
Incremental Collaborative Filtering for Highly-
Scalable Recommendation Algorithms

Manos Papagelis1, 2, Ioannis Rousidis2, Dimitris Plexousakis1, 2, Elias
Theoharopoulos3*

1Institute of Computer Science, FORTH, Heraklion, Greece
{papaggel, dp}@ics.forth.gr

2Computer Science Department, University of Crete, Heraklion, Greece
rousidis@csd.uoc.gr

3School of Informatics, University of Edinburgh, Edinburgh, Scotland
e.theoharopoulos@sms.ed.ac.uk

Abstract. Most recommendation systems employ variations of Collaborative
Filtering (CF) for formulating suggestions of items relevant to users’ interests.
However, CF requires expensive computations that grow polynomially with the
number of users and items in the database. Methods proposed for handling this
scalability problem and speeding up recommendation formulation are based on
approximation mechanisms and, even if they improve performance, most of the
time result in accuracy degradation. We propose a method for addressing the
scalability problem based on incremental updates of user-to-user similarities.
Our Incremental Collaborative Filtering (ICF) algorithm (i) is not based on any
approximation method and gives the potential for high-quality recommendation
formulation (ii) provides recommendations orders of magnitude faster than
classic CF and thus, is suitable for online application.

1 Introduction

Recommendation algorithms are extensively adopted by both research and e-
commerce applications, in order to provide an intelligent mechanism to filter out the
excess of information available in a domain [1]. Collaborative filtering (CF) [3],
almost certainly, is the key method to effortlessly find out items that users will
probably like according to their logged history of prior transactions.

However, CF requires computations that are very expensive and grow polynomially
with the number of users and items in a database. Therefore, in order to bring
recommendation algorithms effectively on the web, and succeed in providing
recommendations with high accuracy and acceptable performance, sophisticated data
structures and advanced, scalable architectures are required. To address this
scalability problem, we present an incremental CF method, based on incremental

* Work conducted at ICS-FORTH

updates of user-to-user similarities that is able to recommend items orders of
magnitude faster than classic CF, while maintaining the recommendation quality.

The remainder of the paper is organized as follows: Section 2 elaborates on the
scalability challenge and explains the weaknesses of already proposed methods for
dealing with it. Section 3 presents our Incremental CF method. Section 4 argues about
complexity issues of the algorithms, while Section 5 presents our experimental
evaluation. Section 6 concludes our work and discusses future research directions.

2 The Scalability Challenge for Collaborative Filtering

Classic CF algorithm generates recommendations based on a subset of users that are
most similar to the active user. Each time a recommendation is requested, the
algorithm needs to compute the similarity between the active user and all other users,
based on their co-rated items, so as to pick the ones with similar behavior.
Subsequently, the algorithm recommends items to the active user that are highly rated
by his/her most similar users. In order to compute the similarities between users, a
variety of similarity measures have been proposed, such as Pearson correlation, cosine
vector similarity, Spearman correlation, entropy-based uncertainty measure and mean-
square difference. However, Breese et al. [4] and Herlocker et Al. [5] suggest that
Pearson correlation performs better than all the rest.

If we define the user-item matrix, as the matrix having as elements the ratings of users
to items, then a user’s model is represented in this matrix as an n-dimensional vector,
where n is the number of items in the database. This vector is extremely sparse for
most users, since, even ones that are very active result in rating just a few of the total
number of items available in a database. If we define the subset of items that users ux
and uy have co-rated as I’={ix: x=1, 2, …, n’ and n’ ≤ n}, where n is the total number

of items in the database, ,x hu ir as the rating of user ux to item ih and
xur ,

yur as the

average ratings of users ux and uy respectively, then the similarity between two users
is defined as the Pearson correlation of their associated rows in the user-item matrix
and is given by equation 1 [14].

 i1 … ix … iy … in
u1 7 4 7 -
…
ux rx,1 rx,x rx,y rx,n
…
uy ry,1 ry,x ry,y -
…
um 5 4 6 4

, ,
1

2 2
, ,

1 1

()()
(,)

() ()

x h x y h y

x h x y h y

n

u i u u i u
h

x y n n

u i u u i u
h h

r r r r
sim u u

r r r r

′

=

′ ′

= =

− −
=

− −

∑

∑ ∑

(1)

CF fails seriously to scale up its computation with the growth of both the number of
users and items in the database. To deal with the scalability problem Breese et al [4]
and Ungar et al [8] utilize Bayesian network and clustering approaches, while Sarwar
et al [6, 11] apply folding in Singular Value Decomposition (SVD) to reduce the

dimensionality of the user-item matrix. It is also possible to address these scaling
issues by data reduction or data focusing techniques. Yu et al [12] and Zeng et al [9]
adopt instance selection for removing the irrelevant and redundant instances.
Moreover, content-boosted CF approaches reduce the number of items examined, by
partitioning the item space according to item category or subject classification [7].
Finally, more greedy approaches concentrate on randomly sampling users, discarding
users with few ratings or discarding very popular or unpopular items.

