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Abstract. Collaborative Filtering (CF), the prevalent recommendation 
approach, has been successfully used to identify users that can be characterized 
as “similar” according to their logged history of prior transactions. However, 
the applicability of CF is limited due to the sparsity problem, which refers to a 
situation that transactional data are lacking or are insufficient. In an attempt to 
provide high-quality recommendations even when data are sparse, we propose a 
method for alleviating sparsity using trust inferences. Trust inferences are 
transitive associations between users in the context of an underlying social 
network and are valuable sources of additional information that help dealing 
with the sparsity and the cold-start problems. A trust computational model has 
been developed that permits to define the subjective notion of trust by applying 
confidence and uncertainty properties to network associations. We compare our 
method with the classic CF that does not consider any transitive associations. 
Our experimental results indicate that our method of trust inferences 
significantly improves the quality performance of the classic CF method. 

1 Introduction 

Recommendation systems [1] have been a popular topic of research ever since the 
ubiquity of the web made it clear that people of widely varying backgrounds would 
be able to access and query the same underlying data. Both research and e-commerce 
applications have extensively adopted variations of recommendation algorithms in 
order to provide an intelligent mechanism to filter out the excess of information 
available to their users. Collaborative filtering (CF) [2] has almost certainly been the 
finest technique of choice for recommendation algorithms. CF tries to identify users 
that have relevant interests and preferences by calculating similarities among user 
profiles [3]. The idea behind this method is that, it may be of benefit to one’s search 
for information to consult the behavior of other users who share the same or relevant 
interests and whose opinion can be trusted. 
Regardless of its success in many application settings, the CF approach encounters 
two serious limitations, namely sparsity and scalability [4]. In this paper we focus on 



the sparsity problem. The sparsity problem occurs when available data are insufficient 
for identifying similar users (neighbors) and it is a major issue that limits the quality 
of recommendations and the applicability of collaborative filtering in general. The 
main objective of our work is to develop an effective approach that provides high-
quality recommendations even when sufficient data are unavailable.  
The remainder of the paper is organized as follows: Section 2 elaborates on the 
sparsity challenge and explains the weaknesses of already proposed methods for 
dealing with it. Section 3 presents our methodology that is based on trust inferences. 
Section 4 presents experimental evaluation of our work and section 5 concludes and 
discusses future research directions. 

2 Problem Statement 

In this section, we unfold the sparsity problem, which has been identified as one of 
the main technical limitations of Collaborative Filtering and its further development 
and adoption. 

2.1 The Sparsity Challenge for Collaborative Filtering 

The numbers of users and items in major e-commerce recommendation systems is 
very large [5]. Even users that are very active result in rating just a few of the total 
number of items available in a database and respectively, even very popular items 
result in having been rated by only a few of the total number of users available in the 
database. This problem, commonly referred to as the sparsity problem, has a major 
negative impact on the effectiveness of a collaborative filtering approach. Because of 
sparsity, it is possible that the similarity between two users cannot be defined, 
rendering collaborative filtering useless. Even when the evaluation of similarity is 
possible, it may not be very reliable, because of insufficient information processed. 
The cold-start problem emphasizes the importance of sparsity problem. Cold-start [6] 
refers to the situation in which an item cannot be recommended unless it has been 
rated by a substantial number of users. This problem applies to new and obscure 
items and is particularly detrimental to users with eclectic taste. Likewise, a new user 
has to rate a sufficient number of items before the recommendation algorithm be able 
to provide reliable and accurate recommendations. 

2.2 Relative Work 

There are several methods that have been proposed to deal with the sparsity problem. 
Most of them succeed in providing better recommendations, but fail to introduce a 
general model for dealing with sparsity. Most popular approaches proposed include 
dimensionality reduction of the user-item matrix, application of associative retrieval 
technique in the bipartite graph of items and users, item-based similarity instead of 



user-based similarity, and content-boosted collaborative filtering. The dimensionality 
reduction approach addresses the sparsity problem by removing unrepresentative or 
insignificant users or items so as to condense the user-item matrix. More advanced 
techniques to achieve dimensionality reduction have been proposed as well. 
Examples include statistical techniques such as Principle Component Analysis (PCA) 
[7] and information retrieval techniques such as Latent Semantic Indexing (LSI) [8, 9, 
10]. However, potentially useful information might be lost during this reduction 
process. Transitive associations of the associative retrieval technique [11], even if 
they have been successfully employed to deal with the sparsity problem, fail to 
express the subjective notion of the associations. Item-based [12, 13] in addition to 
Content-boosted CF [13, 14] approaches require additional information regarding 
items as well as a metric to compute meaningful similarities among them [25]. In 
practice, such item information may be difficult or expensive to acquire.  

