snapshot of the tool that allows for an interactive exploration of pedestrian group dynamics.

their method is applied to the entire trajectories in order to find
the groups. C2P, a two-phase clustering algorithm, was used in
order to gradually cluster closest pairs of trajectories [23]. In
the first phase, a set of sub-clusters were found. In the second
phase, the sub-clusters were merged iteratively to construct
finer final clusters. However, the C2P algorithm does not deal
with the temporal information that may be considered in the
data points. Authors in [24] proposed a method for matching
pedestrian trajectories on maps using a dynamic time warping
algorithm, however they did not explore the issue of matching
pedestrian trajectories together to extract groups. Lee et al.
[25] presented a partition-and-group framework that is based
on clustering sub-trajectories instead of the entire trajectories;
the focus is on local characteristics of the trajectories. A
linear interpolation method was adopted by Jeung et al. [26]
to complete missing spatial data over time in order to find
convoy patterns (i.e. coherent moving groups) by applying a
density clustering algorithm followed by a post-processing to
find the coherent moving groups. Pelekis et al. [27] presented
a ReTraTree indexing structure to maintain (sub-)trajectories’
information over time. Lan et al. [13] proposed an algorithm to
find evolving groups by finding the candidate clusters at each
time point using DBSCAN [16]. Then, the Hausdorff distance
was utilized for each time interval specified by a sliding
window. Although the temporal information is considered to
capture the changes of groups over time, the method is hard
to be adapted with different group patterns, as being limited,
in the first stage, by a spatial based clustering algorithm
performed at each time point.

Vision-based Pedestrian Group Detection: Many vision-
based methods have been proposed to detect and track the
movement of pedestrians in a video [5], [28]–[30]. With the

advent of location-tracking technology, many methods have
been proposed to analyze pedestrian movements and recognize
specific behaviors (e.g., lying pose recognition [31], anomaly
detection [20], and escape behavior [32]). Bastani et al. [33]
utilized Kalman filter to estimate the trajectory pattern flow of
each pedestrian. A symmetrized version of Kullback-Leibler
(KL) divergence was used as a metric to build up a similarity
graph that is used lately to find pedestrian groups after
clustering is performed using the spectral clustering algorithm.
This clustering algorithm was used by Rupasinghe et al.
[34] to extract a set of nodes, where each node represents a
particular motion pattern. From another perspective, the study
proposed by Zanlungo [35] showed that the direction vectors
of interacting pedestrians are perpendicular to each other.
Accordingly, the angles between the movement directions of
each pair of pedestrians were used in [36] to calculate the prob-
ability of being interacting pedestrians. Then, Bayes’ theorem
was adopted to estimate the pedestrian groups. However, this
method can not deal with groups of more than three people.

VII. CONCLUSIONS

We considered the problem of discovering groups of pedes-
trians when their trajectories are provided. This is an in-
teresting but challenging problem, with a broad range of
applications. In particular, we proposed timeWgroup, an ef-
ficient time window based method that effectively discovers
groups of pedestrians of varying group pattern semantics. The
novelty provided by our method is based on the idea of first
efficiently discovering the pairs of moving objects over time
and then, discovering evolving groups by expanding pairs to
groups. Moreover, the flexibility provided by our method is
important, as pedestrian movement (and probably trajectory



data of moving objects in other application domains) does not
necessarily adhere to well defined group semantics.

To improve efficiency, we represented trajectory data as a
sparse tensor. That way, we were able to devise optimized
tensor-based operations that could scale to large-scale analysis.
For example, we were able to perform group pattern analysis
of approximately 1h of motion video, including more than
12k pedestrians and more than 1M trajectory data points, in a
matter of seconds. To appreciate the efficiency of the methods,
one needs to consider that for n moving objects the number
of candidate pairs that need to be evaluated are in the order of
O(n2). An even more interesting characteristic of the method
is that it can enable interactive exploration and analysis of the
group patterns by an end-user.

Overall, the methods we described are simple to understand
and implement, accurate, fast, and general, so they can be
easily adopted in a variety of strategies for group pattern
discovery. As such, we expect our methods to be beneficial
in diverse settings and disciplines.
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are publicly available to encourage reproducibility of re-
sults. They can be accessed at the following website:
https://sites.google.com/view/pedestrians-group-pattern/.
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