Unfortunately, all these methods, even if they result in improved performance also
reduce recommendation quality in several ways. Bayesian networks may prove
practical for environments in which knowledge of user preferences changes slowly
with respect to the time needed to build the model, but are not suitable for
environments in which user preference models must be updated frequently. Clustering
based methods are suffering from poor accuracy. It is possible to improve quality by
using numerous fine-grained segments [13], but then online user segment
classification becomes almost as expensive as finding similar users using the classic
CF. SVD based work focuses mainly on accuracy rather than efficiency. Data focusing
and reduction approaches, such as instance selection or item-space partitioning,
experience reduced accuracy due to the loss of information. If an algorithm discards
the most popular or unpopular items, there may be items that will never be
recommended to some users. It is obvious that to gain in computation one needs to
lose recommendation quality and vice versa. Appropriate trade-offs must be
considered.

3 Incremental Collaborative Filtering

In this section, we present a method to deal with the scalability challenge without
compromising recommendation quality. We refer to this method as Incremental
Collaborative Filtering (ICF), because it is based on incremental updates of the user-
to-user similarities. ICF can be employed to effectively bring on the Web highly
scalable and accurate recommendation algorithms.

3.1 Methodology

The similarity between user ux and uy for the subset of items they have co-rated, is
given by equation 1. Whenever a user ux, submits a new rating or updates the value of
an already submitted rating, similarity values between her/him and the rest of the users
may need to be re-computed. Our objective is to express the new similarity values
between the two users in relation to the old similarity values. This describes an
incremental update of their associated similarity. To smoothen the progress of this task
we adopt the following notation for the Pearson Correlation similarity measure of
equation 1:

' ' '
2 2

, , , ,
1 1 1

(,), ()(), () , ()
x h x y h y x h x y h y

n n n

x y u i u u i u u i u u i u
h i i

B
A A sim u u B r r r r C r r D r r

C D = = =

= ⇒ = = − − = − = −∑ ∑ ∑
 Actually, we split the similarity measure into three factors B, C, D, independently
calculate the new values of each factor B’, C’, D’ and then combine these values so as
to yield the value of the new similarity A’ as shown below:

'
' , ' , ' , '

' '

B B e
A A B B e C C f D D g

C D C f D g

+′= ⇒ = = + = + = +
+ +

where e, f, g are increments that need to be computed after either the submission of a
new or the update of an existing rating. Next, we split our study, so as to consider the
slightly different computations needed for the two special cases. Table 1 shows the
increments that need to be computed and Appendix provides proof of equations 2-13.

3.1.1 Case 1: Submission of a new rating
To calculate the similarity of ua and uy, when the active user ua submits a new rating
for the active item ia, we need to distinguish between two cases:

i. uy had rated ia: B, C, D are updated due to the new average of ua, the new rating
of ua to ia and the new number of co-rated items

ii. uy had not rated ia: B, C are updated due to the new average of ua.

3.1.2 Case 2: Update of an existing rating
To calculate the similarity of ua and uy, when the active user ua updates an existing
rating for the active item ia, we need to distinguish between two cases:

i. uy had rated ia: B, C are updated due to the new average of ua and the new
rating of ua to ia

ii. uy had not rated ia: B, C are updated due to the new average of ua

Table 1. Summary of the increments that need to be calculated

 Submission of a new rating Update of an existing rating

e
'

, , ,
1

(')() ()
a a a y a y a y h y

n

u i u u i u u u i u
h

e r r r r d r r r
=

= − − − −∑

(2)

'

, , ,
1

() ()
a a y a y a y h y

n

u i u i u u u i u
h

e dr r r dr r r
=

= − − −∑
(8)

f

' 22
,

1

'

,
1

(')

