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Visualization of the density of multiple overlapping axis-aligned objects is a challenging computational 
problem that can inform large-scale visual analytics, in diverse domains. For example, when dealing 
with crowd simulations, we care about constructing interaction maps, and in urban planning we care 
about city areas mostly frequented by people, to name a few. The primary objective of this research is, 
given a large set of axis-aligned two-dimensional (2D) objects, or simply rectangles, to devise efficient 
and effective data visualization methods that inform whether, where and how much these rectangles 
overlap. Currently, such visualizations rely on inefficient implementations of determining the size of 
the overlapping rectangles that do not scale well and are hard to accomplish. Approximate methods 
have also been proposed in the literature. To the contrary of these approaches, we aim to address 
this problem by exploiting state-of-the-art computational geometry methods based on the sweep line 
paradigm. These methods are fast and can determine the exact size of the overlap of multiple axis-
aligned objects, therefore can effectively inform the visualization method. Towards that end, we present
OL-HeatMap, a novel type of a heat-map visualization that can be used to represent and perceive density 
of overlapping rectangles. Our experimental evaluation demonstrates the effectiveness of the proposed 
method in terms of both accuracy and running time for synthetic and real-world data-sets.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Density-based information visualization methods are commonly 
employed in big data visual analytics. They provide powerful ab-
stract representations of large data sets that can help one to 
quickly perceive areas of interest due to a large concentration of 
data points (or their absence). Amongst a plethora of visualization 
techniques for density, such as scatter plots or treemaps, we fo-
cus on one of the most commonly used density-based visualization 
methods, the heat-map. A heat-map is a graphical representation 
of data where data values are represented as colors. These colors 
depict the characteristics of the data based on problem-specific 
requirements. Typically, darker colors depict regions with higher 
amounts or concentrations of data values present, while the op-
posite is true for lighter colors. Variants of heat-maps have been 
used to show the density or distribution of data on a given region 
of interest. This technique provides a general view of numerical 
data, and it can be customized to suit statistical and categorical 
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data variants. It can also be employed to show the results of clus-
tering algorithms. As the rendered graphic is easy to understand, 
it is typically used to check the expected results versus the actual 
results of an algorithm.

A common tool employed in the construction of a heat-map vi-
sualization is related to bounding volumes, and specifically bounding 
boxes. A bounding volume is a visual abstraction that is used to ap-
proximate complex objects and simplify the visualization process. 
Such visual abstractions introduce some flexibility to the problem, 
allowing for faster computation while avoiding significant losses 
in the information visualized. For different objects in real life, dif-
ferent bounding volumes such as rectangles, cuboids, spheres, and 
hyper-planes can be used. Furthermore, when the shapes used are 
rectangles or cuboids, they can be axis-aligned, meaning that their 
sides are parallel to the respective coordinate axis. In this work, we 
focus on 2-dimensional axis-aligned bounding boxes which we refer 
to as rectangles for ease of understanding. Previously, such rectan-
gles have been used to approximate geographical objects [1], for 
the construction of spatial data structures [2], but also in VLSI de-
sign [3], to name a few.

We are interested in creating density-based visualizations that 
offer insights about the interactions (relationships) of these rect-
angles on a Cartesian plane. To that end, we need to identify and 

https://doi.org/10.1016/j.bdr.2021.100235
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100235&domain=pdf
mailto:ericnc@eecs.yorku.ca
mailto:tipech@eecs.yorku.ca
mailto:papaggel@eecs.yorku.ca
https://doi.org/10.1016/j.bdr.2021.100235


N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 1. Input data and rectangle density visualizations.
report the density value (i.e., the number of rectangles that over-
lap) of every point on the Cartesian plane. In addition, for each of 
these overlaps we want to determine the size of the overlap and its 
location in the Cartesian plane. There are a handful of approaches 
to address this problem, with one of the most common being grid-
based [4]. According to grid-based methods, first a uniform grid is 
defined that would separate the observation space into equal size 
grid cells. Then, the method determines the overlap of each grid 
cell to the input rectangles using well-established orthogonal range 
query methods [5], such as R-trees [6]. However, grid-based meth-
ods inherit several limitations. Constructing a spatial grid-based 
data structure and performing range queries for each grid cell is 
computationally expensive. Furthermore, the accuracy of the visu-
alization results would greatly depend on the size of the grid (grid 
granularity). This presents an interesting trade-off where a small 
grid will be computationally more efficient but less accurate, and 
a large grid will provide more accurate representation of the over-
laps, but at the expense of running cost. An illustrative example of 
this trade-off is shown in Fig. 1. We further elaborate on this trade-
off in the methodology and experimental evaluation sections.

A more desirable outcome would be to be able to identify the 
exact location, density and size of any overlap among the avail-
able rectangles in the data-set directly. The simplest, brute-force 
approach to accomplish this is to compare every rectangle with 
every other rectangle, pair-wise first, then proceed to compare the 
overlap of every pair with every other object to find triple over-
laps, and so on. As is apparent, the computational cost of such 
a method is prohibitively high. Instead, an approach that is com-
monly used to answer such geometric object overlap problems 
efficiently is the algorithmic paradigm known as the sweep-line or 
plane sweep algorithm [7]. Algorithms belonging to this category 
utilize a conceptual line that sweeps across the plane and quickly 
identify overlapping objects.

In this work, we employ a recently proposed variation of the 
sweep-line algorithm that is able to determine the exact location, 
size and number of multiple overlaps of n-dimensional geometric 
objects [8]. That method is using a sweep-line to construct an aux-
iliary data structure known as a region intersection graph and has 
the potential to significantly reduce the computation required for 
the effective visualization of the density of overlapping rectangles. 
Specifically, the main contributions of our work are as follows:

• We present OL-HeatMap (OverLap HeatMap), a fast and exact 
density-based visualization method for effective representation 
of the overlaps of multiple axis-aligned rectangles, based on 
the sweep-line paradigm.

• We introduce an evaluation metric that can be used to deter-
mine the accuracy of grid-based heat-map visualizations.

• We conduct an extensive evaluation of the performance of
OL-HeatMap which demonstrates that it significantly outper-
forms competitive grid-based methods, in terms of both run-
ning time and accuracy.
2

Table 1
Summary of notations.

