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Epidemics of infectious diseases, such as the one caused by the rapid spread of the coronavirus disease 
2019 (COVID-19), have tested the world’s more advanced health systems and have caused an enormous 
societal and economic damage. The mechanism of contagion is well understood. As people move around, 
over time, they regularly engage in social interactions. The spatiotemporal network representing these 
interactions constitutes the backbone on which an epidemic spreads, causing outbreaks. At the same 
time, advanced technological responses have claimed some success in controlling the epidemic based 
on digital contact tracing technologies. Motivated by these observations, we design, develop and evaluate 
a stochastic agent-based SEIR model of epidemic spreading in spatiotemporal networks informed by 
mobility data of individuals (trajectories). The model focuses on individual variation in mobility patterns 
that affects the degree of exposure to the disease. Understanding the role that individual nodes play in 
the process of disease spreading through network effects is fundamental as it allows to (i) assess the risk 
of infection of individuals, (ii) assess the size of a disease outbreak due to specific individuals, and (iii) assess 
targeted intervention strategies that aim to control the epidemic spreading. We perform a comprehensive 
analysis of the model employing COVID-19 as a use case. The results indicate that simple individual-
based intervention strategies that exhibit significant network effects can effectively control the spread of 
an epidemic. We have also demonstrated that targeted interventions can outperform generic intervention 
strategies. Overall, our work provides an evidence-based data-driven model to support decision making and 
inform public policy regarding intervention strategies for containing or mitigating the epidemic spread.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

From the Plague of Athens (430 to 426 BC) [1,2] to the Span-
ish Flu (1918) [3,4], pandemics have had a significant impact on 
human society [5]. In the last 20 years alone, the world has seen 
many infectious disease outbreaks. Notorious examples include the 
pandemics caused by the Severe Acute Respiratory Syndrome coro-
navirus (SARS-CoV) [6], the influenza A virus subtype H1N1 (swine 
flu) [7], the Middle East Respiratory Syndrome coronavirus (MERS-
CoV) [8], the Ebola virus (EVD) [9], the Zika virus (ZIKV) [10], 
and most recently the Severe Acute Respiratory Syndrome coro-
navirus 2 (SARS-CoV-2) [11]. These pandemics have tested the 
world’s more advanced health systems and have caused an enor-
mous societal and economic damage. Conventional methods to 
address the rapid spread of an infectious disease include physi-
cal distancing, confinement measures and human-based contact tracing
of infected individuals. These describe some of the common poli-

* Corresponding author.
E-mail addresses: tipech@eecs.yorku.ca (T. Pechlivanoglou), jliellen@my.yorku.ca

(J. Li), jlsun@my.yorku.ca (J. Sun), farzanah@eecs.yorku.ca (F. Heidari), 
papaggel@eecs.yorku.ca (M. Papagelis).
https://doi.org/10.1016/j.bdr.2021.100275
2214-5796/© 2021 Elsevier Inc. All rights reserved.
cies imposed by governing authorities and jurisdictions that aim 
to contain or slow down the spread of the virus to levels that 
can be managed by healthcare units and socio-political institutions. 
While these easily understood policies can be effective in control-
ling the spread of the disease and saving lives [12,13], they have
well-known drawbacks: (i) they are imposing extreme restrictions 
or limitations on individuals’ activities or freedom, leading to a 
slowdown of social and economic activities of the community and 
to socioeconomic side-effects for the individuals themselves; (ii) 
they depend on human-based contact tracing of infected individu-
als that are cumbersome, expensive, slow and inaccurate; and (iii) 
they do not provide the means of a controlled transition to an im-
mune community through well-defined intervention strategies that 
can easily translate to health policy and potentially ameliorate the 
socioeconomic impact.

More recently, advanced technological responses to the prob-
lem based on digital contact tracing have claimed some success 
in controlling the epidemic [14]. Digital contact tracing or proxim-
ity tracing, enabled by GPS-enabled devices, mobile apps [15] and 
beyond [16], represents the ability to track and reconstruct the 
close contacts that an individual had with other people within a 
time period. The way that proximity tracing can have an impact in 
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containing or slowing down the disease spread is straightforward. 
Individuals that are known to be infected, can inform (via cloud 
services) recent close contacts that have been digitally traced, who 
can then take precautions and avoid further contacts with other 
people by isolating themselves or seeking expert advice. The pro-
cess can involve third parties, such as governing authorities and/or 
health experts responsible for the containment of the disease.

The focus of the current research is on utilization of GPS-
enabled digital contact traces of individuals (i.e., mobility data or 
trajectories) to inform a more comprehensive analysis and mod-
eling of disease spreading through methods of graph mining [17]
and trajectory data mining [18]. In particular, we present a data-
driven model for the spread of the disease in a community that 
take into account the mobility patterns of individuals. As peo-
ple move in cities, they engage in different types of interaction 
with other people, resulting in different mobility patterns. As such, 
the relative risk of them being infected or infecting others can be 
substantially different. We systematically study the effect of the in-
dividual variability of mobility behavior to the risk of infection of 
an individual. This observation can have significant consequences 
to a model’s accuracy of how the disease propagates in a commu-
nity, as well as to the intervention strategies that can be designed 
to control the epidemic.

Contributions. Motivated by the feasibility of digital contact trac-
ing technologies [19] and the inherent limitations of traditional 
epidemiological models (see Section 2), this paper presents data-
driven models of infectious disease spreading that incorporate in-
dividual variability due to individuals’ mobility patterns. Our study 
aims to clarify how differences in mobility patterns can inform in-
fectious epidemic dynamics and determine the impact of various 
intervention strategies. In summary, the major contributions of this 
work are as follows:

• we present novel data-driven models for assessment of the 
risk of infection of an individual based on mobility patterns 
and the amount of time they spend in proximity with others 
(“individual risk assessment”);

• we present a stochastic agent-based Susceptible-Exposed-
Infected-Removed (SEIR) network model for infectious disease 
spreading in trajectory networks (“community risk assess-
ment”);

• we design and evaluate novel individual-based intervention 
strategies for containing (or mitigating to an acceptance rate) 
the spread of an infectious disease in trajectory networks 
(“containment intervention strategies”);

• we design and evaluate novel individual-based immunization 
strategies for providing a controlled and safe transition to an 
immune community (“targeted immunization”);

• we present a large-scale case study using model parameter 
values that resemble the recent COVID-19 outbreak and re-
alistic synthetic mobility data in a real urban environment 
(large University campus and surroundings) that allows for 
many human-human interactions; the model and algorithms 
presented generalize to other similar infectious diseases;

• we provide source code and data to encourage reproducibility 
of results.

The remainder of this paper is organized as follows: Section 2
provides background information, introduces notation and provides 
definitions of the technical problems of interest in this paper. Sec-
tion 3 presents our epidemic model, algorithmic details of epi-
demic spreading in trajectory networks and descriptions of disease 
containment intervention strategies. Section 4 presents an experi-
mental evaluation of the different models and methods for varying 
settings. We review the related work in Section 5 and conclude in 
Section 6.
2

2. Background and problem definitions

In this section, we introduce notation and preliminaries of the 
problem of interest, as well as formal problem definitions. The 
background mostly relates to the definition of a contact network
or a trajectory network as defined in [20]. We also provide back-
ground information related to the basic reproductive number R0
and its limitations, as well as information about the SEIR epidemic 
model and its variations, as we employ it in our study.

2.1. Observation area: Earth surface versus Euclidean space

We assume monitoring of mobility data of individuals within 
a finite observation area A. For the needs of our study, this area 
typically represents the administrative boundaries of a city or a 
city neighborhood where daily human contacts occur. Since A is 
a relatively small region, the Earth surface it represents has a low 
curvature and is close to flat. We can therefore, for simplicity and 
without loss of generality, assume that individuals move in a finite 
2-dimensional Euclidean space R2 and not on the surface of the 
Earth. This assumption allows to approximate geodesic distances 
on Earth with Euclidean distances in R2, a common practice in 
many real-world algorithms and services.