2 ()

a a a a

a a h a

n

u i u u
h

n

u u i u
h

f r r d r

dr r r

=

=

= − +

− −

∑

∑

(3)

' 22
, , ,

1

'

,
1

2 (') '

2 '()

a a a a a a a a

a a h a

n

u i u i u i u u
h

n

u u i u
h

f dr dr r r dr

dr r r

=

=

= + − +

− −

∑

∑

(9)

uy had
rated ia

g 2
,()

y a yu i ug r r= − (4) 0g = (10)

e
'

,
1

()
a y h y

n

u u i u
h

e d r r r
=

= − −∑
(5)

'

,
1

()
a y h y

n

u u i u
h

e d r r r
=

= − −∑
(11)

f
' '2

,
1 1

2 ()
a a a h a

n n

u u u i u
h h

f d r d r r r
= =

= − −∑ ∑
(6)

' '2

,
1 1

' 2 '()
a a a h a

n n

u u u i u
h h

f d r d r r r
= =

= − −∑ ∑
(12)

uy had
not
rated ia

g 0g = (7) 0g = (13)

3.2 Caching

In the previous paragraph, we managed to express B’, C’ and D’ using the former
values of B, C and D and the respective increments e, f, g. However, to compute the
increments with trivial operations we need to cache the values of B, C and D for all
pairs of users, the average rating of each user and the number of items that each user
has rated. Part of the cached information needs to be updated after the submission of a
new or the update of an existing rating. Table 2 explains how each factor that appears
in increments e, f, g is computed.

Table 2. Computation of factors that appear in increments e, f and g
Factors Calculation

B, C, D Cached Information (For all pairs of users)

m Cached Information (The number of the items that a user has rated)

aur ,
yur Cached information (Average ratings of all users in database)

' '

, ,
1 1

,
y h a h

n n

u i u i
h h

r r
= =
∑ ∑ Cached Information (For each pair of users, the sum of their ratings

to co-rated items is cached)

'
aur

New average rating of active user:

• Submission of a new rating: ,'
1 1

a a

a a

u i
u u

r m
r r

m m
= +

+ +

• Update of existing rating: ,' a h

a a

u i
u u

dr
r r

m
= +

,a au ir Interface (Actual rating of the active user ua to the active item ia)

aud r ' '
a a a a a au u u u u udr r r r r dr= − ⇔ = +

(The difference of user’s previous and current average rating)

,y au ir Database query. (The rating of the user yu to the item ai)

4 Complexity Issues

In this section, we discuss the computational complexity of the classic CF and ICF
algorithms. We initially present the worst cases and then try to give approximations of
the algorithms under real conditions. For each case, our study spans in two directions,
the one refers to the complexity of maintaining the user similarities matrix and the
other refers to the complexity of formulating a single recommendation to an active
user.

4.1 Worst Case Complexities

4.1.1 Classic Collaborative Filtering
The most expensive computation of the classic CF is the computation of user-to-user
similarities. In order to deal with this, major e-commerce systems prefer to carry out
expensive computations offline and feed the database with updated information
periodically [2]. In this way, they succeed to provide quick recommendations to users,
based on pre-computed similarities. These recommendations however, are not
produced with the highest possible degree of confidence, because ratings submitted
between two offline computations are not considered. The computation complexity of
maintaining the user similarities matrix in worst case is O(m2n) as explained below:

For each user mx

 For each user my

 For the set of n items that have been co-rated by mx and my

 Compute similarity between mx and my

Alternatively, if user similarities are not pre-computed offline, they need to be
computed at the time a recommendation is requested. In this case, there is no need for
computing the whole user similarities matrix, but only similarities between the active
user and all the rest or a set of training users. The cost of this computation is of the
order O(mn).

Generating a single recommendation for an active user is a two-step computation.
First we need to find the most similar users to the active user and then scan items to
find the ones that better match with the user’s interests, according to similar users. In
the worst case, this computation costs O(n) when similarities are pre-computed offline,
or O(mn) (based on O(mn)+O(n)) when similarities are not pre-computed.

4.1.2 Incremental Collaborative Filtering
In the case of ICF algorithm user-to-user similarities are computed incrementally at
the time of rating activity and not at the time that a recommendation is requested. The
complexity of this operation is O(mn) at worst, as at most m-1 similarities need to be
updated and at most n items need to be examined for each user. Since user similarities
are considered pre-computed, the cost of generating a single recommendation using
the ICF is of the order of O(n) in the worst case, as n items need to be examined.

