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Abstract. Most recommendation systems employ variations of Collaborative 
Filtering (CF) for formulating suggestions of items relevant to users’ interests. 
However, CF requires expensive computations that grow polynomially with the 
number of users and items in the database. Methods proposed for handling this 
scalability problem and speeding up recommendation formulation are based on 
approximation mechanisms and, even if they improve performance, most of the 
time result in accuracy degradation. We propose a method for addressing the 
scalability problem based on incremental updates of user-to-user similarities. 
Our Incremental Collaborative Filtering (ICF) algorithm (i) is not based on any 
approximation method and gives the potential for high-quality recommendation 
formulation (ii) provides recommendations orders of magnitude faster than 
classic CF and thus, is suitable for online application. 

1 Introduction 

Recommendation algorithms are extensively adopted by both research and e-
commerce applications, in order to provide an intelligent mechanism to filter out the 
excess of information available in a domain [1]. Collaborative filtering (CF) [3], 
almost certainly, is the key method to effortlessly find out items that users will 
probably like according to their logged history of prior transactions. 

However, CF requires computations that are very expensive and grow polynomially 
with the number of users and items in a database. Therefore, in order to bring 
recommendation algorithms effectively on the web, and succeed in providing 
recommendations with high accuracy and acceptable performance, sophisticated data 
structures and advanced, scalable architectures are required. To address this 
scalability problem, we present an incremental CF method, based on incremental 
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updates of user-to-user similarities that is able to recommend items orders of 
magnitude faster than classic CF, while maintaining the recommendation quality. 

The remainder of the paper is organized as follows: Section 2 elaborates on the 
scalability challenge and explains the weaknesses of already proposed methods for 
dealing with it. Section 3 presents our Incremental CF method. Section 4 argues about 
complexity issues of the algorithms, while Section 5 presents our experimental 
evaluation. Section 6 concludes our work and discusses future research directions. 

2 The Scalability Challenge for Collaborative Filtering 

Classic CF algorithm generates recommendations based on a subset of users that are 
most similar to the active user. Each time a recommendation is requested, the 
algorithm needs to compute the similarity between the active user and all other users, 
based on their co-rated items, so as to pick the ones with similar behavior. 
Subsequently, the algorithm recommends items to the active user that are highly rated 
by his/her most similar users. In order to compute the similarities between users, a 
variety of similarity measures have been proposed, such as Pearson correlation, cosine 
vector similarity, Spearman correlation, entropy-based uncertainty measure and mean-
square difference. However, Breese et al. [4] and Herlocker et Al. [5] suggest that 
Pearson correlation performs better than all the rest. 

If we define the user-item matrix, as the matrix having as elements the ratings of users 
to items, then a user’s model is represented in this matrix as an n-dimensional vector, 
where n is the number of items in the database. This vector is extremely sparse for 
most users, since, even ones that are very active result in rating just a few of the total 
number of items available in a database. If we define the subset of items that users ux 
and uy  have co-rated as I’={ix: x=1, 2, …, n’ and n’ ≤ n}, where n is the total number 

of items in the database, ,x hu ir as the rating of user ux to item ih and 
xur , 

yur  as the 

average ratings of users ux and uy  respectively, then the similarity between two users 
is defined as the Pearson correlation of their associated rows in the user-item matrix 
and is given by equation 1 [14]. 
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CF fails seriously to scale up its computation with the growth of both the number of 
users and items in the database. To deal with the scalability problem Breese et al [4] 
and Ungar et al [8] utilize Bayesian network and clustering approaches, while Sarwar 
et al [6, 11] apply folding in Singular Value Decomposition (SVD) to reduce the 



dimensionality of the user-item matrix. It is also possible to address these scaling 
issues by data reduction or data focusing techniques. Yu et al [12] and Zeng et al [9] 
adopt instance selection for removing the irrelevant and redundant instances. 
Moreover, content-boosted CF approaches reduce the number of items examined, by 
partitioning the item space according to item category or subject classification [7]. 
Finally, more greedy approaches concentrate on randomly sampling users, discarding 
users with few ratings or discarding very popular or unpopular items. 

Unfortunately, all these methods, even if they result in improved performance also 
reduce recommendation quality in several ways. Bayesian networks may prove 
practical for environments in which knowledge of user preferences changes slowly 
with respect to the time needed to build the model, but are not suitable for 
environments in which user preference models must be updated frequently. Clustering 
based methods are suffering from poor accuracy. It is possible to improve quality by 
using numerous fine-grained segments [13], but then online user segment 
classification becomes almost as expensive as finding similar users using the classic 
CF. SVD based work focuses mainly on accuracy rather than efficiency. Data focusing 
and reduction approaches, such as instance selection or item-space partitioning, 
experience reduced accuracy due to the loss of information. If an algorithm discards 
the most popular or unpopular items, there may be items that will never be 
recommended to some users. It is obvious that to gain in computation one needs to 
lose recommendation quality and vice versa. Appropriate trade-offs must be 
considered. 