Notation Description

� A 2-dimensional square observation space in R2

l The length of the sides of �

R A set of n rectangles {R1, R2, . . . , Rn} in �

O Set of multiple overlapping rectangles
S O AB Surface area of the overlap O
C A set of square grid cells: {C1, C2, . . . , C g2 }
g Size of grid (nr. of rows or nr. of columns, since they are equal)
(x, y) XY -coordinates of a Cartesian point in �

z(x,y) z-index, i.e. number of rectangles a point (x, y) belongs to
zO z-index value of multiple overlapping rectangles set O
zCi z-index value of a grid cell
AC grid Percent of correct cells in a grid
A S grid Percent of correctly represented area inside the entire grid

• We build an interactive visualization system that demonstrates 
the effectiveness of OL-HeatMap in practice.

• We make source code and data publicly available to encourage 
reproducibility of method and results.2

The remainder of this paper is organized as follows: Section 2
introduces notation and formally defines the problem of interest 
in this paper. Our proposed method, OL-HeatMap, along with the 
grid-based competitors and the overall computational framework 
are presented in Section 3. Section 4 presents a thorough experi-
mental evaluation of the methods and algorithms. After reviewing 
the related work in Section 6, we conclude in Section 7.

2. The problem

In this section, we introduce notation, provide preliminaries 
and formally define the problem of interest. A summary of all no-
tations used are present in Table 1.

2.1. Preliminaries

2.1.1. Rectangles
Consider a 2-dimensional observation space �, which is a sub-

space of the Cartesian plane R2. Without loss of generality, for the 
remainder of this paper we assume that � is a square whose sides 
have length l, therefore � = {(x, y) ∈ R2 | 0 ≤ x ≤ l and 0 ≤ y ≤ l}. 
Let a rectangle R be defined by the (x, y)-coordinates of two points 
in �, one point representing its bottom-left corner (x0

R , y0
R ) and 

one representing its top-right corner (x1
R , y1

R ), respectively. As the 
two points represent the diagonal corners of the rectangle R , it is 
x0

R < x1
R and y0

R < y1
R .

2 https://github .com /ericnc09 /OL-HeatMap.

https://github.com/ericnc09/OL-HeatMap
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Fig. 2. Grid construction and z-index calculation for different values of g .
2.1.2. Pair-wise overlapping rectangles
Let a pair of rectangles A and B in � and the following two 

conditions:

max(x0
A, x0

B) ≤ min(x1
A, x1

B) (1)

max(y0
A, y1

A) ≤ min(y0
B , y1

B) (2)

The two rectangles A and B are intersecting if and only if both (1)
and (2) are true. Note that (1), (2) check whether the rectangles 
are intersecting in the X-axis and Y -axis, respectively. When two 
rectangles A and B are intersecting, then their overlapping area 
defines a new rectangle, called an overlap and denoted as O AB . The 
rectangle coordinates of O AB are (max(x0

A, x0
B), max(y0

A, y1
A)) and 

(min(x1
A, x1

B), min(y0
B , y1

B)). Note that the dimensions of the over-
lap O AB are given by:

widthO AB = min(x1
A, x1

B) − max(x0
A, x0

B) (3)

heightO AB = min(y0
B , y1

B) − max(y0
A, y1

A) (4)

The size S O AB of the overlap O AB is given by:

S O AB = widthO AB × heightO AB (5)

2.1.3. Multiple overlapping rectangles
Let R = {R1, R2, ..., RnR } be a set of rectangles in �. In order 

to generalize the concept of overlap to more than two rectangles, 
we need to consider all the different ways that overlaps can oc-
cur. For example, in Fig. 2a, rectangles A, D and E have some 
pairwise overlaps (i.e., O AD and O D E ), but they do not all over-
lap with each other forming a single multiple-overlap (O AD E ). On 
the other hand, for example, rectangles A, B , C , D are all overlap-
ping with each other forming the multiple-overlap O ABC D . Note 
that every point with (x, y)-coordinates within the rectangle de-
fined by O ABC D belongs to all four rectangles. Formally, for every 
point (x, y) of the observation space �, we define its z-index value 
z(x,y) . The z-index refers to the number of distinct rectangles that 
the point belongs to, or in other words the number of multiple 
overlaps at that point. Since it corresponds to the data density at 
that point, it determines its color in the visualization. For a set of 
overlapping rectangles forming an overlap O , the z-index value zO

represents the number of rectangles in the set, otherwise referred 
to as the set’s cardinality. Similarly, for a cell Ci in a grid, we de-
fine its z-index zCi as the number of rectangles overlapping with it. 
3

Fig. 2 shows an example of the z-index. Let O represent a multiple-
overlap rectangle, and let (x0

O , y0
O ) represent its bottom-left corner 

and (x1
O , y1

O ) represent its top-right corner, respectively. Then, the 
size S O of the multiple-overlap O is given by:

S O = widthO × heightO (6)

where widthO = x1
O − x0

O and heightO = y1
O − y0

O .

2.2. Problem definition

We are now in position to formally define the problem of in-
terest.

Problem 1. Given a set of rectangles R = {R1, R2, ..., RnR } in an 
observation space � = {(x, y) ∈ R2 | 0 ≤ x ≤ l and 0 ≤ y ≤ l}, find 
the z-index z(x,y) of each point (x, y) ∈ �.

It is important to note here that all points of an area that repre-
sents a multiple-overlap will have the same z-index. Since the goal 
is a density data visualization, we do not need to discretize the 
space � into individual points and calculate all z(x,y) individually. 
We merely need to produce a set of polygons that, when drawn, 
cover the entirety of � and produce a visual result that matches 
the corresponding areas of multiple overlaps. Furthermore, using 
axis-aligned rectangles instead of arbitrary polygons greatly sim-
plifies the drawing process.

In this work, we present two approaches to produce this set of 
rectangles: (i) a grid-based approximate method that relies on par-
titioning the space � and computing multiple overlap areas using 
the grid cells; (ii) OL-HeatMap, our proposed exact method that 
uses a sweep-line algorithm and an intersection graph.

3. Methodology

In this section, we present the steps required for the visual-
ization of bounding box heat-maps using the different approaches 
mentioned in the previous section. We start by describing the 
grid-based technique and the data structures necessary for its im-
plementation. We proceed by outlining the basic sweep-line algo-
rithm concept and specifically the multiple overlap identification 
and the intersection graph data structure required for it. Finally, 
we introduce an evaluation metric that can be used to determine 
the accuracy of the grid-based approach.
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3.1. Grid-based overlap detection

Algorithm 1: Grid-Based.