4.2 Approximation Complexities

Since sparsity levels are very high in recommendation systems, it is essential to also
consider approximations of the complexities in order to estimate the expected
performance under real conditions. In order to compute the approximation
complexities we define:

m’, where m’<<m: the number of users with whom the active user has at least one co-
rated item (m’>0 is a precondition for computing similarities between ua and other
users).

n’, where n’<<n: the number of items that have not been rated by the active user and
have been rated by at least one of its similar users (n’>0 is a precondition for being
able to recommend at least one item to the active user).

n’’, where n’’<<n: the number of co-rated items of the active user and another user
(n’’>0 is a precondition for the similarity between the two users to be computable).

According to these definitions, we can set up the approximations of the complexities
following the discussion of the previous paragraph. Worst case and approximation
complexities for maintaining the similarity matrix or formulating a single
recommendation with Classic CF or Incremental CF are summarized in Table 3.

Table 3. Worst case and Approximation complexities of Classic CF and ICF

Classic CF Incremental CF

Worst Approximation Worst Approximation

Complexity for maintaining
the Similarity Matrix

2()m nΟ ()mm n′ ′′Ο ()mnΟ ()m n′ ′Ο

()mnΟ () ()m n n′ ′′ ′Ο +Ο

Pre-computed Offline
Complexity for providing a
recommendation to active

user ()nΟ ()n′Ο

()nΟ ()n′Ο

As complexity computation fails to give real time performance and behavior of the
algorithms described, we set up an experimental scenario for evaluating the
performance of our ICF algorithm as opposed to the Classic CF.

5 Experimental Evaluation

In this section, we describe the experimental evaluation of incremental collaborative
filtering. We present the evaluation metrics used, describe the experimental scenario
and discuss the results.

5.1 Evaluation Metrics

We evaluate the performance of the recommendation algorithms presented according
to response time and accuracy metrics as defined below:

response time: Time required by the algorithm to find out the items to recommend.

Accuracy: The fraction of the number of items an algorithm recommends, to the
number of items that are recommended by an algorithm that takes into consideration
the whole dataset available.

The assumption made here is that recommendations based on the whole dataset are of
the highest quality, which is not necessarily true. Indeed, we define this to demonstrate
the potential that ICF gives for formulating recommendations based on the complete
information in a database and not only a part of it.

5.2 Experimental Scenario and Results

We compare the performance of classic CF against our ICF in terms of response time
and accuracy for different user-item matrix sizes. The scenario is set up so as to depict
the level of scalability that both algorithms demonstrate when the active user requests
a single recommendation. We employ sparsity level of 92% in the user-item matrix,
which means that 92% of the matrix cells are empty and there are only values for 8%
of it. We consider a user to be similar to the active user if their associated Pearson
correlation coefficient is greater than 0.65 (in a range of -1 to 1, with 1 expressing
highest match and -1 expressing highest mismatch between the two users) and also
that an item is suitable for recommendation if the average ratings of similar users to
this item is greater than 8 (in a range of 1-10). The values selected represent typical
values for recommendation systems and do not influence the results of the
experiments. Table 4 presents the results of our experiments for user-item matrix of
size 100x100 and 1000x1000 respectively. Experiments have been carried out on a
2.80 Mhz, 1G RAM PC.

Table 4. Performance comparison of Classic CF and ICF

Classic CF (Based on sampling) Incremental CF User-item

matrix size Samples (#users) Time (sec) Accuracy Time (sec) Accuracy

10 0.17 22%

30 0.55 49.5%

50 0.765 67.5%

100 users

x

100 items
99 1.38 100%

0.045 100%

10 0.86 1%

30 2.26 11,7%

50 3.53 15,3%

100 6.81 26,7%

300 20 53,8%

500 33 66.8%

1000 users

x

1000 items

999 66 100%

0.46 100%

The following remarks derive from Table 4, about the performance of CF and ICF.