2.3 Our Approach 

Our research work provides an alternative approach to deal with sparsity problem. 
Instead of reducing the dimension of the user-item matrix, in an attempt to make it 
more informative, we propose a method that permits to define transitive properties 
between users in the context of a social network. The consideration of these 
properties leads to extra information accessible for recommendation purposes. Our 
approach focuses on developing a computational model that permits the exploration 
of transitive user similarities based on trust inferences for addressing the sparsity 
problem. 

3 Methodology 

In this section we present a method for alleviating the sparsity problem in 
collaborative filtering based on trust inferences. 

3.1 Social Networks in Recommender Systems 

Collaborative Filtering has been successfully employed to express the “word-of-
mouth” paradigm in a computational context [15]. Common interactions that take 
place in a typical recommendation system include ratings, transactions, feedback data 
etc. For the rest of the paper we assume without loss of generality that interactions are 
based on rating activity. Based on these interactions, it is possible to express 
similarity conditions between pairs of users, according to the subset of their co-rated 
items. We view these similarity conditions as associations between users. It is then 
possible to consider these associations as links of a social network. If we define as 
user-item matrix the matrix having as elements the ratings of users to items, then a 
user’s model [16] is represented in this matrix as an n-dimensional vector, where n is 



the number of items in the database. User similarities are derived by comparing user 
models. Figure 1 illustrates the process of the network construction, where a user’s 
rating activity is used to define network associations. As theories on social networks 
find application in completely diverse research areas, we need to properly describe 
their particularities in our context and most importantly identify the process of 
network membership and evolution. 
Membership: In order for a user to join the underlying social network, he or she needs 
to submit at least one rating to an item that has previously been given at least one 
rating by another user. 
Evolution: As users interact with the system, by rating items, new associations 
between users are created and thus new links are considered in the underlying 
network.  

 
Figure 1. Underlying Social Networks in Recommender Systems 

3.2 Trust Through User-to-User Similarity 

We think of the associations between users as an expression of established trust 
between each other, as far as the specific application area is concerned. Since the 
notion of trust is defined in the context of similarity conditions, the more similar the 
two users are the greater their established trust would be considered [17]. In order to 
compute the similarities between users, a variety of similarity measures have been 
proposed, such as Pearson correlation, cosine vector similarity, Spearman correlation, 
entropy-based uncertainty measure and mean-square difference. However, Breese et 
al in [18] and Herlocker et al. in [19] suggest that Pearson correlation performs better 
than all the rest. 
If we define the subset of items that users ux and uy  have co-rated as I={ix: x=1, 2, …, 
n}, ,x hu ir  as the rating of user ux to item ih and 

xur , 
yur  as the average ratings of users 

ux and uy  respectively, then the established trust between two users is defined as the 
Pearson correlation [20] of their associated rows in the user-item matrix and is given 
by Equation 1. 
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3.3 Trust Inferences 

Due to the number of ratings that exist in recommendation systems, underlying social 
networks are very sparse. There are cases in which insufficient or loss of information 
is detrimental for the recommendation algorithms. Consider, for example, the case in 
which associations between users are based on very few data or the case in which 
there aren’t any k users to employ in a k-nearest neighborhood algorithm. A 
motivating example is illustrated in Figure 2(a). Suppose that users S, N have rated 
item I1 and users N, T have rated I2. Classic Collaborative Filtering will associate user 
S with user N and user N with user T, but not user S with user T. However, a more 
sophisticated approach that incorporates transitive interactions would recognize the 
associative relationship between user S and user T and infer this indirect association. 
To deal with this problem, we adopt a method of inferring trust between users that are 
not directly associated to each other. Thus, in the example, it is possible to infer trust 
between the source user S and the target user T through the intermediate user N. 
According to this process, trust is propagated in the network and associations 
between users are built, even if they have no co-rated item.  