Input: Set R of n rectangles, sequence C of g2 grid cells, observation space 
size l

Output: Sequence O of zCi values corresponding to the grid cells in C
cell_size = l/g
for row = 0 to g-1 do // iterate over cells to create grid

for col = 0 to g-1 do
cell.i = row * g + col
cell.x0 = col * cell_size; cell.x1 = (col + 1) * cell_size
cell.y0 = row * cell_size; cell.y1 = (row + 1) * cell_size
C .append(cell)

rect_id = 0
for rect in R do // insert rectangles into R-tree grid

RTree.insert(rect_id, rect)
index += 1

for cell in C do // query for overlaps at each cell
O = RTree.queryAt(cell.x0, cell.x1, cell.y0, cell.y1)
cell.z = length(O)
O .append(cell.z)

In the uniform grid-based approach, the observation space � is 
divided into a set of g × g cells C : {C1, C2, . . . , C g2 }. This results in 
grid cells with equal size l

g × l
g , and the parameter g corresponds 

to the granularity of the grid.
In order to visualize the density of objects in the data, we seek 

to determine the number of rectangles that intersect with each cell 
(i.e., the cell’s z-index, zCi ), so that we can assign a relevant color to 
it. Since both the cell and the data objects are axis-aligned rectan-
gles, this is an exact instance of the orthogonal range query prob-
lem. While it is possible to answer this problem in a brute-force 
way by comparing each cell with each rectangle in the data-set 
for overlap, this would be extremely time-intensive and inefficient. 
A number of well-established, state-of-the-art techniques exist; in-
stead, that are specifically targeted towards providing a solution to 
this. Most of them employ tree-like data structures that allow for 
fast spatial queries, with one of the most common being R-trees
[6]. In this approach, the tree is created by iteratively inserting 
input rectangles into it as leaf nodes, while the root node repre-
sents the entire space R2

l and the intermediate nodes represent 
groups of rectangles that lie within a minimum bounding box for 
each group. After the tree is constructed, fast search queries can 
be performed on it to identify all rectangles that intersect a given 
point or area by traversing the tree from the root to the leaf nodes. 
In conventional R-trees, the computation cost of the tree’s con-
struction is O (n log n), while the cost of each query is O (log n +k), 
where k is the number of intersecting pairs found. The details of 
the grid-based method are provided in Algorithm 1.

For our problem of interest, the process mentioned above is 
followed and the R-tree data structure is constructed using all rect-
angles in the data-set. Afterwards, one query is performed for each 
cell to identify all the rectangles overlapping with the cell, and the 
count of retrieved results becomes the z-index value of every point 
in the cell (or simply the cell itself). To visualize the results, all that 
is necessary is drawing each grid cell using a color corresponding 
to its z-index value. This process is illustrated in Fig. 2 for different 
values of grid size g . As is apparent in the figure, higher gran-
ularity produces visualizations with greater accuracy, i.e., much 
closer to the original rectangle overlaps. However, as g increases, 
the number of grid cells (and therefore R-tree queries) increases 
quadratically. A worst-case scenario exists where all the rectan-
gles in the data-set are overlapping at one or more grid cells, and 
therefore k can be very high; this, however, is a degenerate case 
4

for real-world scenarios and applications, as the heat-map visual-
ization of such a case offers little actual meaningful information. 
Therefore, the total computation cost of the grid-based visualiza-
tion is O (n log n + g2(log n + k)). This often results in situations 
where, depending on the value of grid size g selected, the end 
product is either significantly low-accuracy or particularly slow ex-
ecution times. This trade-off between running time and accuracy is 
illustrated in the example of Fig. 2.

3.2. OL-HeatMap

A different approach to the problem is to take advantage of the 
fact that the objects to be drawn may overlap and some of them 
are found in the foreground (in other words, are visible) as spec-
ified by their depth parameter. That allows one to visualize the 
data by first identifying the exact location, size and z-index of any 
overlaps within the data-set. This means that for every set of mul-
tiple overlapping rectangles, the details of those overlaps need to 
be known. Once again, it is possible to address this problem in 
a brute-force way by finding overlapping pairs of rectangles, then 
finding overlapping triplets of rectangles, and so on. As is appar-
ent, the computational cost of the brute-force method increases 
exponentially with the number of rectangles and quickly becomes 
unfeasible.

Thankfully, better alternatives for addressing intersection prob-
lems exist in the literature. The most celebrated, state-of-the-art 
methods for common intersection problems (e.g. finding pair-wise 
interval/rectangle intersections) are based on the sweep-line or 
plane-sweep algorithmic paradigm [9]. In this approach, a con-
ceptual sweep line is used to identify and report intersections in 
Euclidean space. Given a set of 2-dimensional rectangles, the first 
step of the algorithm involves constructing a list that includes the 
left and right X coordinates of all rectangles and sorting them, as a 
pre-processing phase. Then, the conceptual line, L moves (sweeps) 
from left to right across the plane, examining the rectangles in 
order. During the sweep, the Y-dimensional components of the ac-
tive regions (i.e., the ones that line L is currently traversing over) 
are maintained in an interval tree structure. When L encounters a 
new region, its Y coordinates are compared with all the currently 
active regions to identify overlapping pairs, and the process com-
pletes after a single pass over the entire data-set. An example of 
the process can be seen in Fig. 3.

The process mentioned above identifies and reports all the pairs 
of overlapping rectangles in the data-set, and the position of each 
of those overlaps. However, to address the problem of interest, it 
is necessary to find not only overlapping pairs, but also the areas 
where more than two rectangles overlap. A recently proposed vari-
ation of the sweep-line algorithm called SLIG (Sweep Line using 
Intersection Graph) can identify all multiple overlaps in a set of 
regions (axis-aligned shapes) by utilizing a data structure known 
as the Region Intersection Graph (RIG) [8]. A Region Intersection 
Graph (RIG) is a graph where each vertex corresponds to a region 
in the data-set and a connection between two vertices exists if and 
only if the respective regions are overlapping. Given a RIG con-
structed during the sweep using the identified intersection pairs, 
the problem of identifying multiple overlapping regions now be-
comes equivalent to that of enumerating all the possible cliques in 
the RIG graph, a well-studied problem in graph theory with several 
well-established state-of-the-art algorithms available [10,11]. SLIG

is a general algorithm and can be adopted in many domain-specific 
problems.