• The trade-off between performance and accuracy in case of Classic CF is
confirmed. Indeed, Classic CF is very sensitive to the size of samples used.
As the sample size increases, accuracy is improved, but the response time
also increases and vice versa. Large sample sizes are impractical for online

applications due to the slow response time, while small sample sizes are
impractical due to accuracy degradation

• The accuracy of ICF is always as high as 100%, since it is always applied to
the total information in the database

• ICF proves to be highly-scalable as its response time remains acceptable
even for a very large data set. E.g. it provides recommendation in 0.46
seconds for a matrix size of 1000x1000

• Classic CF requires extremely disproportional time to reach a satisfactory
accuracy level for large matrix sizes. E.g. when an accuracy level of 66.8% is
intended, using a sample of 500 users, in a 1000x1000 matrix Classic CF
performs 71 times slower than ICF

• ICF’s performance grows linearly only with the number of items in a
database. In cases of very large number of items ICF will probably need to
employ some approximation methods

6 Conclusions and Future Work

High dimensionality seems to be the “Achilles’ heel” for most of the CF-based
recommendation systems. For dealing with this scalability problem, we proposed an
incremental method that replaces expensive vector operations with a scalar operation,
able to speed-up computations of high dimensional user-item matrices. We named this
method Incremental Collaborative Filtering (ICF). ICF is not based on any
approximation method and thus, provides the potential of formulating high-quality
recommendations. Moreover, pre-computed user to user similarities permit for
recommendations to be delivered orders of times faster than with classic CF. ICF
appears to be suitable for online applications, while the methodology described is
general and may probably be easily adopted to develop incremental collaborative
filtering with the utilization of similarity measures other than Pearson correlation. As
future directions of our research we see the identification of trusted paths among users
for dealing with the cold-start and sparsity problems. Under the assumption that a
similarity measure can somehow “excessively” be considered as a computational
metric for expressing the associated trust between two users, it is possible to define a
relation between two users that have no common items at all, by employing theoretical
work of trust propagation in small networks.

References

1. Sarwar, B., Karypis, G., Konstan, J., Riedl J.: Analysis of recommendation
algorithms for e-commerce. Proc. of ACM Electronic Commerce (2000)

2. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item
Collaborative Filtering. IEEE Internet Computing, January 2003

3. Herlocker, J. L., Konstan, J. A., Riedl, J.: Explaining Collaborative Filtering
Recommendations. Proc. of the ACM Conf.on CSCW (2000)

4. Breese, J. S., Heckerman, D., Kadie, C.: Empirical analysis of predictive
algorithms for collaborative filtering. Proc. of the UAI (1998)

5. Herlocker, J. L., Konstan, J. A., Borchers, A., Riedl, J.: An Algorithmic
Framework for Performing Collaborative Filtering. Proc. of ACM SIGIR (1999)

6. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. T.: Application of
Dimensionality Reduction in Recommender System: A Case Study. Proc. of
ACM SIGKDD (2000)

7. Popescul, A., Ungar, L. H., Pennock, D.M., Lawrence, S.: Probabilistic Models
for Unified Collaborative and Content-Based Recommendation in Sparse-Data
Environments. Proc. of UAI (2001)

8. Ungar, L., Foster, D.: Clustering Methods for Collaborative Filtering. Proc. of
Workshop on Recommendation Systems, AAAI Press (1998)

9. Zeng, C., Xing, C., Zhou, L.: Similarity Measure and Instance Selection for
Collaborative Filtering. Proc. of WWW (2003)

10. Sarwar, B.M., Karypis, G., Konstan, J., Riedl, J.: Incremental SVD-Based
Algorithms for Highly Scaleable Recommender Systems. Proc.of ICCIT (2002).

11. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R.:
Indexing by Latent Semantic Analysis. JASIS 41(6) (1990)

12. Yu, K., Xu, X., Tao, J., Ester, M., Kriegel H.: Instance Selection Techniques for
Memory-Based CF. Proc. of SDM (2002).

13. Jung, S. Y., Kim, T.: An Incremental Similarity Computation Method in
Agglomerative Hierarchical Clustering. Proc. of ISAIS (2001)

14. Pearson K.: Mathematical contribution to the theory of evolution: VII, on the
correlation of characters not quantitatively measurable. Phil. Trans. R. Soc. Lond.
A, 195, 1-47, 1900.