3 Incremental Collaborative Filtering 

In this section, we present a method to deal with the scalability challenge without 
compromising recommendation quality. We refer to this method as Incremental 
Collaborative Filtering (ICF), because it is based on incremental updates of the user-
to-user similarities. ICF can be employed to effectively bring on the Web highly 
scalable and accurate recommendation algorithms. 

3.1 Methodology 

The similarity between user ux and uy for the subset of items they have co-rated, is 
given by equation 1. Whenever a user ux, submits a new rating or updates the value of 
an already submitted rating, similarity values between her/him and the rest of the users 
may need to be re-computed. Our objective is to express the new similarity values 
between the two users in relation to the old similarity values. This describes an 
incremental update of their associated similarity. To smoothen the progress of this task 
we adopt the following notation for the Pearson Correlation similarity measure of 
equation 1: 
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 Actually, we split the similarity measure into three factors B, C, D, independently 
calculate the new values of each factor B’, C’, D’ and then combine these values so as 
to yield the value of the new similarity A’ as shown below: 
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where e, f, g are increments that need to be computed after either the submission of a 
new or the update of an existing rating. Next, we split our study, so as to consider the 
slightly different computations needed for the two special cases. Table 1 shows the 
increments that need to be computed and Appendix provides proof of equations 2-13. 

3.1.1 Case 1: Submission of a new rating 
To calculate the similarity of ua and uy, when the active user ua submits a new rating 
for the active item ia, we need to distinguish between two cases:  

i. uy had rated ia: B, C, D are updated due to the new average of ua, the new rating 
of ua to ia and the new number of co-rated items  

ii. uy had not rated ia: B, C are updated due to the new average of ua. 

3.1.2 Case 2: Update of an existing rating 
To calculate the similarity of ua and uy, when the active user ua updates an existing 
rating for the active item ia, we need to distinguish between two cases:  

i. uy had rated ia: B, C are updated due to the new average of ua and the new 
rating of ua to ia 

ii. uy had not rated ia: B, C are updated due to the new average of ua 

Table 1. Summary of the increments that need to be calculated 

  Submission of a new rating Update of an existing rating  
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3.2 Caching  

In the previous paragraph, we managed to express B’, C’ and D’ using the former 
values of B, C and D and the respective increments e, f, g. However, to compute the 
increments with trivial operations we need to cache the values of B, C and D for all 
pairs of users, the average rating of each user and the number of items that each user 
has rated. Part of the cached information needs to be updated after the submission of a 
new or the update of an existing rating. Table 2 explains how each factor that appears 
in increments e, f, g is computed. 

Table 2. Computation of factors that appear in increments e, f and g 
Factors Calculation 

B, C, D Cached Information (For all pairs of users) 

m Cached Information (The number of the items that a user has rated) 

aur ,
yur  Cached information (Average ratings of all users in database) 
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• Update of existing rating: ,' a h

a a

u i
u u

dr
r r

m
= +  

,a au ir  Interface (Actual rating of the active user ua to the active item ia) 
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(The difference of user’s previous and current average rating) 

,y au ir  Database query. (The rating of the user yu to the item ai ) 

4 Complexity Issues  

In this section, we discuss the computational complexity of the classic CF and ICF 
algorithms. We initially present the worst cases and then try to give approximations of 
the algorithms under real conditions. For each case, our study spans in two directions, 
the one refers to the complexity of maintaining the user similarities matrix and the 
other refers to the complexity of formulating a single recommendation to an active 
user. 



4.1 Worst Case Complexities 

4.1.1 Classic Collaborative Filtering 
The most expensive computation of the classic CF is the computation of user-to-user 
similarities. In order to deal with this, major e-commerce systems prefer to carry out 
expensive computations offline and feed the database with updated information 
periodically [2]. In this way, they succeed to provide quick recommendations to users, 
based on pre-computed similarities. These recommendations however, are not 
produced with the highest possible degree of confidence, because ratings submitted 
between two offline computations are not considered. The computation complexity of 
maintaining the user similarities matrix in worst case is O(m2n) as explained below: 

For each user  mx 

   For each user  my 

      For the set of n items that have been co-rated by mx and my  

         Compute similarity between mx and my 

Alternatively, if user similarities are not pre-computed offline, they need to be 
computed at the time a recommendation is requested. In this case, there is no need for 
computing the whole user similarities matrix, but only similarities between the active 
user and all the rest or a set of training users. The cost of this computation is of the 
order O(mn). 