We can now present OL-HeatMap, our approach to solving the 
rectangle heat-map visualization problem. OL-HeatMap is relying 
on SLIG, but needs to accommodate the specifics of the problem of 
interest. The overview of the algorithm is as follows (three steps): 
firstly, it uses a conceptual sweep-line over the observation area 
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Fig. 3. Overview of the OL-HeatMap method.
Algorithm 2: OL-HeatMap.
Input: Set R of n rectangles
Output: Set O = {O 1, O 2, . . .} of visible multiple overlap rectangles, with 

corresponding z-index values zO i

for R in R do // get start and end points along sweep 
dimension

Points.append(x0
R , x1

r )

Points.sort()
Graph = SLIG.GetIntersectionGraph(Points)
Cliques = EnumerateVisibleCliques(Graph)

for O in Cliques do // z-index is clique size
O .append( (O , zO ) )

Procedure EnumerateVisibleCliques(Graph).

Visited = {}; Nbrs = {} // empty dictionaries
for u in Graph do // Get all neighbors based on order

Visited.append(u)
Nbrs[u] = {G.neighbors(u) - Visited}

// Deque: list-like, fast appends, pops on either end
Queue = deque(([u], sorted(nbrs[u])) for u in Graph)

while Queue not empty do
O old , Cnbrsi = queue.popleft()
visible = True;

for u in Cnbrs do // Iterate over common neighbors
O new = O old + [u] // New clique, prepare larger ones
Queue.append((O old , O new , {nbrs[u] if Cnbrs j ∈ nbrs[u], j > i}))

if length(O new ) > 1 ∧ S Onew == S O old then // cover check
visible = False

if visible ∧ length(O ) > 1 then // found visible rectangle
O .append(O old)

�. Secondly, it constructs a Region Intersection Graph (RIG) where 
each vertex represents a rectangle. Finally, it utilizes a variant of a 
state-of-the-art clique-enumeration algorithm [10,11] to enumer-
ate overlaps to be drawn. In addition, while SLIG identifies and 
retrieves all possible overlaps of multiple rectangles, OL-HeatMap

will only need to find the rectangles that are visible when drawn as 
a heat-map. This observation suggests running time savings, since 
given a set or rectangles R as input, our final goal is to effec-
tively draw only visible rectangles and rectangle overlaps, with a 
color value corresponding to the number of overlapping rectangles 
in each area. More formally, if a rectangle R1 lies within or exactly 
on another rectangle R2 (in other words x0

R2
≤ x0

R1
, y0

R2
≤ y0

R1
and 

x1
R2

≥ x1
R1

, y1
R2

≥ y1
R1

), then their area of overlap O R1 R2 has the ex-
act same position and area as R1, effectively “covering” it. In the 
example of Fig. 3, this can be seen with the rectangles E and D . It 
is useful to note that since:

S O R R = widthO R R · heightO R R
1 2 1 2 1 2

5

= min(widthR1 , widthR2) · min(heightR1 ,heightR2),

widthR1 ≤ widthR2 , heightR1 ≤ heightR2 , then

S O R1 R2
= widthR1 · heightR1 = S O R1

In other words, a rectangle is covered if and only if it has the same 
size as its overlap. In these cases, it is not necessary to draw the 
non-visible rectangle.

OL-HeatMap employs a variant of SLIG, with the same sweep-
line step but an altered clique enumeration algorithm. Specifically, 
while constructing the intersection graph, we maintain information 
related to the area of each overlap S O in the corresponding nodes. 
Afterwards, we calculate the (x, y) coordinates and size S O of each 
resulting overlap, along with its z-index value. During the clique 
enumeration step, when transitioning to a larger clique O new , this 
allows us to compare the surface areas of the new multiple overlap 
with that of each smaller clique/rectangle O i . If any of the rect-
angles O i have the same size S O i as Snew , they are marked as 
covered and are filtered out of the output results. Finally, to pro-
duce the heat-map visualization, all that’s needed is to draw each 
of the resulting overlap rectangles with a color corresponding to 
the respective z-index, making sure that rectangles with higher 
z-index are in the foreground (i.e., are drawn last). An overview 
of the method’s steps and an illustrative visualization example is 
shown in Fig. 3. The pseudocode of the OL-HeatMap is provided in 
Algorithm 2.

Computational Complexity: The computational cost of OL-Heat-

Map is dominated by SLIG and is O (n log n + n · cmax), where cmax

is the number of maximal cliques found in the rectangle inter-
section graph, or otherwise the number of unique sets of multiple 
overlapping rectangles that themselves are not all overlapping with 
other rectangles. The worst-case scenario for this algorithm is the 
same as the grid-based one, where all rectangles are overlapping 
at some point. However, this is a degenerate case as discussed ear-
lier.

Advantages: OL-HeatMap offers several advantages to the grid-
based approach. First, as it does not involve the use of a grid, 
its runtime cost is much smaller (the g2 multiplier of the com-
putation complexity is dropped). In practice, unless the grid size 
is really small, OL-HeatMap can offer substantial runtime perfor-
mance gains. Furthermore, OL-HeatMap is an exact method, there-
fore our approach always computes the exact solution and leads to 
the right visualization. This is in contrast to the grid-based method 
that only provides an approximate solution, the quality of which 
depends on the size of the grid utilized. Recall that the grid-based 
method depicts a tradeoff between accuracy and runtime perfor-
mance – the larger the grid the more accurate the visualization, 
but also the more time-consuming. Trying to achieve the exact so-
lution provided of OL-HeatMap, a grid-based approach would need 
to utilize a theoretical infinite grid, which would also render the 
runtime cost prohibitive. A comprehensive evaluation is provided 
in section 4.
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Fig. 4. Synthetically generated data-sets with various distributions (examples).

Table 2
Summary of data-sets. The numbers represent the actual number of overlaps found.

Density n = 100 n = 500 n = 1000 n = 1500 n = 2000

Distribution sparse dense denser sparse dense denser sparse dense denser sparse dense denser sparse dense denser

Uniform 1 7 59 15 343 1272 42 5347 1314 112 28473 11866 208 5078 21065
Triangular 3 20 93 16 616 2294 88 2397 10106 188 5520 22444 367 9256 39182
Gaussian 5 78 479 95 2462 10317 415 10367 39976 881 22192 95458 1634 38349 164205
Bi-modal 1 28 75 23 684 2851 112 2755 10712 216 5905 23390 405 11053 44216
4. Experimental evaluation

In this section we describe the design and execution of the ex-
perimental evaluation for the different methods mentioned. Details 
on the data-sets and computational environment used are pro-
vided, and a comparison of performance and accuracy is presented 
for the OL-HeatMap and baseline grid-based methods.