Appendix: Proof of Equations 2-13

Proof of Equation 2
'' '

, , , , , ,
1 1

' '

, , , , , ,
1 1

' (')() ' (')() (')()

' (')() () (')() (

a h a y h y a a a y a y a h a y h y

a a a y a y a y h y a a a y a y a y h y

n n

u i u u i u u i u u i u u i u u i u
h h

n n

u i u u i u u u i u u i u u i u u u i u
h h

B r r r r B r r r r r r r r

B r r r r B dr r r e r r r r d r r r

= =

= =

= − − ⇔ = − − + − − ⇔

= − − + − − ⇒ = − − − −

∑ ∑

∑ ∑)

Proof of Equation 3
'' '

2 2 2
, , ,

1 1

' ' ' '2 22 2
, , , ,

1 1 1 1

' (') ' (') (')

' (') 2 () (') 2 ()

a h a a a a a h a

a a a a a a h a a a a a a a h a

n n

u i u u i u u i u
h h

n n n n

u i u u u u i u u i u u u u i u
h h h h

C r r C r r r r

C r r C dr dr r r f r r dr d r r r

= =

= = = =

= − ⇔ = − + − ⇔

= − + + − − ⇒ = − + − −

∑ ∑

∑ ∑ ∑ ∑

Proof of Equation 4
'' '

2 2 2 2 2
, , , , ,

1 1

' () ' () () ' () ()
y h y y a y y h y y a y y a y

n n

u i u u i u u i u u i u u i u
h h

D r r D r r r r D r r D g r r
= =

= − ⇔ = − + − ⇔ = − + ⇒ = −∑ ∑

Proof of Equation 5, 6, 7

In the case that user uy has not rated the item ia, the values of B, C and D are proved in way similar to
equations 2, 3 and 4 respectively. In this case the increments e, f and g equal to:

' ' '2

, ,
1 1 1

(), 2 (), 0
a y h y a a a h a

n n n

u u i u u u u i u
h h h

e d r r r f d r d r r r g
= = =

= − − = − − =∑ ∑ ∑

Proof of Equation 8
' ' 1

, , , , , ,
1 1

' 1

, , , , , ,
1

, ,

' (')() ' (')() (')()

' () (')() (')()

' (

a h a y h y a a a y a y a h a y h y

a a y a y a a a y a y a h a y h y

a a y a

n n

u i u u i u u i u u i u u i u u i u
h h

n

u i u i u u i u u i u u i u u i u
h

u i u i

B r r r r B r r r r r r r r

B dr r r r r r r r r r r

B dr r r

−

= =

−

=

′= − − ⇔ = − − + − −

= − + − − + − − ⇔

= −

∑ ∑

∑
' '

, , , , ,
1 1

'

, , ,
1

) (')() ' () ()

() ()

y a h a y h y a a y a y a y h y

a a y a y a y h y

n n

u u i u u i u u i u i u u u i u
h h

n

u i u i u u u i u
h

r r r r B dr r r B d r r r

e dr r r dr r r

= =

=

+ − − ⇔ = − + − −

⇒ = − − −

∑ ∑

∑

Proof of Equation 9
' ' 1 ' 1

2 2 2 2 2 2
, , , , , , , ,

1 1 1

'
2 2

, , , ,
1

' (') ' (') (') ' 2 (') (') (')

' 2 (') (') '

a h a a a a a h a a a a a a a a a a a a h a

a a a a a a a a h a a

n n n

u i u u i u u i u u i u i u i u u i u u i u
h h h

n

u i u i u i u u i u u
h

C r r C r r r r C dr dr r r r r r r

C dr dr r r r r C dr

− −

= = =

=

′= − ⇔ = − + − ⇔ = + − + − + − ⇔

= + − + − ⇔ =

∑ ∑ ∑

∑
' '22

, , , ,
1 1

' '22
, , , ,

1 1

2 (') 2 ()

2 (') 2 ()

a a a a a a a a a h a

a a a a a a a a a a h a

n n

i u i u i u u u u i u
h h

n n

u i u i u i u u u u i u
h h

dr r r C d r dr r r

f dr dr r r dr d r r r

= =

= =

+ − + + − − ⇔

⇒ = + − + − −

∑ ∑

∑ ∑
Proof of Equation 10

'
2

,
1

' (') ' 0
y h y

n

u i u
h

D r r D D g
=

= − ⇔ = ⇒ =∑

Proof of Equation 11, 12, 13

In the case that user uy has not rated the item ia, the values of B, C and D are proved in way similar to
equations 8, 9 and 10 respectively. In this case the increments e, f and g equal to:

' ' '2

, ,
1 1 1

(), ' 2 '(), 0
a y h y a a a h a

n n n

u u i u u u u i u
h h h

e d r r r f d r dr r r g
= = =

= − − = − − =∑ ∑ ∑