2.2. Contacts and events

Consider a set of objects N = {u1, u2, . . . , uN} moving in an ob-
servation area A, defined as a finite 2-dimensional Euclidean space 
R2 for a finite observation time interval [0, T ], forming a set of tra-
jectories P . We formally define a trajectory as follows.

Definition 2.1 (Trajectory). A trajectory Pu of a moving object u ∈
N is a sequence Pu = {(x1, y1, t1), (x2, y2, t2), . . . , (xT , yT , tT )}, 
where ti ∈ [0, T ] and (x, y) ∈ A ⊆ R2 represent latitude and lon-
gitude coordinates in the 2D Cartesian system. We assume that an 
object might appear and disappear multiple times during the ob-
servation time interval [0, T ].

As individuals move in A, they can encounter each other, form-
ing contacts. Following Pechlivanoglou and Papagelis [20], we de-
fine a contact as follows.

Definition 2.2 (Contact). A contact cu,v between two moving indi-
viduals u, v ∈N occurs when their physical proximity (spatial dis-
tance) du,v is smaller than or equal to a threshold τ (i.e. du,v ≤ τ ).

Several approaches exist to estimate the spatial distance of two 
points in Euclidean plane. We employ its simplest form, the Eu-
clidean distance, given by:

du,v =
√

(xu − xv)2 + (yu − yv)2

where (xu, yu) and (xv , yv) are the spatial coordinates of individ-
uals u and v at a time t , where 0 ≤ t ≤ T respectively. The two 
individuals u and v are considered to be in contact for as long as 
their spatial distance remains consistently smaller than a proxim-
ity threshold τ . We extend the concept of a contact to include its 
temporal dimension and formally define an event as follows.

Definition 2.3 (Event). An event eu,v between two moving objects 
u, v ∈ N , represents a contact cu,v that lasted for a time interval 
[ts, te], where ts represents the time point of the beginning of the 
contact and te represents the time point the contact ended. An 
event is represented by the quadruple eu,v = (u, v, ts, te). We also 
define the duration of the event as δ(eu,v ) = te − ts .
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Note that, in our setting, we do not preclude the case that 
two individuals are in contact multiple times. In this case, the 
contact information between two moving individuals u and v is 
represented by a sequence of events Eu,v = {e1

u,v , e2
u,v , . . . , en

u,v} or 
Eu,v = {(u, v, t1

s , t1
e ), (u, v, t2

s , t2
e ), . . . , (u, v, tn

s , tn
e )}. We also define 

the duration of all events as �(Eu,v ) = ∑n
i δei

u,v
= ∑n

i (t
i
e − ti

s). Fur-

thermore, in this paper we employ a universal proximity thresh-
old τ , so the contacts will always be reciprocal, meaning that 
(u, v, ts, te) is equivalent to (v, u, ts, te). Indeed, this is sufficient 
for the case of human-to-human interactions we examine in this 
work.

2.3. Trajectory networks and node importance

A network that is constructed by connecting pairs of individuals 
that are close to each other based on physical proximity is called a 
proximity network. However, a proximity network is static and does 
not capture well the idea of individuals moving in space. When in-
dividuals are moving, the temporal dimension of interactions must 
be considered, and the resulting network can be thought of as a 
temporal network, also referred to as a time-varying network. Most 
characterizations of temporal networks discretize time by group-
ing together temporal information into a sequence of T network 
“snapshots” Gt(Vt , Et), t ∈ {1, 2, . . . , T }. Each snapshot contains the 
vertices Vt and edges Et , representing the individuals and their 
contacts, respectively, within a basic time unit t (e.g., second, 
minute, hour, etc.). The resulting data structure can be thought 
of as either a single aggregation graph with varying vertices and 
edges, or a sequence of proximity graphs. In either case, we re-
fer to Gt(Vt , Et) as a trajectory network G(V , E) for the rest of the 
manuscript.

There are many possible metrics to determine the importance
(or influence) of an individual (or node) in a temporal network. 
Note that the term node centrality refers to node importance that 
is common in static network analysis, and isn’t applicable for tra-
jectory networks. This is because measures of node centrality in 
the traditional setting of a static network are commonly based 
on shortest paths (e.g., betweenness centrality [21,22]), but short-
est paths in temporal networks take a different character [23]. 
For example, in [24], the authors define minimum temporal paths
to capture the different characterizations of time-constraint short-
est paths including cases of earliest-arrival paths, latest-departure 
paths, or fastest paths. It is possible to evaluate a notion of tem-
poral betweenness [25], but in our setting, we focus on notions of 
importance that are critical in the context of epidemic modeling in 
the trajectory network. Similarly to Pechlivanoglou and Papagelis 
[20], we define metrics that relate to the temporal node degree and 
the duration of events, and use these metrics to construct node pro-
files that describe the behavior of each individual.

Definition 2.4 (Trajectory network node degree). We define the fol-
lowing metrics related to node degree in the trajectory network:

• Cu : a set of all contacts of u during the observation time in-
terval [0, T ].

• Ddegu (k): a distribution that represents the fraction of the time 
steps ti ∈ [0, T ] that u has node degree k.

2.4. Problem definitions

In this paper, we are interested in the assessment and mitiga-
tion of the risk of infectious disease spreading in trajectory net-
works based on mobility data. In particular, we aim to address the 
following problems:
3

Problem 1. Given an observation area A, an observation time in-
terval [0, T ], a set of individuals N and their trajectories P , deter-
mine the risk of infection risku of each individual in the trajectory 
network G(V , E).

Problem 2. Given a trajectory network G(V , E), a seed set of ini-
tially infected individuals I0 ⊆ N and the risk risku of any indi-
vidual u ∈ I0, determine the size of the epidemic spread IT ⊆ N
at time t = T , where I0 ⊆ IT .

Problem 3. Given a trajectory network G(V , E), and the parame-
ters of an emerging infectious disease, determine the impact of 
various epidemic containment intervention strategies that can eas-
ily translate to health policy. The focus is on comparative analysis 
of the impact of targeted individual-based interventions against a 
null model (informed by less sophisticated horizontal measures).

2.5. Limitations of the basic reproductive number R0

The basic reproductive number R0 (sometimes called basic re-
production ratio), is the most widely used parameter in epidemiol-
ogy. It can be thought of as the expected number of new infections 
caused by a single infected individual. Commonly used epidemio-
logical models suggest that R0 = 1 is a critical value. When R0 < 1, 
each infected person produces less than one new case in expec-
tation, therefore the size of the outbreak is constantly trending 
downwards, until eventually the disease dies off. On the other 
hand, when R0 > 1, each infected person produces more than one 
new cases in expectation, therefore the size of the outbreak is con-
stantly trending upwards. In principle, the larger the value of R0, 
the more challenging it is to control the epidemic.

Despite its usefulness as an approximate indication of the 
spreading power of the disease, many studies have stressed the 
limitations of R0. An underlying assumption of R0 is that the dis-
ease is spreading in a perfect mixing network (i.e., a complete 
graph) or a regular tree network – a special type of a network 
topology that has no cycles and each internal node has a constant 
number of children, defined by a branching factor d. However real-
world communities do not resemble a complete graph or regular 
trees, since some people have more contacts than others and it 
is common for people to have common friends (forming triangles 
or cycles). It is also easy to see how the basic computation of R0
breaks down when we consider transmission of infection to be a 
stochastic process involving discrete individuals [26].

For the purposes of this work, when we refer to R0 for indi-
viduals, we define it as “the expected number of secondary cases 
produced, in a completely susceptible population, produced by a 
typical infected individual” [27].

