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Abstract

Recommendation agents employ prediction algorithms to provide users with items that match their interests. In this paper, several

prediction algorithms are described and evaluated, some of which are novel in that they combine user-based and item-based

similarity measures derived from either explicit or implicit ratings. Both statistical and decision-support accuracy metrics of the

algorithms are compared against different levels of data sparsity and different operational thresholds. The first metric evaluates the

accuracy in terms of average absolute deviation, while the second evaluates how effectively predictions help users to select high-

quality items. The experimental results indicate better performance of item-based predictions derived from explicit ratings in relation

to both metrics. Category-boosted predictions lead to slightly better predictions when combined with explicit ratings, while implicit

ratings, in the context that have been defined in this paper, perform much worse than explicit ratings.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recommendation systems (Resnick and Varian, 1997)
have been a popular topic of research ever since the
ubiquity of the web made it clear that people of hugely
varying backgrounds would be able to access and query
the same underlying data. The initial human–computer
interaction challenge has been made even more challen-
ging by the observation that customized services require
sophisticated data structures and well thought-out
e front matter r 2005 Elsevier Ltd. All rights reserved.
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architectures to be able to scale up to thousands of
users and beyond.

In recent years, recommendation agents are exten-
sively adopted by both research and e-commerce
recommendation systems in order to provide an
intelligent mechanism to filter out the excess of
information available and to provide customers with
the prospect to effortlessly find out items that they will
probably like according to their logged history of prior
transactions.

1.1. Background

Recommendation agents need to employ efficient
prediction algorithms so as to provide accurate recom-
mendations to users. If a prediction is defined as a value
that expresses the predicted likelihood that a user will
‘‘like’’ an item, then a recommendation is defined as the
list of n items with respect to the top-n predictions from

www.elsevier.com/locate/engappai
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the set of items available. Improved prediction algo-
rithms indicate better recommendations. This explains
the essentiality of exploring and understanding the
broad characteristics and potentials of prediction algo-
rithms and the reason why this work concentrates on
this research direction.

1.1.1. Approaches of recommendation algorithms

There are generally two methods to formulate
recommendations both depending on the type of items
to be recommended, as well as, on the way that user
models (Allen, 1990) are constructed. The two different
approaches are content-based (Balabanovic and Sho-
lam, 1997; Kalles et al., 2003) and collaborative filtering
(Herlocker et al., 2000; Hofmann, 2003), while addi-
tional hybrid techniques have been proposed as well
(Balabanovic and Sholam, 1997).

Content based recommendation algorithms: Content-
based algorithms are principally used when documents
are to be recommended, such as web pages, publica-
tions, jokes or news. The agent maintains inform-
ation about user preferences either by initial input
about user’s interests during the registration process or
by rating documents. Recommendations are formed by
taking into account the content of documents and by
filtering in the ones that better match the user’s
preferences and logged profile.

Collaborative filtering based recommendation algo-

rithms: Collaborative-filtering algorithms aim to identify
users that have relevant interests and preferences by
calculating similarities and dissimilarities between user
profiles (Herlocker et al., 2004). The idea behind this
method is that, it may be of benefit to one’s search for
information to consult the behavior of other users who
share the same or relevant interests and whose opinion
can be trusted.

1.1.2. Challenges of recommendation agents

The challenges for recommendation algorithms ex-
pand to three key dimensions, identified as sparsity,
scalability and cold-start.

Sparsity: Even users that are very active, result in
rating just a few of the total number of items available in
a database. As the majority of the recommendation
algorithms are based on similarity measures computed
over the co-rated set of items, large levels of sparsity can
be detrimental to recommendation agents. In Huang
et al. (2004), authors propose to deal with sparsity
problem by applying an associative retrieval framework
and related spreading activation algorithms to explore
transitive associations among consumers through their
past transactions and feedback.