Generating a single recommendation for an active user is a two-step computation. 
First we need to find the most similar users to the active user and then scan items to 
find the ones that better match with the user’s interests, according to similar users. In 
the worst case, this computation costs O(n) when similarities are pre-computed offline, 
or O(mn) (based on O(mn)+O(n)) when similarities are not pre-computed. 

4.1.2 Incremental Collaborative Filtering 
In the case of ICF algorithm user-to-user similarities are computed incrementally at 
the time of rating activity and not at the time that a recommendation is requested. The 
complexity of this operation is O(mn) at worst, as at most m-1 similarities need to be 
updated and at most n items need to be examined for each user. Since user similarities 
are considered pre-computed, the cost of generating a single recommendation using 
the ICF is of the order of O(n) in the worst case, as n items need to be examined. 

4.2 Approximation Complexities 

Since sparsity levels are very high in recommendation systems, it is essential to also 
consider approximations of the complexities in order to estimate the expected 
performance under real conditions. In order to compute the approximation 
complexities we define: 



m’, where m’<<m: the number of users with whom the active user has at least one co-
rated item (m’>0 is a precondition for computing similarities between ua and other 
users). 

n’, where n’<<n: the number of items that have not been rated by the active user and 
have been rated by at least one of its similar users (n’>0 is a precondition for being 
able to recommend at least one item to the active user). 

n’’, where n’’<<n: the number of co-rated items of the active user and another user 
(n’’>0 is a precondition for the similarity between the two users to be computable). 

According to these definitions, we can set up the approximations of the complexities 
following the discussion of the previous paragraph. Worst case and approximation 
complexities for maintaining the similarity matrix or formulating a single 
recommendation with Classic CF or Incremental CF are summarized in Table 3. 

Table 3. Worst case and Approximation complexities of Classic CF and ICF 

Classic CF Incremental CF 
 

Worst Approximation Worst Approximation 

Complexity for maintaining 
the Similarity Matrix 

2( )m nΟ  ( )mm n′ ′′Ο  ( )mnΟ  ( )m n′ ′Ο  

( )mnΟ  ( ) ( )m n n′ ′′ ′Ο +Ο  

Pre-computed Offline 
Complexity for providing a 
recommendation to active 

user ( )nΟ  ( )n′Ο  

( )nΟ  ( )n′Ο  

As complexity computation fails to give real time performance and behavior of the 
algorithms described, we set up an experimental scenario for evaluating the 
performance of our ICF algorithm as opposed to the Classic CF. 

5 Experimental Evaluation 

In this section, we describe the experimental evaluation of incremental collaborative 
filtering. We present the evaluation metrics used, describe the experimental scenario 
and discuss the results. 

5.1 Evaluation Metrics 

We evaluate the performance of the recommendation algorithms presented according 
to response time and accuracy metrics as defined below: 

response time: Time required by the algorithm to find out the items to recommend. 

Accuracy: The fraction of the number of items an algorithm recommends, to the 
number of items that are recommended by an algorithm that takes into consideration 
the whole dataset available.  



The assumption made here is that recommendations based on the whole dataset are of 
the highest quality, which is not necessarily true. Indeed, we define this to demonstrate 
the potential that ICF gives for formulating recommendations based on the complete 
information in a database and  not only a part of it. 

5.2 Experimental Scenario and Results 

We compare the performance of classic CF against our ICF in terms of response time 
and accuracy for different user-item matrix sizes. The scenario is set up so as to depict 
the level of scalability that both algorithms demonstrate when the active user requests 
a single recommendation. We employ sparsity level of 92% in the user-item matrix, 
which means that 92% of the matrix cells are empty and there are only values for 8% 
of it. We consider a user to be similar to the active user if their associated Pearson 
correlation coefficient is greater than 0.65 (in a range of -1 to 1, with 1 expressing 
highest match and -1 expressing highest mismatch between the two users) and also 
that an item is suitable for recommendation if the average ratings of similar users to 
this item is greater than 8 (in a range of 1-10). The values selected represent typical 
values for recommendation systems and do not influence the results of the 
experiments. Table 4 presents the results of our experiments for user-item matrix of 
size 100x100 and 1000x1000 respectively. Experiments have been carried out on a 
2.80 Mhz, 1G RAM  PC. 