2.6. The SEIR epidemic model

Compartmental models of epidemic modeling divide the popu-
lation into separate divisions (compartments) and people transition 
between them based on their health status during an epidemic. 
For instance, in the classic SIR model [28,29], people progress 
between three compartments: susceptible (S), infectious (I) and 
removed/recovered (R). For many infectious diseases, there is a 
significant latent period (incubation) during which susceptible in-
dividuals have been infected, but are not yet infectious themselves. 
During this period an individual is considered to be in a compart-
ment labeled as exposed (E), and the model is known as SEIR. 
The current research employs the SEIR model for modeling the 
spread of a virus in the community. Depending on assumptions of 
population structure and transmission progression, there are two 
main classes of the SEIR model studied in the literature.
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Homogeneous population. The first class, assumes a large, ho-
mogeneously mixing population where individuals move between 
compartments at certain transition rates described by ordinary dif-
ferential equations [30,31]:

dS
dt

= −βIS
N

dE
dt

= βIS
N

− σE

dI
dt

= σE − γ I
dR
dt

= γ I

where β is the transmission rate, σ is the incubation rate, and 
γ is the recovery rate, respectively. This is a deterministic model, 
so for a fixed set of parameter values and SEIR model initial-
ization (t = 0), it produces the same outcome at each simulation. 
This model can inform about the state of the epidemic spread in 
the community and provide insights about future trends as well as 
inform health policy at large [32]. However, there are certain limi-
tations of this model. Its results and usefulness are limited by the 
inherent assumption that all individuals share the same character-
istics.

Heterogeneous population. The second class, assumes heterogene-
ity of population and is based on an agent-based SEIR model, 
where each agent is representing an individual [33,34]. This ap-
proach allows to model individual characteristics and behavior to-
wards the epidemic. In our research we focus on heterogeneity 
that is attributed to different mobility and contact patterns of in-
dividuals, over time. Different mobility patterns, lead to complex 
spatio-temporal social interactions between people in the commu-
nity [20,35]. These models are more challenging to analyze and 
interpret as they depend on a stochastic (probabilistic) process of 
epidemic spreading that increases the complexity [36]. However, 
they are more realistic and can help to better understand the 
emergence of a disease due to different individual behaviors. In 
addition, since they operate (simulate) on individual-level behav-
ior, they provide an opportunity to design targeted intervention 
strategies that can more easily translate to health policy. In sec-
tion 3 we present the details of the agent-based SEIR model.

3. Methodology

Recent studies on epidemic modeling highlight the importance 
of individual variability in modeling the spread of an infectious 
disease in a community and predicting its relevant outcome. For 
example, Gomes et al. [37] studied the effect of the biological vari-
ation in susceptibility of individuals and their physical exposure to 
infection. And, Britton et al. [38] studied how population hetero-
geneity affects herd immunity. In our research, we study the effect 
of individual variability in epidemic modeling that is due to mo-
bility patterns. We first present a method for computing the risk 
of infection of any individual in the community, as a result of their 
spatiotemporal interactions. Then, we present a stochastic agent-
based epidemic model (and optimizations) that can better capture 
the dynamic disease spreading in a community.

3.1. Modeling individual risk of infection

We integrate individual variation by modeling the risk of in-
fection of an individual in relation to its mobility patterns and 
contacts over a time period. Intuitively, we would like to model 
that the more contacts an individual has and the more time they 
spent with each other, the higher the risk of infection. Formally, 
given a trajectory network G(V , E), an individual u ∈ N and its 
contacts Cu during [0, T ], we model the risk of infection risku of 
an individual by the following three methods, each offering a dif-
ferent level of analysis.
4

risk(1)
u =

|Cu |∑
i=1

1 = |Cu| (1)

risk(2)
u =

|Cu |∑
i=1

�(Eu,i) (2)

risk(3)
u =

|Cu |∑
i=1

(1 − (1 − β)�(Eu,i)) (3)

Out of the three definitions, risk(1)
u is the simplest one as it is 

based on the node degree in the aggregation network (i.e., the 
network defined by aggregating the edges of a temporal network 
over [0, T ]); risk(2)

u takes into consideration both the number of 
contacts of u and the total duration of these contacts (due to po-
tentially multiple events); risk(3)

u models the risk of infection as 
a probability of getting infected by any of its contacts factoring 
the total duration of these contacts (due to potentially multiple 
events), where β is the transmission probability of the disease. 
In particular, we use a geometric function to represent the risk 
attributed to each distinct contact. The outcome is a regularized 
metric for risk (capped at 1), so that specific contacts with a very 
long duration do not dominate the overall risk of an individual.

Relative risk of infection: While the actual value of an individual’s 
risk of infection does not hold any natural interpretation, it is im-
portant for our analysis to represent the relative risk rrisku of u to 
other individuals in the network. We therefore normalize each risk 
metric by the aggregated risk of all N individuals in the network 
to get the relative risk of u ∈N , as follows:

rrisk(i)
u = risk(i)

u∑N
u=1 risk(i)

u

(4)

Note that it is rrisk(1)
u ∈ [0, 1], rrisk(2)

u ∈ [0, 1], rrisk(3)
u ∈ [0, 1] and 

that 
∑N

u=1 rrisk(i)
u = 1. We utilize the relative risk in our experi-

mental analysis.

3.2. Epidemic spreading in trajectory networks

We present a stochastic agent-based SEIR network model for 
epidemic spreading in a trajectory network, where nodes represent 
individuals and edges represent contacts of nodes. According to the 
epidemic model, each node can be at one of the following infection 
states, at any discrete time t:

• Susceptible (S). This is the initial state of all nodes; a node can 
get exposed to the infection by any of its infected neighbors 
with probability β , per time step.

• Exposed (E). A node is in this state if it has been infected by 
one of its neighbors, but it is not yet infectious itself. A node 
stays in this state for as long as the incubation period of the 
disease lasts, which for simplicity we model as a constant that 
lasts I f time steps. After that period, the node becomes in-
fectious and switches to state I with certainty. Depending, on 
the disease we aim to model, the certainty can be relaxed by 
incorporating a parameter to control the probability of a node 
switching to I (or to S).

• Infected (I). A node is in this state if it is infectious, therefore 
can transmit the disease to any of its neighbors with probabil-
ity β .

• Removed (R). A node is in this state if it has been removed, 
meaning either has passed away or has recovered. Nodes that 
are in I will be removed after Ir time steps with a recov-
ery probability γ . The recovered nodes are neither infectious 
anymore nor susceptible to the infection.
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Given a trajectory network G(V , E) and parameter values β , γ , I f
and Ir the model allows us to monitor the state of every individ-
ual over time. Given a population of N individuals, the cumulative 
number of individuals within each of the disease states at time t
is given by S(t), E(t), I(t), and R(t), respectively. We also define 
two special sets of infected nodes: (i) the initial seed set of in-
fected nodes I0 = I(0), and (ii) the set of the infected nodes at 
the end of the process IT = I(T ), which represents the size of the 
epidemic spread.

3.2.1. Algorithmic details of the stochastic model
We describe here algorithmic details of the stochastic model. 

Recall that individuals move between infection states S , E , I and 
R based on a stochastic process. At each discrete time step t , each 
S(usceptible) node has a chance to switch to E(xposed), E(xposed) 
nodes might switch to I(nfected), and I(nfected) nodes might be 
R(emoved). Formally, let u ∈ S and let Nu be the set of neighbors 
of u at time t . Each neighbor v ∈Nu such that v ∈ I , flips a biased 
coin with a bias equal to the transmission probability β to deter-
mine whether it will infect u. If u is infected, then it switches 
its infection state to E(xposed), otherwise its infection state re-
mains S(usceptible). Similarly, an E(xposed) node will switch to 
I(infected) after I f steps and an I(nfected) node will switch to 
R(ecovered) after Ir steps, with a probability γ . The pseudocode 
of the stochastic model of epidemic spreading is given in Algo-
rithm 1. In our analysis, each time step in the discrete time sim-
ulation corresponds to a minute (60 secs), so negligible contacts 
(interactions of less than a minute) are not considered.