4.1. Environment

All experiments are conducted on a PC with 8x Intel® Core™

i7-7700 CPU @ 3.60 GHz and 64 GB memory using Python 3.7. For 
each experiment, we execute the algorithm ten (10) independent 
times and report the average result.

4.2. Data

To evaluate the performance of OL-HeatMap we rely on both 
synthetic and real-world data. The synthetic data allows to ex-
amine the behavior of OL-HeatMap (and its competitor methods) 
under a wide variety of conditions. The real-world data is used 
to demonstrate the flexibility of OL-HeatMap or how easy it is to 
adapt it in different domains and for variable definitions of a “rect-
angle”. Real-world data is also used to demonstrate how grid-based 
methods (that are approximate) can draw a misleading conception 
about a situation.

For the synthetic data, a data generator was implemented that 
produces data sets with specific characteristics thanks to a con-
trolled number of parameters. For a square space with side l, 
n rectangles were randomly generated with (x, y) coordinates in 
[0, l]; unless otherwise noted l = 1000. The size of each rectan-
gle was randomly selected from the uniform range [0, r · l], where 
r ∈ {1%, 5%, 10%}. Effectively, this means that the maximum length 
for the sides of the generated rectangles was a specific percentage 
of the total length of the space. As a result, the data-sets pro-
duced contain smaller or larger rectangles, which in turn means 
that there were fewer or more overlaps and the data-sets displayed 
lower or higher density, respectively. We refer to the data-sets pro-
duced with maximum length percentages {1%, 5%, 10%} as sparse, 
dense and denser, respectively. The position of each rectangle was 
randomly selected from one of four different probability distribu-
tions (uniform, triangular, gaussian, bi-modal). These distributions 
6

and their properties were selected to reflect a wide variety of pos-
sible real-world conditions; the gaussian distribution has mean 
value of 0.5l and sigma value of 0.2l, while the bi-modal one is 
a combination of two gaussians with mean values 0.2l,0.8l and 
sigma values 0.1l,0.1l, respectively. Therefore, the configurable pa-
rameters of the data generator are number of objects n, max length 
ratio r and spatial distribution. Table 2 provides a summary of the 
synthetic datasets employed and the number of resulting overlaps 
for varying values of the these properties. An examples of these 
distributions are shown on Fig. 4.

For the real-world scenarios, we use data from the Storm Event 
Database [12], an official publication of the National Oceanic and 
Atmospheric Administration (NOAA). It contains data related to 
extreme natural events recorded in the United States of Amer-
ica for the last 70 years, with details on tornadoes, storms, hail 
storms and snowfall. We use this dataset to demonstrate the flex-
ibility of OL-HeatMap, where we are able to represent extreme 
natural events as rectangles spanning a geographic area. Then we 
can apply OL-HeatMap (or competitor methods) to extract mean-
ingful insights. Events (rectangles) defined in the Storm Events 
Database have density comparable to the “dense” synthetic data-
sets, and follow a roughly uniform distribution with potentially a 
small number of overlap “hot-spots”, similar to the ones in the bi-
modal one.

4.3. Accuracy evaluation metrics

The baseline grid-based approach described in Section 3 does 
not provide exact results, but instead produces an approximation 
of the overlaps present in the data-set. As can be intuitively un-
derstood from Fig. 2, a larger grid size g produces a visualization 
that is closer to the actual overlaps that are present in the data-
set. However, in order to thoroughly and objectively evaluate the 
effectiveness of the presented methods, it is necessary to utilize 
a definitive and unambiguous metric to quantify the accuracy of 
each visualization. To that end, we propose two evaluation metrics 
that quantify the accuracy of grid-based overlap visualizations:

1) Percent of correct cells: A simple, straightforward way to de-
termine the accuracy of a grid visualization is by only considering 
what percentage of the grid cells has a completely correct z-index 
value (and therefore color). If a grid cell contains any rectangle 
boundaries, not all points within the cell should have the same z-
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index value; however, as a single grid cell can have a single z-index 
value, it cannot represent the z-index values (and therefore colors) 
of its points correctly. A single cell Ci is considered completely cor-
rect if, in the original data-set, all the points (x, y) within that cell 
have the same z-index value as the cell. Formally, the accuracy of 
that cells can be defined as:

ACCi =
{

1 if zCi = z(x,y),∀ (x, y) ∈ Ci

0 otherwise

With overall grid accuracy being:

AC grid =
∑g2

i=1 ACCi

g2
· 100%

Although this metric is easier to compute and simple to un-
derstand intuitively, it may not correctly reflect the accuracy of a 
visualization; if a grid cell’s z-index value is the same for most, 
but not all of the corresponding areas in the data-set, the entire 
cell will be considered incorrect, while the actual error in visual-
ization would be small.

2) Percent of correct area: A more refined and fair metric to 
evaluate the accuracy of a grid visualization is to consider what 
percentage of each cell’s area correctly reflects the overlaps in the 
data-set. Each cell is compared to the area it corresponds to in 
the original data-set, and the extent of that area with the same 
z-index value as the cell is determined. Afterwards, this is used 
to calculate what percentage of that specific cell is correct or not, 
and the resulting percentages are averaged throughout the entire 
grid. Effectively, the value of this metric roughly corresponds to 
what percentage of the visualization has the correct z-index value 
(i.e., color). The definition of this area-based accuracy metric for a 
single cell is:

A SCi =
∑

∀Rk
SCi ,Rk

|C |
where Rk are all rectangles with the same z-index value as Ci and 
SCi ,Rk is the overlap of these rectangles with the grid cell. Overall 
grid accuracy is once again:

A S grid =
∑g2

i=1 A SCi

g2
· 100%

As the second metric is more refined, we only use that one for 
reporting the accuracy of a grid-based visualization in the experi-
ments.

4.4. Experiments

Our experiments aim to evaluate the following aspects:

• OL-HEATMAP Accuracy Performance (versus Grid-Based Meth-
ods) While OL-HeatMap is an exact method, the accuracy of 
grid-based methods depends on the grid size. What is the ef-
fect of the grid size in the accuracy of the grid-based method, 
for data-sets of varying size and density?

• OL-HEATMAP Runtime Performance How does our proposed 
method OL-HeatMap compare to the baseline grid-based 
method for the heat-map visualization problem in terms of 
execution time, for data-sets of varying size and distribution?