 
Figure 2. Trust Inferences 

Trust Paths 
Propagation of trust [21, 22] implies the existence of trust paths in the network. 
Combination of consecutive direct associations between all intermediate users creates 
a trust path from a source user to a target user. Trust paths can be of variable length, 
depending on the number of associations that one needs to traverse in order to reach 
the target user. If k associations need to be traversed then the path is considered to be 
of length k. Direct associations are of length 1, while in the case that the target user is 
not accessible from the source user, the length of the supposed path is considered 
infinite.  



While computation of trust in direct associations is based on user-to-user similarity, 
for length-k associations we need to adopt a transitivity rule that facilitates the 
computation of the inferred trust between the source user and the target user. If we 
define as N={Ni: i=1, 2, …,k} the set of all intermediate nodes in a trust path that 
connects user S and user T, then their associated inferred trust is given by Equation 2. 
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For example, in order to compute to what degree user S trusts user T in the example 
of Figure 1(a), we need to compute the inferred trust 

B
A C A B B CT T T→ → →= ⊕ . In 

Equation 2, we employ the symbol ⊕  to denote that we need to apply a special 
operation in order to compute the inferred trust in the path. If Ix is the set of items that 
user ux has rated, and n(Ix) is the cardinality of the set Ix, then Equation 3 interprets 
the special operation employed. 
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In plain words, in order to compute the inferred trust in a trust path that associates a 
source user S with a target user T through one intermediate node N, we first compute 
the weighted sum of the two direct trust associations of S, N and N, T using as 
weights the number of co-rated items of each direct association, and then apply a sign 
to the weighted sum according to table 1.  

 0S NT → ≥  0S NT → <  

0N TT → ≥  + - 

0N TT → <  - ∞  

Table 1. Definition of the sign of the inferred trust in a trust path 
The intuition behind this computation is that: 

 If user S trusts user N and user N trusts user T then it is inferred that user S 
trusts user T 

 If user S does not trust user N and user N trusts user T then it is inferred that 
user S does not trust user T 

 If user S trusts user N and user N does not trust user T then it is inferred that 
user S does not trust user T 



 If user S does not trust user N and user N does not trust user T then inference 
is not applicable and the length of the supposed path between user S and user 
T is considered  infinite 

The computed value of the inferred trust is a value that lies between the values of the 
two direct trust associations as indicated in Equation 4 and it is biased towards the 
value of the direct trust association with the most co-rated items. 

min{ , } max{ , }
N

S N N T S T S N N TT T T T T→ → → → →≤ ≤  (4) 

For example, if 0,7S NT → =  based on 5 co-rated items and 0,35N TT → =  based on 2 
co-rated items, then 0,6

N
S TT → = . In the same context, if 0,7S NT → =  and 

0,35N TT → = − , then 0,6
N

S TT → = − . 

3.4 Confidence and Uncertainty Properties of Trust Associations 

Network evolution is based on individual rating behavior, thus it is reasonable to 
consider that available structural information defines multiple personalized webs of 
trust [22]. The personal web of trust or local trust for a user S is given through the set 
of trust paths originating from S and passing through users he or she trusts directly or 
indirectly. Figure 1(c) depicts the notion of personal web of trust. Consequently, a 
user S that interacts with other users in the system develops a subjective belief of the 
network. By subjective belief, we mean that probably what a user in the network 
believes about S is different from what another user in the network believes about 
user S. In order to express this subjective notion of trust we set up a confidence model 
able to respond to the following interrelated questions: 

Q1: How confident user S feels of his or her opinion about user T? 
Q2: What is the uncertainty enclosed in user’s S opinion about user T?  

Confidence Property 
We define as confidence, a property assigned to each direct association of the 
network that expresses the reliability of the association. We make the assumption that 
confidence is directly related to the number of co-rated items between two users. This 
assumption indicates that (a) a user’s opinion becomes more reliable as additional co-
rated items become available and that (b) the reliability of an association between two 
users may be influenced by the change of the number of co-rated items between other 
users in the system. For that reason, the more items two users have co-rated, the 
higher the degree of confidence their association would have. Confidence is applied 
to each one of a user’s direct associations and it is based exclusively on the user’s 
rating activity. In order to compute the confidence of all direct associations of a user, 
we initially identify the most confident association in an individual’s personal web 
and then express all confidence values of the remaining direct associations in relation 
to the identified most confident association. We denote the user with which the most 



confident association has been created as uMAX_CONF. If Ix is the set of items that user 
ux has rated, and n(Ix) is the cardinality of the set Ix, then the confidence S TC →  of the 
association between the source user S and the target user T is given by equation 5. 
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Figures 3(a) and 3(b) show how confidence values of direct associations are derived 
from the number of co-rated items between the source user S and the remaining users 
in the system. The value of the most confident direct association is always equal to 1, 
while all other direct associations are equal to or less than 1 as depicted in Figure 
3(b). 