Studies on infectious diseases have showed that prolonged ex-
posure of a susceptible node to an infected node increases the 
likelihood of infection [39]. It is easy to see that in the epidemic 
model presented in Algorithm 1, an infected node u has multi-
ple chances to propagate the disease. Formally, given a trajectory 
network G(N, V ), the probability pu,v of a susceptible node u ∈ V
being infected by a neighboring infected node v ∈ V after k inde-
pendent trials is given by the cumulative distribution function of 
the geometric distribution:

pu,v = 1 − (1 − β)k (5)

where β is the transmission probability of the disease. Eq. (5)
represents the complementary probability of u not being infected 
after k independent trials. It is easy to see that k depends on the 
duration of the contact between an infected node v and u (i.e., one 
chance per time unit) and that 0 ≤ pu,v ≤ 1.

3.3. Conversion of the stochastic model to a deterministic model

The epidemic spreading model we described in Algorithm 1, 
is a stochastic process that possesses some inherent randomness. 
Starting with the same initial conditions (i.e., the same sets of 
Susceptible and Infected nodes) and parameter values, multiple 
independent simulations of the epidemic spreading process can 
produce outputs that vary a lot, in terms of the total number of 
nodes infected at the end of the process. This is because the final 
outcome depends on flipping a biased coin at every time step to 
decide whether the disease will diffuse from one node to another 
in the network.

Interestingly, there is an equivalent deterministic model that of-
fers a static view of the network and is more practical, as it allows 
for faster simulations than the stochastic model. We describe here 
a method that given a stochastic model of epidemic spreading in 
the trajectory network, converts it to a deterministic model based 
on percolation theory [40,41]. In mathematics and physics, perco-
lation theory is used to explain the flow of fluids through certain 
types of porous material. Similarly, in network science, it is used 
5

Algorithm 1: Epidemic spreading in trajectory networks.
Input: G(V , E), S , I , β , γ , I f , Ir , q
Output: SEIR[0,T ] = {[S(0), E(0), I(0), R(0)], . . . , [S(T ), E(T ), I(T ), 

R(T )]}

S(0) ← S; E(0) ← 0; I(0) ← I; R(0) ← 0;

for t ∈ [0, T ] do
for u ∈ V do

switch u.state do
case u ∈S(t) do

Nu ← u.neighbors();
for v ∈Nu do

if v ∈ I(t) and v.Q �= 1 then
v infects u with probability β;
if u is infected then

u.state ← E ;
u.Q ← 1 with probability q;
Iu

f = 0; /* incubation period of u

begins */
S(t + 1) ← S(t) \ u;
E(t + 1) ← S(t) ∪ u;

break;
case u ∈ E(t) do

Iu
f + +;

if Iu
f = I f then
u.state ← I;
Iu

r = 0; /* recovery period of u begins */
E(t + 1) ← E(t) \ u;
I(t + 1) ← I(t) ∪ u;

break;
case u ∈ I(t) do

Iu
r + +;

if Iu
r = Ir then
u.state ← R;
I(t + 1) ← I(t) \ u;
u recovers with probability γ ;
if u recovers then

R(t + 1) ← R(t) ∪ u;

break;
case u ∈R(t) do

break; /* do nothing */

SEIR[0,T ] ← SEIR[0,T ].append([S(t), E(t), I(t), R(t)]);

return SEIR[0,T ];

to describe the behavior of a network when nodes or links are re-
moved.

To utilize this idea in the epidemic spreading model, recall that 
each infected node in the network has a probability β to infect 
each of its neighboring nodes at every time step t , by flipping a 
biased coin with a probability β . At the end of the interaction, the 
infected node has either infected the neighboring node, in which 
case we consider the edge to be “active”, or not, in which case we 
consider the edge to be “removed or blocked”. The idea of per-
colation is that instead of deferring the decision of whether an 
edge will be “active” or “removed” at runtime, we can make a 
decision for each edge of the trajectory network G(V , E) at the 
very beginning of the whole process. In practice, for each edge in 
the network, we just need to flip a biased coin with probability β
as many times as the duration of the contact (expressed in time 
units), and decide whether to keep it or remove it from the net-
work. At the end of the process a smaller network G ′(V , E ′) is 
constructed, such that E ′ ⊆ E .

In terms of the correctness of the epidemic spreading process 
itself, it does not matter if the decision to keep or remove an 
edge is made at runtime or early in the process. In terms of run-
time cost, percolation allows to work on a smaller network (since 
many edges are already removed) and allows simulations to fin-
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Fig. 1. Example of removing high-risk individuals.

Fig. 2. Example of removing high-risk contacts of individuals.
ish faster. We therefore employ percolation in the relevant set of 
experiments.

3.4. Containment intervention strategies

In this section, we explore various network-based intervention 
strategies that aim to contain an epidemic [42]. These interven-
tions change the structure of the trajectory network — the back-
bone on which an epidemic spreads over time — and eventually 
affect the size of the set IT of the infected nodes at the end of 
the process. The strategies relate to node immunization (network 
node removal) or breaking of social ties (network edge removal) and 
are actuated either at a network-level (governing authority deci-
sion) or a node-level (individual decision). Our goal is to design 
targeted models of intervention and evaluate them against sensible 
null models. Details of these strategies and models are presented 
below, along with discussion on their feasibility and their implica-
tions to health policy.

Strategy 1: node immunization. Based on this strategy, we re-
move a fraction αn of all nodes in the network. Formally, given 
a set S ⊆ V of nodes to be removed, where |S| = αn|V |, the infec-
tious disease now spreads in the induced subgraph G ′(V ′, E ′) of G
whose vertex set is V ′ = V \ S and whose edge set E ′ consists of all 
of the edges in E that have both endpoints in V ′ . The real-world 
interpretation of this strategy is that some individuals are quaran-
tined (i.e., they are in a state of isolation where no contacts occur) 
or develop immunization because of a vaccine. The network effect 
is that a contagious disease cannot spread through their contacts 
anymore.

Null model: A fraction αn of nodes is removed uniformly at random.

Targeted model (removing high-risk individuals): Nodes are ranked 
based on their relative risk of infection rrisku , in a descending or-
der. Then, a fraction αn of the nodes with the largest risk rrisku are 
removed. Ties are resolved uniformly at random. An illustration of 
this intervention can be seen on Fig. 1.

It is important to note that this is a network-level intervention 
strategy, where a national authority determines a set of individuals 
to immune (or request to quarantine) based on an estimate of their 
relative risk rrisku . Such an intervention, is resource-intensive, but 
also might infringe the privacy of individuals. It also carries a risk 
of discriminating against individuals with specific mobility patterns 
(i.e., super-spreaders). As a result, the feasibility of this interven-
tion strategy is rather weak for large communities.

Strategy 2: breaking of social ties. Based on this strategy, we re-
move a fraction αe of edges adjacent to each node (contacts). 
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Formally, given a node u ∈ V and its set of neighbors 	(u), we 
remove |Hu| = αe|	(u)| edges, where Hu ⊆ 	(u). The total num-
ber of edges removed from the network is |H | = ∑N

i=1 |Hi|, H ⊆ E . 
The infectious disease now spreads in the subgraph G ′(V , E ′) of 
G , where E ′ = E \ H . The real-world interpretation of this strat-
egy is that individuals have some understanding of the mobility 
patterns of their contacts and they can make decisions about who 
to avoid. The network effect is that a contagious disease cannot 
spread through some specific contacts anymore.

Null model: For each node u, a fraction αe of its contacts to neigh-
boring nodes 	(u) are removed, uniformly at random.