Table 4. Performance comparison of Classic CF and ICF 

Classic CF (Based on sampling) Incremental CF User-item  

matrix size Samples (#users) Time (sec) Accuracy Time (sec) Accuracy 

10 0.17 22% 

30 0.55 49.5% 

50 0.765 67.5% 

100 users 

x 

100 items 
99 1.38 100% 

0.045 100% 

10 0.86 1% 

30 2.26 11,7% 

50 3.53 15,3% 

100 6.81 26,7% 

300 20 53,8% 

500 33 66.8% 

1000 users 

x 

1000 items 

999 66 100% 

0.46 100% 

The following remarks derive from Table 4, about the performance of CF and ICF.  

• The trade-off between performance and accuracy in case of Classic CF is 
confirmed. Indeed, Classic CF is very sensitive to the size of samples used. 
As the sample size increases, accuracy is improved, but the response time 
also increases and vice versa. Large sample sizes are impractical for online 



applications due to the slow response time, while small sample sizes are 
impractical due to accuracy degradation 

• The accuracy of ICF is always as high as 100%, since it is always applied to 
the total information in the database 

• ICF proves to be highly-scalable as its response time remains acceptable 
even for a very large data set. E.g. it provides recommendation in 0.46 
seconds for a matrix size of 1000x1000 

• Classic CF requires extremely disproportional time to reach a satisfactory 
accuracy level for large matrix sizes. E.g. when an accuracy level of 66.8% is 
intended, using a sample of 500 users, in a 1000x1000 matrix Classic CF 
performs 71 times slower than ICF 

• ICF’s performance grows linearly only with the number of items in a 
database. In cases of very large number of items ICF will probably need to 
employ some approximation methods 

6 Conclusions and Future Work 

High dimensionality seems to be the “Achilles’ heel” for most of the CF-based 
recommendation systems. For dealing with this scalability problem, we proposed an 
incremental method that replaces expensive vector operations with a scalar operation, 
able to speed-up computations of high dimensional user-item matrices. We named this 
method Incremental Collaborative Filtering (ICF). ICF is not based on any 
approximation method and thus, provides the potential of formulating high-quality 
recommendations. Moreover, pre-computed user to user similarities permit for 
recommendations to be delivered orders of times faster than with classic CF. ICF 
appears to be suitable for online applications, while the methodology described is 
general and may probably be easily adopted to develop incremental collaborative 
filtering with the utilization of similarity measures other than Pearson correlation. As 
future directions of our research we see the identification of trusted paths among users 
for dealing with the cold-start and sparsity problems. Under the assumption that a 
similarity measure can somehow “excessively” be considered as a computational 
metric for expressing the associated trust between two users, it is possible to define a 
relation between two users that have no common items at all, by employing theoretical 
work of trust propagation in small networks. 
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Appendix: Proof of Equations 2-13 

Proof of Equation 2 
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Proof of Equation 3 
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Proof of Equation 4 
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Proof of Equation 5, 6, 7 

In the case that user uy has not rated the item ia, the values of B, C and D are proved in way similar to 
equations 2, 3 and 4 respectively. In this case the increments e, f and g equal to: 
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' ( ') ' ( ') ( ') ' 2 ( ') ( ') ( ')

' 2 ( ') ( ') '

a h a a a a a h a a a a a a a a a a a a h a

a a a a a a a a h a a

n n n

u i u u i u u i u u i u i u i u u i u u i u
h h h

n

u i u i u i u u i u u
h

C r r C r r r r C dr dr r r r r r r

C dr dr r r r r C dr

− −

= = =

=

′= − ⇔ = − + − ⇔ = + − + − + − ⇔

= + − + − ⇔ =

∑ ∑ ∑

∑
' '22

, , , ,
1 1

' '22
, , , ,

1 1

2 ( ') 2 ( )

2 ( ') 2 ( )

a a a a a a a a a h a

a a a a a a a a a a h a

n n

i u i u i u u u u i u
h h

n n

u i u i u i u u u u i u
h h

dr r r C d r dr r r

f dr dr r r dr d r r r

= =

= =

+ − + + − − ⇔

⇒ = + − + − −

∑ ∑

∑ ∑
Proof of Equation 10 

'
2

,
1

' ( ') ' 0
y h y

n

u i u
h

D r r D D g
=

= − ⇔ = ⇒ =∑
 

Proof of Equation 11, 12, 13 

In the case that user uy has not rated the item ia, the values of B, C and D are proved in way similar to 
equations 8, 9 and 10 respectively. In this case the increments e, f and g equal to: 

' ' '2

, ,
1 1 1

( ), ' 2 '( ), 0
a y h y a a a h a

n n n

u u i u u u u i u
h h h

e d r r r f d r dr r r g
= = =

= − − = − − =∑ ∑ ∑
 