 
Figure 3. Confidence Model to Define Uncertainty and Subjectiveness of Trust 

 
Uncertainty Property 
The confidence model described earlier can be employed to define uncertainty [23]. 
We define as uncertainty, a property assigned to each direct association of the 
network that expresses the unreliability of the association. Uncertainty, just like 
confidence is directly related to the number of co-rated items between two users. This 
assumption indicates that (a) the uncertainty enclosed to a user’s opinion is greater 
when the number of co-rated items is small and that (b) the uncertainty of an 
association between two users may be influenced by the change of the number of co-
rated items between other users in the system. It becomes obvious that in our model, 
confidence and uncertainty are contradictory and complementary. Consequently, the 
more confident one feels about his or her opinion of a user, the less uncertainty is 
enclosed in his or her opinion of that user and vice versa. Uncertainty S TU →  of the 
association between the source user S and the target user T is given by equation 6. 

1S T S TU C→ →= −  (6) 



Confidence and Uncertainty in Trust Paths 
Confidence and uncertainty properties may also be assigned to trust paths. We adopt 
a transitivity rule that facilitates the computation of the confidence between a source 
user and a target user through a trust path [21, 22]. If we define the set of 
intermediate nodes in a trust path that associate a source user S with a target user T as 
N={Ni: i=1, 2, …,k}, then the confidence of the trust path is given by Equation 7. 
Accordingly, the uncertainty assigned to the trust path is given by equation 8.  
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Subjectiveness 
Since the evolution of personal webs is based on individual rating behavior one 
would expect that confidence and uncertainty are defined from a user’s perspective. 
Indeed, confidence and uncertainty are bidirectional properties. This means that even 
if two users trust each other as much as what a similarity measure indicates, they do 
not necessarily have the same confidence in this association. Consider for example, 
the illustration of Figure 3(c) where there is a direct trust association between user S 
and user T. Since computation of trust is based on user similarities their associated 
trust would be the same for both users. However, user S is as much as 0.57 confident 
about this association, while user T is as much as 0.43 confident about this 
association. Therefore, our approach is in accordance with the widely accepted 
position that trust has a subjective notion [23] and reflects the way in which trust is 
raised in real world social networks. 

3.5 Managing Multiple Trust Paths 

Since trust inferences are based on traversal paths in a network, it is possible to find 
multiple paths that connect two users. Figure 4 depicts an example in which a source 
user S is connected to a target user T through two alternative trust paths PA and PB. 
Path PA passes through users N1, N2, while path PB through user N3. The inferred trust 
in each of these trust paths is independent of the other. Thus, our trust model needs to 
define a rule that decides which of these inferred trusts to take into consideration. 
There are generally many strategies that can be followed. We describe two 
approaches for inferring trust when there are multiple trust paths available; the first 
approach is based on path composition, while the other is based on path selection. 
For the following approaches we assume that there are p discrete paths between user 
S and user T. 



 
Figure 4. Illustrating Example for understanding Multiple Trust Paths 

Path Composition 
The path composition approach tries to combine the values that are inferred by the 
multiple paths to one single trust value. We distinguish between two methods of 
composition; Average Composition and Weighted Average Composition.  

 Average Composition: We compute the average of all the trust values that 
are inferred by each of the alternative paths according to Equation 9. Despite 
the fact that this approach is very cost effective it is considered too naive, 
because it doesn’t take into consideration the confidence of each path. 
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 Weighted Average Composition: We compute the weighted average of the 
trust inferred by the alternative paths, using for weights the propagated 
confidence of each inferred association between user S and user T, 
according to Equation 7. This approach is more sophisticated since path 
confidence is taken into consideration. The final computed trust would be 
biased to the trust inferred by the most confident path. 
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Path Selection 
The path selection approach tries to identify the most confident path among the paths 
available. We employ two methods of selection, one based on Maximum Path 
Confidence and one based on Minimum Mean Absolute Deviation (MAD). 