Targeted model A (removing high-risk contacts): Nodes v ∈ 	(u) in the 
neighborhood of u are ranked based on their relative risk of infec-
tion rriskv , v ∈ 	(u), in a descending order. Then, a fraction αe of 
contacts to the neighboring nodes with the largest risk rriskv are 
removed from the network. Ties are resolved uniformly at random. 
An illustration of this intervention can be seen on Fig. 2.

It is important to note that this is an individual-level interven-
tion strategy, where each individual makes a local decision about 
who to avoid, based on some understanding of the relative risk 
rrisku associated with each of its contacts. The model assumes that 
individuals are in position to understand that they should avoid 
contacts that are frequently and regularly interacting with many 
others (e.g., due to their occupation or mobility habits). Such an in-
tervention is easier and not resource-intensive to implement, due 
to its distributed nature and does not infringe on the privacy of in-
dividuals. As a result, the feasibility of this intervention strategy is 
rather high for large communities.

Targeted model B (removing non-community contacts): Nodes v ∈ 	(u)

in the neighborhood of u are ranked based on the number of 
shared friends s(u, v) = |	(u) ∩ 	(v)|, in an ascending order. Then, 
a fraction αe of edges to the neighbors with the smallest s(u, v) is 
removed from the network. Ties are resolved uniformly at random. 
An illustration of this intervention can be seen on Fig. 3.

This model resembles a “social bubble” policy practiced by many, 
where an individual maintains contact with only family members 
and a few close friends. This way, potential “network bridges” be-
tween different well-knit communities in the network are elim-
inated and the infectious disease finds it hard to cross between 
them. This is an individual-level intervention strategy, where each 
individual makes a local decision about who to keep in its social 
bubble, based on some understanding of how many friends they 
have in common. This is a relatively easier assumption to make 
(than the one made by the targeted model A). Such an intervention 
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Fig. 3. Example of removing non-community contacts of individuals.

Fig. 4. Indicators and distribution of generated individuals’ activity.
Table 1
Summary of trajectory data.

Parameter Value

#individuals 2-10k
area (km2) 1
observation time (second) 2,592,000
#points of interest 1,330
activity distribution Alevel ∼ N (μ = 5.5, σ 2 = 2.5), Alevel ∈ [0,10]

is once again easier and not resource-intensive to implement, due 
to its distributed nature and does not infringe on the privacy of in-
dividuals. As a result, the feasibility of this intervention strategy is 
rather high for large communities.

4. Experimental evaluation

In this section, we provide details of our experimental evalua-
tion. We first present our synthetic data generator and describe the 
characteristics of the contact networks produced. Then, we present 
a COVID-19 use case, by specifying the parameters and refining 
the research questions we aim to explore. For each research ques-
tion, we outline the experimental scenario and process followed to 
effectively address it. Finally, we discuss the results and any impli-
cations.

4.1. Data generation

In order to evaluate our stochastic agent-based SEIR epidemic 
model, we had to rely on large-size data representing trajectories 
of individuals or their spatiotemporal contacts. Moreover, for sim-
ulations to be reliable, the data needs to be (almost) complete; if 
significant amount of information about people’s mobility or con-
tacts is missing, then any underlying analysis related to community 
structure and individual behavior could be significantly affected. At 
the same time, mobility data is highly sensitive; many contact trac-
ing applications rely on privacy-preserving proximity data, making 
the collection of real-world data impossible. With these factors in 
mind, we opted to use synthetically generated data. On the other 
hand, the benefit of generating synthetic data is that all parameters 
could be tuned and therefore analysis can be more comprehen-
sive.
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We generated synthetic data that simulates the activity of peo-
ple living and working within a specified urban area over the 
course of a month. We defined an observation area A of approx-
imately 1 km2 including the York University Keele campus and 
surrounding neighborhoods in Toronto, Canada. Each individual in 
the simulation is randomly assigned a home location and frequents 
a number of favorite places (out of a predefined set of places), fol-
lowing a normal distribution. Moreover, each person is assigned 
an activity level parameter that determines how “active” they are 
by controlling the number of hours they may spend outside their 
home every day and the number of places they are likely to visit. 
Based on existing research on daily activity [43], each individual 
was assigned between 0 and 12 active daily hours, determined by 
their activity level. Table 1 presents the parameters of the data 
generator and Fig. 4 presents descriptive analytics of the gener-
ated individual mobility data, including the distribution of activity 
levels, the distribution of places visited and the hourly activity 
over the course of a month by individuals of different activity 
level.

We combine all previous parameters to generate a set of des-
tinations and daily schedules for a specified number of individu-
als. Afterwards, the exact movement and trajectory traces of these 
people are simulated using Eclipse Simulation of Urban MObility 
(SUMO) [44], an open source, highly portable, microscopic and 
continuous multi-modal traffic simulation package. SUMO is ca-
pable of modeling accurate and highly realistic movement of ve-
hicles but also pedestrians, including movement through pedes-
trian crossings and crowded sidewalks. The end result is syn-
thetic but reliable, complete datasets representing the daily move-
ment of individuals in the observation area A, over a period of a 
month.

4.2. Use case: parameters for the COVID-19 epidemic

We used the synthetic data generator to model a population 
of 2,000, 3,000, 5,000 and 10,000 individuals moving in the same 
campus area. Of course, the resulting datasets correspond to differ-
ent population densities. This allows us to examine the progression 
of an epidemic in urban areas with different population densities 
while controlling the rest of the parameters in the problem.
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Table 2
Summary of datasets.

Name 2k 3k 5k 10k

#individuals 2,000 3,000 5,000 10,000
#data points 172,800,000 259,200,000 432,000,000 864,000,000
#contacts 230,170 1,493,344 9,890,294 56,232,058
clustering coeff. 0.1896 0.2737 0.5899 0.6914

Focusing on the COVID-19 epidemic use case, we can trans-
form the trajectory traces we obtained into trajectory networks to 
model the spread of infection. To do this, we need to determine 
a specific distance threshold where two individuals are considered 
in contact. Prior research on SARS-CoV-2 transmission through air 
droplets has shown that individuals at a close physical distance of 
≤1-2 m have a high probability of transmission, while there still 
exists a lower probability when within 2-9 m [39,45]. As we re-
quire a single cutoff value, we selected the conservative threshold 
value τ = 2m. We used the tools developed by [20] to construct 
the corresponding trajectory networks. The properties of the gen-
erated network datasets can be seen in Table 2.

A factor that is somewhat uncertain in related research is the 
duration required for two individuals to be considered in con-
tact and, subsequently, the transmission probability per time unit 
β . Studies that examine definitions of contact duration typically 
consider the case of 1-2 m for 15 minutes or more [19]. With 
the 12.8% transmission probability from [39], this would result 
in β ≈ 0.85% per minute. Furthermore, there are studies of trans-
mission times in different environments such as airplanes [46] or 
ventilated spaces [47]. These provide values of 1.8% per minute 
(quadrupled for conservative results) when within 1 m and 1%
per minute when in a well-ventilated space without masks, re-
spectively. In our work, we use β = 1% per minute in most ex-
periments, but we also explore the progress of an epidemic with 
different values of β .

Regarding the infection’s progress, we follow the example of 
well-established prior research on COVID-19 [32] and utilize the 
SEIR model with exposure period of 3 days, infectious period of 
6 days and recovery period of 10 days. The recovery probabil-
ity γ helps to understand the severity of a disease in long term, 
since together with transmission rate β , it determines R0. How-
ever, analysis of varying values of parameter γ is out of the scope 
of our model that focuses on heterogeneity due to mobility pat-
terns and targeted intervention strategies. In the experiments, we 
therefore fix the recovery probability to γ = 1 (i.e., 100%).

With these parameters selected, we aim to answer the follow-
ing questions:

• Q1 Estimation of infection risk risku . What is the distribution 
of relative infection risks, for each of the proposed estimation 
metrics?