Scalability: Recommendation algorithms seem to be
efficient in filtering in items that are interesting to users.
However, they require computations that are very
expensive and grow non-linearly with the number of
users and items in a database. Therefore, in order to
bring recommendation algorithms successfully on the
web, and succeed in providing recommendations with
acceptable delay, sophisticated data structures and
advanced, scalable architectures are required. In Cosley
et al. (2002), authors describe an open framework for
practical testing of recommendation systems in an
attempt to provide a standard, public testbed to evaluate
recommendation algorithms in real-world conditions.

Cold-start: An item cannot be recommended unless it
has been rated by a substantial number of users. This
problem applies to new and obscure items and is
particularly detrimental to users with eclectic taste
(Schein et al., 2002; Melville et al., 2002). Likewise, a
new user has to rate a sufficient number of items before
the recommendation algorithm be able to provide
reliable and accurate recommendations.

1.2. Contributions

The primary contributions of this work are:
�
 The utilization of explicit ratings in an ‘‘implicit’’
sense so as to enrich a user’s model, without actually
prompting users to express their preference to
categories.
�
 The description of item-based and user-based simi-
larity measures derived from either explicit or implicit
ratings.
�
 The formation of a range of item-based and user-
based prediction algorithms according to item-based
and user-based similarity measures.
�
 The qualitative analysis and experimental evaluation
of presented prediction algorithms.

1.3. Organization

Section 2 describes a set of similarity measures to
compare the relevance between users or items. Section 3
describes a set of existing and newly introduced
prediction algorithms that integrate the similarity
measures. Section 4 presents the experimental evalua-
tion metrics that are employed in order to compare the
algorithms and the results of the evaluation are
discussed. Section 5 summarizes the contributions of
this work and draws directions for further research.
2. Similarity measures

In this section, a set of similarity measures are
presented based on the Pearson correlation coefficient,
a metric of relevance between two vectors (Pearson,
1900). When the values of these vectors are associated
with a user’s model then the similarity is called user-

based similarity, whereas when they are associated with
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an item’s model then it is called item-based similarity.
The similarity measure can be effectively used to balance
the ratings significance in a prediction algorithm and
therefore to improve accuracy.

There are several similarity algorithms that have been
used: cosine vector similarity, Pearson correlation, Spear-
man correlation, entropy-based uncertainty measure and
mean-squared difference. Breese et al. (1998) suggest that
Pearson correlation performs better than cosine vector
similarity, while Herlock et al. (1999) suggest that
Pearson’s correlation performs better than Spearman’s
correlation, entropy-based uncertainty and mean-
squared difference for collaborative filtering. According
to these remarks Pearson correlation is selected to
compute item-based and user-based similarities taking
advantage of both explicit and implicit ratings.

An explicit rating identifies the preference of a user to
a specific item. An user is prompted by the agent’s
interface to provide ratings for items so as to improve
user’s model. The more ratings the user provides, the
more accurate the recommendations provided are.
Ratings range from 1 to 10 with 1 expressing greatest
aversion to the item and 10 expressing greatest liking to
the item. Explicit ratings are logged by the system and
are employed to construct the user’s model.

An implicit rating (Nichols, 1997; Kleinberg et al.,
2001) identifies the preference of a user to specific
categories.1 The term ‘‘implicit’’ is used here somewhat
excessively, so as to express that a user is never actually
prompted to express a degree of preference to categories.
Taking advantage of the fact that an item belongs to a
number of categories, it is possible to develop a user
model based on category preferences. If the explicit
rating of a user to a specific item that belongs to a set of
categories is considered ‘‘good’’ then user’s model is
updated so as to include the preference and vice versa. A
rating is considered as ‘‘good’’ when it is greater than or
equal to a threshold.