• OL-HEATMAP Scalability How does our proposed method OL-

HeatMap scale for data-sets of larger sizes, compared to the 
grid-based method?
7

• OL-HEATMAP Flexibility OL-HeatMap can be applied for the 
visualization of various real-world datasets from various do-
mains, as explained in Section 1. To demonstrate its versatility, 
we apply OL-HeatMap to visualize multiple real-world data-
sets.

4.4.1. OL-HeatMap accuracy performance (versus grid-based methods)
As mentioned preciously, the size and granularity of the grid 

can have significant impact on the accuracy of the resulting grid-
based visualization. As the visualization that OL-HeatMap produces 
is always exactly correct, it is therefore of interest to examine what 
grid size and granularity values are required to achieve an accuracy 
that comes sufficiently close to the true results. To that end, we 
examined the visualization accuracy of the grid-based algorithm 
for data-sets of different densities, all selected from the uniform 
distribution and with n = 1000 rectangles. Furthermore, we mea-
sured the resulting accuracy for data-sets of different sizes, this 
time with the same density “dense” and once again uniformly dis-
tributed. The results for these experiments can be seen in Fig. 5a 
and Fig. 5b, respectively.

As expected, larger grids result in more accurate visualizations. 
However, it can also be seen that larger or denser data-sets require 
accordingly large grids to achieve satisfactory results. This further 
highlights the value of OL-HeatMap, since it produces exact results 
that can be matched only by very large grids.

4.4.2. OL-HeatMap runtime performance
We evaluated the time performance of OL-HeatMap against the 

baseline grid-based method, as a function of the number of rectan-
gles n in the data-set. Furthermore, in order to explore a wide vari-
ety of scenarios and highlight the behavior of the two approaches 
for both convenient and unfavorable scenarios, we compared the 
time performance of the OL-HeatMap and grid-based approaches 
for the different distributions available. The spatial distribution of 
the rectangles is uniform in the first experiment, while the num-
ber of rectangles n is fixed to 1000 in the second, while in both 
cases the data-sets are of “dense” density.

As can be seen in Fig. 6a and Fig. 6b, in most cases OL-HeatMap

outperforms the baseline for all but the smallest grid sizes, which 
were the ones with the lowest accuracy. This highlights the trade-
off between time and accuracy in the grid-based algorithm, and 
shows that OL-Heatmap should outperform it in either or both 
metrics. A notable exception is when the objects follow a gaus-
sian distribution; in that case, most objects are concentrated in 
the center of the space, producing a large number of overlaps and 
getting close to the worst possible scenario for the OL-HeatMap

algorithm. Even in that case, however, the time performance of 
our approach is only slightly worse if not equivalent to the grid 
based approach for the largest grid granularity, which has accu-
racy comparable to OL-HeatMap. Furthermore, as discussed ear-
lier, real-world data have distributions closer to the uniform or 
bi-modal ones with many “hot-spots”, whereas concentrated gaus-
sian distributions with most objects overlapping together are less 
meaningful.

4.4.3. OL-HeatMap scalability
So far, we have limited our comparative performance analysis 

to smaller data-sets, up-to 2000 overlapping rectangles, in order 
to ensure quicker data visualization. Here, we examine the scala-
bility of both algorithms for much larger number of overlapping 
objects. As mentioned before, there is a trade-off between speed 
and accuracy in the grid-based algorithm. Therefore, we select ap-
propriate grid sizes to produce two baselines: grids producing 75% 
and 95% area accuracy A S grid . We compared the execution time of
OL-HeatMap against those two baselines for 100 up to 105 rectan-
gles using a dense dataset following the bi-modal distribution. Fig. 7
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Fig. 5. Accuracy of grid-based method vs OL-HeatMap’s exact results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. OL-HeatMap vs. grid-based time performance comparison.
Fig. 7. OL-HeatMap vs. grid-based times for 102 to 105 objects in dense bi-modal 
distribution.

shows the results in logarithmic scale. OL-HeatMap consistently 
outperforms the 75%- and 95%- accuracy grid-based approaches 
by one and two orders of magnitude, respectively. This is a sig-
nificant improvement, allowing for the visualization of very large 
numbers of objects in reasonable execution time and while always 
being 100% accurate. On the other hand, for the case of 105 rect-
angles, the less accurate grid-based method (75% accurate) would 
require more than 105 seconds (≈ 28 hours) to complete (best es-
timates). The execution time would be even longer if we require 
an accuracy of 95%.

4.4.4. OL-HeatMap flexibility
We present two cases that utilize different information in the 

Storm Event data-set to highlight the strengths of OL-Heatmap. In 
both cases, we represent each event as a rectangle defined by an 
event’s beginning and end coordinates.
8

Table 3
Overview of overlaps and accuracy of storm data.

US (2017-2018) Florida (1953-2018)

Total overlaps 130651 43834
Visible overlaps 94621 32774
Accuracy (AC grid) 96.26% 71.37%
Accuracy (A S grid) 96.35% 75.78%

(a) Storms in US from 2017 to 2018. For this analysis, we exam-
ine all Tornado events in the United States for the years 2017 and 
2018. After constructing the rectangles, we use both the grid-based
and OL-Heatmap methods to find the density of overlaps and visu-
alize them. In the resulting visualization, denser zones indicate a 
higher amount of storms taking place in different areas within the 
US. Fig. 8 showcases the resulting heat-maps produced. The inter-
esting trend to note from these visualizations is the frequency of 
tornadoes in and around the East Coast states. This area, combined 
with Lower Mississippi valley has been aptly named as Dixie Alley

or Tornado Alley due to the fact that the highest concentration 
of Tornadoes in the US happens here. Comparing the visualiza-
tions produced by OL-Heatmap versus the less accurate grid-based 
method reveals a more accurate rhetoric about the area – only 
smaller, very specific areas hold to the characterization. Table 3
shows the accuracy results of the grid-based method.

(b) Hurricanes in Florida from 1953 to 2018. We provide an 
overview of all the hurricanes happening in Florida from 1953 to 
2018. We form individual rectangles for each recorded event by us-
ing the beginning and end coordinates and used OL-HeatMap to 
effectively find and visualize the events. Every year Florida is rav-
aged by catastrophic natural calamities. An estimated 123 billion 
dollars worth of damage have been recorded from 2000 till to this 
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Fig. 8. Visualization of all storms in US from 2017-18.