• Q2 Properties of infection seed I0. How does the estimated 
risk or the number of initial infected individuals affect the 
progress of the epidemic?
Fig. 5. Infection risk distri
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• Q3 Effect of transmission probability β . How does the proba-
bility of transmission influence the progress of the epidemic?

• Q4 Effect of quarantine q. How does the quarantine of infec-
tious individuals influence the progress of the epidemic?

• Q5 Effect of intervention strategies. When each intervention 
strategy is applied, how is the progress of the epidemic af-
fected?

• Q6 Comparative analysis of intervention strategies. When the 
same number of contacts are removed, how does the effect of 
different intervention strategies compare?

Throughout the experimental evaluation, experiments are re-
peated for 10 iterations with different random seeds, reporting the 
average values of results.

4.3. Estimation of infection risk

We utilize each of the three proposed methods to estimate the 
relative risk of infection for the population sample in all datasets. 
The resulting distribution of risks can be seen in Fig. 5. As can 
be seen, the duration-based risk(2)

u gives a higher risk to a smaller 
number of individuals than the degree-based risk(1)

u . The geomet-
ric interaction-based risk(3)

u produces an estimate that is balanced 
between the two other metrics, and we use this in all remaining 
experiments. The reason why we employ risk(3)

u is that it natu-
rally captures the dynamics of the infection transmission process. 
In particular, the risk model needs to capture the following char-
acteristics:

• the more contacts an individual has the higher the risk;
• the longer the duration of an interaction, the higher the risk; 

and
• the risk of infection due to a singular contact should not in-

crease infinitely but it should plateau once it reaches a proba-
bility close to 1 (i.e., certain infection).

risk(3)
u uses a geometric function to naturally represent the risk 

due to these characteristics. Note that the probability of u infecting 
v after n attempts is increasing for every time unit (i.e., minute), 
demonstrates diminishing returns and it is eventually plateauing 
out as it approaches to 1 (i.e., 100%). If we were not consider-
ing a geometric function (or similar diminishing returns function), 
then the risk of certain individuals would grow continuously as 
a factor of the duration of the contact and would lead to dispro-
portional large risk to certain individuals (due to certain lengthy 
interactions).

4.4. Infection transmission characteristics

Fig. 6a presents the progress of the SEIR model over the period 
of 30 days for the case of the 10k dataset; we report the num-
ber of individuals that are found in each of the four compartments 
bution of individuals.
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Fig. 6. Infection progress and characteristics.

Fig. 7. Effect of initial seed type and size.
of the model (Susceptible, Exposed, Infected and Recovered, respec-
tively).

Furthermore, Fig. 6b shows the basic reproductive number R0
over time. It can be seen that the R0 fluctuates over time with 
values ranging from 0.0 to 2.5, while its 30-day moving average is 
equal to 0.939 (dashed line). Note that the R0 is assuming a per-
fect mixing network (i.e., a complete graph). However, real-world 
communities do not resemble a complete graph. Our micro-scale 
analysis of infections allows to monitor the direct and secondary
infections attributed to an individual u, and therefore allows to 
report the reproductive number Ru

0 of u ∈N . In contrast to the ba-
sic reproduction number R0 that represents the expected number 
of infections directly generated by an infectious individual, the Ru

0
represents the exact number of people infected by the specific in-
dividual u. Now, instead of relying on the R0 we are in position to 
provide the distribution of the individual Ru

0 values in the popula-
tion. In Fig. 6c, we show the distribution of Ru

0 for the 10k dataset, 
along with the mean R0 = ∑N

u Ru
0 . It is evident that there is sig-

nificant variation between individuals, something that the mean 
R0 fails to capture.

4.5. Properties of infection seed

In Fig. 7a we can see the infected count I over the period of a 
month for an initial “seed” risk(3)

u , all of them with high, medium, 
low, or random risks risk(3)

u . In the case of low-risk individuals, 
the infection never spreads to other people as the initial ones have 
very limited or no contact with anyone else. In all other cases 
however, we can see that after a month the vast majority of the 
population has been infected, with that conclusion arriving faster 
or slower depending on the initial seed risk. Similarly, in Fig. 7b 
we can see the final infected counts IT for initial seeds of random 
risk but different size IO , for all 3 datasets. While there is some 
reduction in final infections when IO = 1, all other seed sizes lead 
to the same result, determined by the population density.
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An explanation for this behavior can be found when examining 
the contribution of each individual in the spread of the infection, 
and the role of super-spreaders. As mentioned above, we use Ru

0
to define the set of individuals that were directly infected by their 
contact with individual u. We define as Ru

1 those infected by any 
person v ∈ Ru

0 , Ru
2 those infected by v ∈ Ru

1 , and so on. Further-
more, we define Ru = {Ru

0, Ru
1, . . .}, i.e. all individuals that were 

infected directly or indirectly because of u. In Fig. 8a we can see 
the distribution of Ru

0 for the entire population, along with each 
person’s relative risk rrisk(2)

u . As expected, high-risk individuals 
are responsible for the vast majority of direct disease transmis-
sions. However, in Fig. 8b we display the equivalent distribution 
for Ru . There, we can see that many medium or low-risk individ-
uals are actually responsible for a lot of the secondary, indirect 
infections. This means that, even when a person with few con-
tacts is infected, a single contact with a high-risk super-spreader 
is enough for the disease to quickly propagate across the commu-
nity.

The rest of the experiments use IO = 10 individuals of random 
risk risk(3)

u .

4.6. Effect of transmission probability

In Fig. 9a we can see the progress of an epidemic in a popula-
tion of 10,000 when the probability of transmission β has different 
values. Furthermore, in Fig. 9b we can see the final infected counts 
for those same values of β for the different datasets. Any value 
above 1-2% all but guarantees the rapid infection of the entire pop-
ulation, and values below 1% result in significantly reduced counts 
when the population density isn’t too high. It is evident that the 
transmission probability has a significant impact on the spread of 
an epidemic; face masks and any other means of reducing it can 
have critical benefits, as the vast majority of existing research also 
indicates [45].
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Fig. 8. Direct and indirect infection counts for different individuals.

Fig. 9. Effect of transmission probability β .
Fig. 10. Effect of quarantine on final infected (10k dataset).

4.7. Effect of quarantine

Quarantine policies, which include social distancing, home con-
finement and centralized quarantine, have been widely used to 
break the transmission chain of epidemic spread [48]. Even though 
some human-rights and socioeconomic issues have been raised in 
the process, this public health measure has proved effective in con-
trolling disease spread [49,50]. Ideally, only those who are infected 
should be quarantined, while others can travel as they wish. How-
ever, this imposes another challenge as recent studies have shown 
that many infected individuals are asymptomatic or only have mild 
symptoms [51,52]. These individuals are most likely not aware they 
are infected, still able to transmit the virus to others, and therefore 
in need of quarantine.

To evaluate the effect of quarantine, we incorporate a quaran-
tine parameter q in the experiments that represents the propor-
tion of infected individuals that will have no contact with any 
others until they fully recover; we assume that the rest 1 − q
proportion of the infected nodes will not quarantine and will con-
tinue interacting with others (e.g., due to no symptoms). Given 
10
that the quarantine of every infectious individual corresponds with 
the removal of many probable-transmission contacts, the expecta-
tion for this case is that the effect of the quarantine parameter 
q on the epidemic will be significant. Indeed, as can be seen in 
Fig. 10, even small values can result in greatly reduced infection 
numbers, which greatly highlights the importance of quarantine 
measures. For the remainder of this work we wish to examine 
other properties in isolation, and we therefore set the parameter 
q = 0.

4.8. Effect of intervention strategies

To answer this research question, we examine the progress of 
the epidemic after applying the proposed intervention strategies 
on the 3k dataset. For each strategy, we report intervention and 
null-model results of I for an intervention proportion α = 0.2, and 
the final infected IT for different α values.