 Selection Based on Path Maximum Confidence: Based on the confidence of 
direct association we can compute the confidence of a path in the network 
according to Equation 7. Thus, it is possible to compute the confidence of all 



discrete paths and then to select the one with the highest degree of 
confidence. Then, we can use only this path to compute the inferred trust 
between user S and user T. 

max{ : 1, 2,..., }
Pi

S T S TT C i n→ →= =  (11) 

 Selection Based on Minimum Mean Absolute Deviation (MAD): It is possible 
to order the discrete paths that connect user S and user T, according to the 
Mean Absolute Deviation of their direct associations. We consider absolute 
deviation to be the difference between the confidence values of two 
consecutive associations. Once all MAD values are computed for each of the 
paths available we select the one with the minimum MAD as indicated by 
Equation 12. The assumption of this approach is that a path would be more 
confident when consecutive values of confidence introduce smaller 
instability. 

1

1
1min{ ( ) : 1,2,..., }, ( )

1

N

k k
k

S T i i

C C
T MAD P i n where MAD P

k

−

+
=

→

−
= = =

−

∑
 (12) 

4 Experimental Evaluation and Results 

In this section we evaluate our method for alleviating the sparsity problem using trust 
inferences. Our evaluation scenario spans across two dimensions. We first evaluate 
the impact of trust inferences to the sparsity problem and then evaluate the quality of 
the recommendations that are based on the underlying network of direct and inferred 
associations. The experimental data come from our movie recommendation system 
named MRS1. The lowest level of sparsity introduced by the system is 0.972 which is 
a typical sparsity level for recommendation systems. 

4.1 Trust Inference Impact 

Our first objective was to introduce a method that permits the definition of transitive 
properties between users in the context of a social network. Consideration of these 
properties would lead to additional information accessible for recommendation 
purposes. We have run tests to discover how much more informative or “dense” is the 
user-item matrix after applying our method of trust inferences. Since inferences are 
dependent on user rating activity we first provide an allocation of ratings that 
correspond to each user. This helps understanding the peculiarities of our network. 
Figure 5, illustrates the user rating activity in our recommendation system, which 
                                                           
1 MRS stands for Movie Recommendation System, is hosted on the Computer Science 
department of the University of Crete and can temporarily be accessed by 
http://marouli.csd.uoc.gr:8989/web/rs. 



seems to follow a power law distribution (Zipf distribution) [24]. There are a few 
users that have submitted many ratings, some users with normal number of ratings 
and many users with a few or even no ratings. It is essential to mention that 38% of 
users have no rating. This means that for 38% of users that are not part of the 
network, no information is available, and therefore recommendations are not possible. 

  

Figure 5. User Rating Activity Figure 6. Impact of Trust Inference 
for Different Sparsity Levels 

However, for the rest of the users, our methodology seems to be vital. We have 
computed the number of associations that are available to the network for 
recommendation purposes when 1-HOP, 2-HOP and 3-HOP Collaborative Filtering 
algorithms are employed and for different sparsity levels. 1-HOP represents the 
classic CF algorithm.  Figure 6, depicts the percentage of network associations that 
are captured by the alternative algorithms for sparsity levels equal to 0.999, 0.995, 
0.99, 0.985, 0.98, 0.975, 0.972. While classic Collaborative Filtering (1-HOP), 
employs only direct associations, 2-HOP and 3-HOP apply transitive properties 
between users in a context of a social network. Figure 6 also demonstrates that after a 
while 2-HOP and 3-HOP algorithms reach an upper limit. This limit is defined by the 
percentage of users that are inactive in the system, and therefore are not connected to 
the underlying network.   