Fig. 9. Visualization of all hurricane events in Florida from 1953-2018.
date. As United States’ densest hurricane zone, we visualized each 
hurricane as its own rectangle, found overlaps and subsequently 
visualized using OL-HeatMap. The data contains all recorded hur-
ricanes from 1953 to 2018 and each rectangle represent the area 
of impact for each hurricane. Table 3 shows the accuracy results of 
the grid-based method.

As can be seen from Fig. 9, we determine the locations of our 
bounding boxes to be south of 82 Degrees Latitude, which would 
be north of the Florida State. All Hurricane events which has a 
begin-latitude value of 82 have been counted in as an event hurl-
ing towards or originated in Florida. From Fig. 9, it can be noted 
that almost all major cities in Florida have been under Hurricane 
attack since 1953, with the densest regions being Jacksonville, Fort 
Lauderdale, Miami, Daytona Beach, Port Orange and West Palm 
Beach. Fig. 9a shows the grid based visualization of Florida and 
Fig. 9b shows the OL-HeatMap of the storms in Florida since 
1953. As can be seen from Fig. 9a, a grid-based visualization of 
all the hurricane events provides a view of a hurricane-ravaged 
Florida, where approximately the entire state (and its neighbors) 
have been hit. However, a more accurate visualization provided by
OL-HeatMap paints a completely different picture, where it can ac-
tually be seen that Florida has several much more limited areas 
where hurricanes have hit the hardest.

5. Proof-of-concept demo system

In this section, we discuss the demo dashboard of OL-HeatMap. 
We have designed our dashboard to have a client-server archi-
tecture which provides the functionality to effectively generate or 
load data-sets, find the overlaps of the bounding boxes, and visu-
alize them accordingly.
9

Fig. 10. System architecture overview.

5.1. System architecture overview

We provide an overview of the demo dashboard and its two 
distinct components: the front-end and the back-end. The front-
end serves as a User Interface (UI), handling visualization and user 
interaction, while computationally intensive operations happen in 
the back-end asynchronously. Fig. 10 provides an overview of the 
architecture.

5.1.1. Front-end
The front-end is responsible for the actual heat-map visualiza-

tion and all interaction with the user. It is implemented in HTML, 
CSS and JavaScript, making use of the Data Driven Documents (D3) 
and JQuery JavaScript libraries for visualization and for commu-
nication with the back-end, plus other general functionality. The 
interface allows the user to generate and store synthetic data-
sets by specifying parameter values for the random data generator 
through form fields, or alternatively loading their own input data. 
The UI provides a preview of this input data, as well as the OL-

HeatMap and grid-based heat-map visualization of overlaps in said 
data. The grid size value g , as well as the color scale used for 
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Fig. 11. The user interface (UI) of the demo. Highlighted features: 1. Random generator parameters. 2. Data load/store operations. 3. Data-set rectangles visualization. 4.
OL-HeatMap/grid-based selection. 5. Grid granularity parameter. 6. Color scale selection. 7. Grid accuracy values. 8. Rectangle/overlap/grid cell details. 9. Overlap visualization.
the visualization can also be modified through form fields, while 
the visualization contains several useful features such as pan/zoom 
capability and details for each data point on hover. Finally, an eval-
uation of the grid-based approach’s accuracy is displayed, including 
both AC grid and A S grid . The user interface views for the data load-
ing/generation and visualization can be seen in Fig. 11.

5.1.2. Back-end
The dashboard demo is structured as a lightweight WebApp-

style application, with a Python Flask back-end. The back-end 
contains the implementation of the data generator, as well as 
the OL-HeatMap and grid-based algorithms. For the grid-based 
algorithm, a grid is constructed over the input data-set accord-
ing to the specified granularity value g , and each cell’s overlap 
value is determined using an R-tree based index, with the help 
of Python’s Rtree library. Likewise, the overlap rectangles for 
the OL-HeatMap visualization are calculated using OL-HeatMap. Fi-
nally, the accuracy evaluation scores for the grid-based approach 
are shown; recall that the OL-HeatMap method by definition pro-
duces exact results.

5.2. Visualization limitations

The visualization of OL-HeatMap inherits limitations of browser-
based systems, including limitations of the drawing methodology 
and data loading. The main limitation is due to the limited abil-
ity of the browser to utilize all available GPU resources. D3 uses 
HTML5 GPU acceleration, but better performance could potentially 
be achieved with a more low-level interaction with the GPU. Our 
work is orthogonal to any (implementation) optimization related 
to rendering data to graphics and can therefore take advantage of 
it.

6. Related work

The work in this paper is related to density-based visualization 
methods and methods for computing rectangle overlaps. Several key 
ideas have already been referenced throughout this paper, and here 
we present a more comprehensive view of existing work on these 
topics.

6.1. Density-based visualization methods

A density-based visualization is adequate for noticing changes 
in the data, visualizing clusters and pointing out outliers [13]. 
There are several proposals which address the topic of representing 
density. Local data density can be visualized by either aggregation, 
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using area or usage of color [14]. Due to their utility, several meth-
ods have been proposed over the years for density-based represen-
tations. As standard scatterplots started to become obsolete due to 
big data and overplotting issues [15], de-cluttering methods started 
being proposed, including adding opacity [16], color, smoothing 
[13] and/or binning the data. Ellis and Dix [17] discussed these 
strategies to eliminate visual cluttering. Bertini, Di Girolamo and 
Santucci discussed about optimizing the visualization process by 
using various quality metrics and density distribution [18].

Kernel Density Estimation (KDE), along with its variants, such 
as Approximate KDE (AKDE) [19] and Super KDE (SKDE) are used 
to calculate levels of abstraction from the data-set. The problem 
with KDE is that the computation needs to be repeated for every 
pixel visualized. Therefore, if there are n number of data points 
with p number of pixels, the complexity would be O (n · p), which 
means it cannot scale well with very large data. Methods such as 
Curve Density Estimates [20] have also been proposed that use a 
KDE-based operation for rendering smoothed data. Histograms can 
perform similar operations at a lower computational cost but in-
troduce higher opportunity costs. For instance, using a histogram 
to calculate a density distribution means the outcome will be less 
smooth. Histograms are also limited in high dimensions and there 
are constraints on sub-bandwidth [21].