Fig. 11a shows the results of removing 20% of the network 
nodes, i.e. individuals based on their risk. As mentioned earlier, 
this corresponds with targeted immunization or isolation of se-
lected individuals. We can see that this has a substantial effect, 
greatly reducing the spread of the epidemic. The result is much 
less pronounced when removing medium or random risk individ-
uals, and removing low-risk individuals has almost no effect. In 
Fig. 11b we can see the outcome for different proportions α. In 
this case, simply removing 30% of the highest-risk individuals prac-
tically eliminates the spread of infection completely.

Figs. 12a and 12b show the same results for the high-risk con-
tact removal intervention. As mentioned in Section 3, this is equiv-
alent to every person avoiding high-risk individuals among their 
contacts. We can see that this time the targeted strategy performs 
only slightly better than the null model, although that difference 
grows for higher intervention proportions. The result is not sur-
prising. This is because the null model employed is not necessarily 
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Fig. 11. Results after high risk node immunization intervention.

Fig. 12. Results of removing high-risk individuals intervention.

Fig. 13. Results of non-community contacts removal intervention.
representing a bad strategy; by randomly selecting nodes and re-
moving edges, one may remove high-risk, medium-risk or low-risk 
contacts. Furthermore, the aggregated network of the 3k dataset 
represents a small-world graph. It is well-known that when only 
a small proportion of edges are removed from that network (i.e. 
alpha is small), the impact on the connectivity of the network 
might not be significant due to the high clustering property of this 
type of graph.

Finally, Figs. 13a and 13b show the α = 20% progress and 
different-proportion final counts IT for the non-community con-
tact removal intervention strategy. As mentioned earlier this is 
equivalent to the “social bubble” concept, where each person only 
maintains contact with their close friends and family, avoiding 
people from other groups. We can see that this strategy is notably 
more effective than the null-model one for α < 40%. Above that 
value, it is more beneficial to simply reduce each person’s contacts 
overall, rather than targeting the more sporadic and (brief) con-
tacts with people outside their community.
11
4.9. Comparative analysis of intervention strategies

In order to compare the effectiveness of the proposed interven-
tion strategies we have to take into account their relative impact 
on the population. Specifically, in high-risk node immunization 
with αn = 0.1 the percentage of removed edges αe is much higher. 
In order to present a fair comparison of the intervention strategies, 
we report their results based on the number of removed contacts 
αe . The results for this experiment can be seen on Fig. 14a.

In order to compare the effectiveness of the proposed inter-
vention strategies, we have to take into account their relative 
impact on the population. Specifically, in high-risk node immu-
nization with αn = 0.1, the percentage of removed edges αe is 
much higher. Even with the same strategies (e.g., breaking of so-
cial ties), the number of edges to be removed can be different. 
As such, in order to present a fair comparison of the intervention 
strategies, we normalized the number of edges being removed in 
the experiments and report their results based on the number of 
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Fig. 14. Distribution of R0 value for each individual.
removed contacts αe . The results for this experiment can be seen 
on Fig. 14a.

We can see that the “social bubble” intervention yields slightly 
better results than the high-risk individual removal one, when 30% 
or fewer contacts are removed. Afterwards, targeted immuniza-
tion/isolation of individuals is significantly more effective. How-
ever, as mentioned in Section 3, we also need to take into con-
sideration the feasibility of each approach. In that case, the un-
common edge intervention isn’t only the most easily implemented 
one, but also performs very well up until a full 50-60% of all con-
tacts have been removed. Any intervention above such magnitudes 
would significantly impact the movement and interactions of the 
population, and may be unrealistic for larger communities.

Fig. 14b provides the Ru
0 distributions after applying each of the 

interventions. This allows for a more in-depth examination of each 
intervention’s effects and better interpretation of the performance 
results. In this plot, the total area under each curve corresponds to 
the sum of all transmissions of the infection for that case. There-
fore, it is expected that all interventions will result in curves cov-
ering smaller areas than the non-intervention case. However, each 
intervention accomplishes this in a different way. The node immu-
nization and high-risk edge removal interventions simply remove 
most of the highest-risk contacts, corresponding to many of the 
highest Ru

0 values in the distribution, resulting in “shifting” the en-
tire distribution to the left. On the other hand, the non-community 
edge removal intervention removes values throughout the distribu-
tion, resulting in a steeper curve.

5. Related work

Our research is related to (i) trajectory data mining, (ii) dynamic 
network analysis, and (iii) epidemic spreading in complex networks. 
These topics have been active research directions for a long time, 
so there is a broad spectrum of related literature. However, it is 
only recently that due to the technological advancement in ge-
olocation tracking devices (e.g., GPS-enabled mobile devices), mo-
bility data is becoming more accessible. Mining patterns in large 
amounts of human digital traces provides an opportunity for de-
signing more accurate epidemic spreading models and more effec-
tive network intervention strategies than before. We cover below 
some of the most significant efforts relevant to that goal. Note, as 
well that some of the related work has already been cited through-
out the manuscript to keep the discussion focused, so we omit it 
here.

5.1. Trajectory data mining

Computational methods for mining spatiotemporal data, includ-
ing trajectory/mobility data, have been extensively studied by the 
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data mining and database communities. Two comprehensive sur-
veys are provided by Zheng [18] and Atluri et al. [53]. Closely re-
lated to the problem of interest in this paper are problems that fo-
cus on mining the interactions among moving objects, over time, such 
as detecting pedestrian groups in trajectories [54–56] or determin-
ing the node centrality of moving objects in trajectory networks 
[20]. More recently, deep learning approaches for learning from 
spatiotemporal data and spatiotemporal networks have gained in-
creasing attention [57,58].

Digital contact tracing: In our research, we assume that human mo-
bile traces are available. This can be enabled by existing digital 
contact tracing technologies [59–61]. For instance, Aleta et al. [62]
synthesized contact networks and modeled SARS-CoV-2 transmis-
sion in the Boston metropolitan area. They found that effective 
testing and contact tracing plays an important role in preventing 
second-wave spreading when complete isolation is relaxed. Other 
technologies of contact tracing have also been proposed [63].

Privacy concerns of digital contact tracing: Digital contact tracing en-
ables an easy and rapid implementation of infectious disease trac-
ing, as it requires to gather and process simple information. How-
ever, gathering sensitive information might infringe the privacy 
of individuals [64]. We believe that controlling an infectious dis-
ease should not lead to a weakening of the privacy of individuals. 
We therefore advocate for protocols and technologies for “privacy-
preserving proximity tracing” that protect the privacy of individu-
als [65,66]. Connectivity technology available in mobile devices and 
newly developed connectivity protocols can make a decisive contri-
bution to efficiently and widely support proximity tracing enabled 
by bluetooth connection and/or GPS location. Both approaches pro-
tect the privacy of the user through dynamic pseudo-IDs [67]. For 
instance, Apple (iOS) and Google (Android) are providing privacy-
preserving cross-platform contact tracing via an open API and an 
opt-in Bluetooth-based proximity tracking.1 In addition, the Pan-
European Privacy-Preserving Proximity Tracing (PEPP-PT) protocol2

and the Decentralized Privacy-Preserving Proximity Tracing (DP-
3T) [68] protocol3 have recently been proposed for providing a 
secure and decentralized privacy-preserving proximity tracing sys-
tem.