4.2 Recommendation Quality 

Recommendation systems employ efficient prediction algorithms for providing 
accurate recommendations to users. If a prediction is defined as a value that expresses 
the predicted likelihood that a user will “like” an item, then a recommendation is 
defined as the list of n items with respect to the top-n predictions from the set of items 
available. Improved prediction algorithms indicate better recommendations. 
Statistical accuracy is the key dimension on which the quality of a prediction 
algorithm is usually evaluated. 
Statistical accuracy metrics evaluate the accuracy of a prediction algorithm by 
comparing the numerical deviation of the predicted ratings from the respective actual 
user ratings. Some of them frequently used are Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and Correlation between ratings and predictions [19]. 
As statistical accuracy measure, Mean Absolute Error (MAE) is employed. Formally, 



if n is the number of actual ratings in an item set, then MAE is defined as the average 
absolute difference between the n pairs ,h hp r< >  of predicted ratings hp  and the 
actual ratings hr  and is given by equation 13. 
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The lower the MAE, the more accurate the predictions are, allowing for better 
recommendations to be formulated. MAE has been computed for 1-HOP, 2-HOP and 
3-HOP Collaborative Filtering and for different levels of sparsity. 1-HOP represents 
the classic CF algorithm. The prediction algorithms are tested over a pre-selected 
300-ratings set extracted randomly by the set of actual ratings. Table 2 provides 
values for the MAE of the different algorithms presented, while Figure 7 illustrates 
the sensitivity of the algorithms in relation to the different levels of sparsity applied. 

 

Prediction Algorithms 
 

1-HOP 2-HOP 3-HOP 

0.999 1,865 1,751 1,698 

0.995 1,846 1,698 1,623 

0.99 1,801 1,494 1,452 

0.985 1,637 1,371 1,371 

0.98 1,541 1,339 1,339 

0.975 1,457 1,309 1,309 Sp
ar

si
ty

 L
ev

el
 

0.972 1,385 1,216 1,216  
Figure 7. Prediction Algorithms MAE Table 2. Prediction Algorithms MAE  

As far as statistical accuracy is concerned, the following outcomes about the 
quality performance of the prediction algorithms are reached. 

• 2-HOP and 3-HOP CF algorithms outperform the 1-HOP classic CF for all 
sparsity levels. For typical sparsity levels of recommendation systems, such 
as 0.975 and 0.98, 2-HOP CF performs as much as 10.1% and 13.1% better 
than 1-HOP CF respectively. In cases that data is extremely sparse, for 
example when it is equal to 0.99, 2-HOP CF performs as much as 17% better 
than 1-HOP CF. Considering that most of the alternative methods proposed 
for dealing with the sparsity problem result in recommendation quality 
degradation, the quality performance of our prediction algorithms is very 
satisfactory. 

• 3-HOP CF does not perform much better than 2-HOP CF. As illustrated in 
Figure 6, the number of network associations that are exploited by 2-HOP 
CF algorithm are almost the same than that of the 3-HOP CF for all sparsity 
levels. Therefore, 3-HOP CF cannot substantially improve the quality of the 
predictions and its application may be ineffective due to its increased 
computational cost. 



In our recommendation system, ratings range from 1 to 10, while in other common 
systems, such as the GroupLens [25] or the EachMovie dataset, ratings range from 1 
to 5. In order to obtain a clear comparative view of presented MAE results, one needs 
to divide the results with a factor of 2. This consideration leads to MAE of 0,608 in 
the case that sparsity equals to 0,972, which is particularly satisfactory for providing 
high-quality recommendations. 

5 Conclusions 

Sparsity is one of the major aspects that limits the application of the Collaborative 
Filtering method and provokes its success in providing quality recommendation 
algorithms. In this research, our main objective was to describe a method that is able 
to provide high-quality recommendations even when information available is 
insufficient.  Our work employs theoretical results of research conducted in areas of 
social networks and trust management in order to develop a computational trust 
model for recommendation systems. To deal with the sparsity problem we proposed a 
method that is based on trust inferences. Trust inferences are transitive associations 
between users that participate in the underlying social network. Employment of this 
model provides additional information to Collaborative Filtering algorithm and 
remarkably relaxes the sparsity and the cold-start problems. Furthermore, our model 
considers the subjective notion of trust and reflects the way in which it is raised in 
real world social networks. Subjectiveness is defined in terms of confidence and 
uncertainty properties that are applied to the network associations. We have 
experimentally evaluated our method according to the impact that trust inferences 
have to sparsity and according to recommendation quality. Our experimental results 
indicate that our method succeeds in providing additional information to the 
Collaborative Filtering algorithm while it outperforms the quality performance of the 
classic CF method. The methodology described is general and may probably be easily 
adopted to alleviate the sparsity problem in other application areas, especially where 
underlying social networks can be identified. 
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