Sampling-Based Approximation Methods: Sampling reduces the 
data size as it removes data points. This method is applicable when 
there is less variance in the data-set as it can remove interest-
ing data points as well. Chen, et al. [22] discussed the advantages 
and disadvantages of using an adaptive hierarchical multi-class 
sampling technique to visualize multi-class scatter-plots while the 
features of the data-set are preserved. Local density can also be 
measured by stacking of visual components of overlapping cases, 
as discussed by Dang, Wilkinson and Anand [14]. Van Liere and De 
Leeuw [23] use graphs to compute density in irregularly-sampled 
data. They find the underlying density by transforming a graph into 
two-dimensional scalar fields and rendering the graph into a color-
coded map.

Clustering Clustering provides the opportunity to merge data 
points which eventually reduces data points. For density-based vi-
sualizations, clustering is repeated to create a hierarchical data 
structure, such as a cluster tree [24,25]. An antichain can be se-
lected which serves as an abstraction. This abstraction can be used 
to make the visualization interactive as well. Cottam, Lumsdaine 
and Wang provide an unified solution by creating visual abstrac-
tions to avoid overplotting [26].

Binned Aggregation: The cost of KDE can be avoided by using 
binned aggregation. Liu, Jiang and Heer proposed ImMens [27]
which groups data points into predefined “bins”. These “bins” are 
not dependent on others, which ensures that parallel computing 
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can be used too. Li et al. [21] used KDE to binned data points for 
creating a multilevel heat-map. A combination of a binned aggre-
gation with KDE-based methodologies has been used to visualize 
dense time series [13] [20].

Distributed Methods for Density Visualization: Big data architec-
tures are used to scale up to larger data-sets. For large spatio-
temporal data-sets, a specialized system [28] has been proposed 
to process data and render images of heat-maps. The MapReduce 
framework has also been used [29] to distribute existing algo-
rithms. Perrot, Bourqui, Hanusse and Auber discussed using the 
Apache Spark framework to perform canopy clustering in order 
to create low-latency heat-maps [30]. For large temporal data-sets, 
Spectogram has also been proposed as a tool to visualize high den-
sity data [31].

6.2. Computation of rectangle overlaps

Several data mining and knowledge discovery problems can be 
modeled and solved by reducing them to the rectangle overlap 
problem, where we seek to find information about the overlap-
ping behavior of a large number of rectangles in a data-set. We 
discuss a few methods that have been proposed in this area.

Sweep-Line Based Methods: Shamos and Hoey proposed the 
sweep-line algorithm, reducing the complexity of the naive ap-
proach of detecting intersections of n elements with a more ef-
ficient complexity of O (n · logn) from the naive O (n2) [7]. For a 
1-dimensional approach, sweep-line-based algorithms tend to per-
form better than other methods. One of the methods that have 
been common in detecting overlaps is to use the 1D approach on 
a 2D plane at the beginning, which is to run the conceptual sweep 
line and then use brute force on each pair of intersections to test 
for intervals. In this case, sweep-line is used as a part of the pro-
cess of detecting intersections. A tree-based data structure, such as 
an interval tree, can be used simultaneously for better performance 
[32]. However, for denser data-sets, this method is computationally 
expensive. The resulting structure of the intersections and overlays 
is defined as “arrangement”. Alt and Schraf count arrangements in 
AABBs by designing parallel sweep-line-based methods [33].

Division into Sub-Spaces: A plane that contains all the rectan-
gles/bounding boxes can be subdivided into grids or cells and then 
individual operations can take place for each cell. The idea of a 
uniform grid has been proposed to detect collisions [4], which pro-
vides an opportunity for parallel computation as well. However, 
the problem with this approach is that the accuracy of finding 
overlaps or creating correct visual abstraction depends entirely on 
the cell size (or grid granularity). Another drawback of using a uni-
form grid is that getting the right grid size is a process of trial and 
error. Van Hook, Rak and Calvin proposed a 2d data structure for 
dynamic adjusting of the grid cell size [34]. Antochi, Juurlink, Vas-
siliadis and Liuha discussed about optimizing tile based rendering 
to improve overlap detection [35]. One of the interesting applica-
tions of uniform grid can be found in geotechnical engineering[36], 
where a grid-based approach outperforms Binary Volume Hierar-
chy based collision detection from a memory perspective.

Partition-Based Data Structure: The key idea of this method is 
to recursively insert rectangles into the root of a tree-based data 
structure. Bounding Volume Hierarchies have been proposed, such 
as Axis Aligned Bounding Boxes (AABB). Afterwards, the objects 
are tested in an iterative way against these data structures and 
inserted into the resulting tree. The R-tree is one of the most dis-
cussed approaches to detecting overlaps [6]. R-tree helps to group 
the objects into bounding rectangles of increasing size. Other 
methods include a range tree based algorithms [37], or streaming 
algorithms [38] which requires huge memory space to build and 
store the range tree.
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7. Conclusion

Density-based visualizations, such as heat-maps, constitute a 
popular approach to visualize and perceive large amounts of com-
plex data points effectively. In this research, we focused on a heat-
map-like representation for the case of overlapping rectangles. This 
is a visualization problem that can guide powerful big data visual 
analytics and inform several applications in diverse domains. How-
ever, current state-of-the-art approaches to the problem rely on 
ad hoc naive implementations or methods that are known to not 
scale well, such as grid-based methods. Also, in order to perform 
reasonably fast, most of these methods provide approximations of 
the problem. To address these limitations, we have proposed OL-

HeatMap, an effective method for finding and visualizing the exact 
density of overlapping rectangles, along with other useful infor-
mation, including the actual position of the formed overlapping 
rectangle (overlap) and its size. Our method is based on a recently 
proposed variant of the sweep-line method that can accommodate 
multiple overlaps in n-dimensions.

To demonstrate the effectiveness of OL-HeatMap against grid-
based sensible baselines, we designed a thorough experimental 
evaluation incorporating various parameters and settings, includ-
ing both synthetic and real-world data-sets. Our proposed method 
is much more accurate as it always finds the exact solution and 
not an approximation of it. Furthermore, it performs several orders 
of time faster than its competitors. We can approximate different 
shapes with rectangles as well. An exception to this is the case of 
extremely dense data sets (i.e., almost all rectangles overlapping 
with each other), in which case OL-HeatMap can perform compa-
rably to baselines; this behavior is due to an inherent limitation of 
the sweep-line method and this is a degenerate case, as most large 
data sets are typically very sparse. Overall, we expect OL-HeatMap

to be integrated in information visualization software and libraries.
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