5.2. Dynamic networks analysis

The problem of objects being dispersed in space and interact-
ing with each other if they are in close vicinity has been intensely 
explored in graph theory. Graph theory concepts, such as proximity 

1 https://www.apple .com /covid19 /contacttracing/.
2 https://www.pepp -pt .org/.
3 https://github .com /DP-3T /documents.

https://www.apple.com/covid19/contacttracing/
https://www.pepp-pt.org/
https://github.com/DP-3T/documents
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graphs [69] and geometric intersection graphs [70] are characteristic 
examples. For instance, relative neighbor graphs [71] and Gabriel 
graphs [69] connect nearest neighbors if no other vertexes are 
nearby, while Delaunay triangulations [72] maximize the minimum 
angles of all triangles formed. These graphs, however, mostly deal 
with static data, while in our problem we are studying cases of 
multiple proximity graphs, one for each time unit. There has also 
been significant research on dynamic networks, such as time-varying 
networks or otherwise temporal networks. With the addition of tem-
poral information, several concepts of static networks are not valid 
anymore, so they need to be adapted/studied in the context of 
dynamic networks. Due to its importance, dynamic network analy-
sis is therefore an emergent discipline of network science focusing 
on network dynamics. Example problems include the computation 
of temporal node centrality [25] or computing metrics of net-
work reachability [73], shortest paths [24], motifs [74] and other 
[75]. The dynamic nature of these systems introduces additional 
complexity and computational challenges. Dynamic networks have 
also been studied using machine learning models in the context 
of gradually evolving networks, where nodes/edges are added/re-
moved over time [76,77]. A comprehensive survey of this line of 
research can be found in [78]. Related to the current research, 
Leitch et al. [79] presented a review towards epidemic thresholds 
on temporal networks; they pointed out that temporal networks 
engage dynamics of real-world contacts, so their study is of great 
importance for understanding disease spreading processes. Statis-
tical approaches or computer simulations are often necessary to 
explore the evolution of these external processes over evolving 
networks.

5.3. Epidemic spreading in complex networks

Mathematical modeling of epidemic spreading in networks can 
help to study and control the emergence of infectious diseases in 
a population. Based on the traditional SIR model, Weitz et al. 
[80] designed epidemiological interventions that can exploit the 
idea of ‘shield immunity’. The main idea of the model is to deploy 
recovered individuals as focal points for sustaining safer interac-
tions via interaction substitution. This method, however, cannot 
easily translate to health policy and/or individual level recommen-
dations. In our study, we employ an agent-based SEIR model. The 
agent-based SEIR model has previously been employed to study 
the spread of epidemics in dynamic networks. For instance, Perez 
and Dragicevic [33] proposed a spatially explicit epidemiological 
model of infectious disease for understanding of the diffusion of 
a disease in a network of human contacts. In their model, human 
interactions are not fully dynamic, but are determined by the ge-
ographic area they are found at the same time. Yang et al. [81]
proposed a flow-based edge betweenness method that detects im-
portant “bottleneck” edges in contact networks. They show that 
targeting those edges can contain the epidemic spread more than 
state-of-the-art edge betweenness methods. Their model does not 
easily translate to individual level policy, but offers high-level guid-
ance for the network containment problem. Agent based epidemic 
spreading models are also very similar to the study of the epi-
demic spreading driven by random walks and one can translate to 
the other. Similar to the SEIR models, in the random walk based 
epidemic models, the infection is spread to the neighbors with a 
probability. This probability is determined by the transition matrix 
of the random walker. Pu et al. [82] proposed a biased random 
walk based spreading model. They show that the average node de-
gree and homogeneity of the node degree plays an important role 
in the number of the infected nodes. More recently, Bestehorn et 
al. [83] derive an upper bound for the reproduction number based 
on a discrete-time Markovian random walk model of the infection 
spreading. New advances in deep learning and network represen-
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tation learning have also been used to model the epidemics [84]. 
Change et al. [85] propose an epidemic model based on the em-
bedding of the mobility network and show the role of the social 
and economical disparities in the spread of the epidemics and the 
network structure. The main limitation of these models is that they 
model the epidemics on a static network and evolving aspect of 
the network is not analyzed. Heidari and Papagelis [76,77] have 
proposed evolving network representation learning methods that 
lie in the intersection of these two topics and can be used to model 
the epidemic spreading in evolving networks.

Population heterogeneity in epidemics: Britton et al. [38] studied the 
effect of population heterogeneity on achieving the epidemiologi-
cal objective of ‘herd immunity’ to the COVID-19 disease. In their 
study, they found that herd immunity can be achieved with less 
per cent of the population being infected than it was thought to 
be required (i.e., 60%), if one considers the age and social activity 
into the model. Similar ideas of evaluating the effect of individual 
variability in the disease spreading process have been considered 
by others. Our research is individual variability based on the struc-
tural information of a network; information that is related to the 
differences of nodes in the network based on basic graph/network 
characteristics (e.g., based on node centrality in the dynamic net-
work, etc.). Related to our main thesis, Hébert-Dufresne et al. [86]
argued that using R0 alone to predict epidemic size is not enough 
in real-world outbreaks. They pointed out the necessity of con-
sidering heterogeneity in secondary infections to predict outbreak 
size. In practice, this can be done automatically, fairly cheaply, 
and highly accurately, by a wide-spread deployment and adop-
tion of digital contact tracing technologies. Moreover, Lloyd-Smith 
et al. [87] pointed out that the basic reproduction number R0 in 
the traditional epidemic analyses is a population-level estimate. 
Through a theoretical and statistical analysis, they showed that in-
dividual variation greatly affects epidemic growth rates, and there-
fore targeted control interventions would be more effective than 
population-wide ones. On a similar basis, Changruenngam et al. 
[88] studied the effect of human mobility on disease transmission 
dynamics in two contrasted countries. In the study, they incor-
porated individual human mobility in the SEIR model, which 
helped better describe infection spreading dynamics. In particular, 
based on population data of two areas, human mobility was mod-
eled by obtaining the probability for an individual exploring new 
locations, from which the human mobility landscape could also 
be captured. Rocha and Masuda [89] augmented the SIR model 
by incorporating an individual-based approximation that captures 
the evolution of the probability that an individual is infected by 
another individual in the network. These studies highlighted the 
importance of incorporating individual variation in the epidemic 
model.

Network containment interventions: Instead of a complete or near-
complete lockdown, P. Block et al. [42] proposed more moderate 
distancing strategies inspired by network science, including limit-
ing contacts to similar, community-based or repetitive contacts. This 
study is based on a static network, while in a real-world situa-
tion, the network is dynamic informed by how individuals move 
around and interact with each other. Incorporating individual vari-
ation in the model has also the advantage that network interven-
tions can be designed at an individual’s level. For instance, Zhou et 
al. [90] reviewed several studies related to network immunization 
and concluded that vaccination of targeted nodes (e.g., nodes with 
large node degree), outperforms random immunization. Similarly, 
Torres et al. [91] evaluated different immunization strategies and 
found that node degree is a very strong measurement in deter-
mining node importance when considering the targeted nodes. In 
[92], authors study the spread of epidemics on static and temporal 
networks. Epidemics on temporal networks is closely related to our 
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work as it follows the same assumption in the network construc-
tion: the network evolves faster than the spread of the pathogen. 
However, that work assumes same degree for all the nodes in the 
temporal network. In our case, node degrees are determined by 
the mobility patterns of individuals.

6. Conclusions

Effective modeling of an emerging infectious disease has the 
potential to improve or save human lives. It can also minimize 
the societal and economic damage caused by physical distancing 
and confinement measures imposed by governing authorities to 
control an epidemic. Towards that end, we have presented a data-
driven model of infectious epidemic spreading in spatiotemporal 
networks informed by mobility data of individuals. We designed 
and evaluated simple individual-based intervention strategies that 
exhibit network effects and can significantly control the spread of 
an infectious disease. We have also demonstrated that these tar-
geted interventions can outperform generic intervention strategies. 
These strategies are easy to understand and translate to public 
health policy. While COVID-19 serves as a use case in this research, 
the same methodology can be used to model and mitigate any 
emerging infectious disease. An inherent limitation of our model 
is that it assumes availability of trajectories of individuals through 
digital tracing technologies. While these data are typically avail-
able to telecom and other third-parties through privacy-preserving 
techniques, our research relied only on realistic synthetic data sets.

Reproducibility: We make source code and data sets used in the 
experiments publicly available4 to encourage reproducibility of re-
sults.
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