Before describing the algorithms the following defini-
tions are introduced to facilitate the explanation process:
�

1

A set of m users U ¼ fux : x ¼ 1; 2; . . . ;mg;

�
 A set of n items I ¼ fix : x ¼ 1; 2; . . . ; ng;

�
 A set of p categories C ¼ fcx : x ¼ 1; 2; . . . ; pg;

�
 A set of q explicit ratings R ¼ frx : x : 1; 2; :::;

q ^ qpmnng;

�
 A set of t implicit ratings R ¼ fr0x : x ¼ 1; 2; :::;

t ^ tpmnpg;

�
 The explicit rating of a user ux with reference to an

item ih as rux;ih
;

�
 The average explicit rating of a user ux as rux
.

In the sequence, three matrices are defined that derive
from user’s rating activity: the user-item matrix, the
Items in the database belong to categories.
user-category matrix and the item-category bitmap
matrix.
�

2

or
User-item matrix is a matrix of users against items
that have as elements the explicit ratings of users to
items. Some of the user-matrix cells are not filled, as
there are items that are not rated by any user.
�
 User-category matrix is a matrix of users against item
categories that have as elements, values that show the
number of times a user has rated positively or
negatively for a category. For each category two
columns are kept, one for positive ratings and one for
negative ratings.
�
 Item-category bitmap matrix is a matrix of items
against categories that have as elements the value 1 if
the item belongs to the specific category and the value
0 otherwise.

Similarity is computed over the parts of the two
vectors that derive from one of these matrices, as it is
depicted by the shadowed parts of Fig. 1.

2.1. User-based similarity

2.1.1. Based on explicit ratings

If the set of items that users ux and uy have co-rated is
defined as I 0 ¼ fix : x ¼ 1; 2; :::; n0 ^ n0png, where n is
the total number of items in the database, then the
similarity between two users is defined as the Pearson
correlation coefficient of their associated rows in the
user-item matrix and is given by

kx;y ¼ sim ðux; uyÞ

¼

Xn0

h¼1
rux ;ih

	 rux

� �
	 ruy;ih 	 ruy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn0

h¼1
rux ;ih

	 rux

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn0

h¼1
ruy;ih

	 ruy

� �2
q . ð1Þ
2.1.2. Based on implicit ratings

Whenever an explicit rating is submitted by a user for
a specific item, the respective values of the user category
matrix elements are incremented to include the new
rating. Thus, it is possible to infer the preference of a
user ux 2 U to the category cx 2 C by the user-category
matrix. This preference, which is considered as an
implicit rating r0ux;cx

2 R0 to that category is computed as
r0ux;cx

¼ cxpos
=cxpos

þ cxneg

� �
n10, where cxpos

, cxneg
are,

respectively, the number of positive and negative
ratings2 that user ux has implicitly given to category x.
Implicit ratings range from 1 to 10, with 1 expressing
greatest aversion to the category and 10 expressing
greatest liking to the category. The similarity between
Ratings are considered as positive or negative when they are greater

lower than a threshold, respectively.
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Fig. 1. User similarities and Item similarities derive from one of the user-item matrix, the user-category matrix or the item-category matrix by

applying vector similarity measures.
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the two users is defined as the Pearson correlation
coefficient of their implicit ratings to all categories c 2 C

and is given by Eq. (2), where p is the number of
available categories.

lx;y ¼ sim ðux; uyÞ

¼

Xp

h¼1
r0ux ;ch

	 r0ux

� �
	 r0uy;ch

	 r0uy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
r0ux ;ch

	 r0ux

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
r0uy;ch

	 r0uy

� �2
r ð2Þ
2.2. Item-based similarity

2.2.1. Based on explicit ratings

If the set of users that have rated both items ix and iy
is defined as U 0 ¼ fux : x ¼ 1; 2; :::;m0 ^ m0pmg, where
m is the total number of users in database, then the
similarity between two items is defined as the Pearson
correlation coefficient of their associated columns in the
user-item matrix and is given by

mx;y ¼ sim ðix; iyÞ

¼

Xm0

h¼1
ruh;ix 	 rix

� �
	 ruh;iy 	 riy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm0

h¼1
ruh;ix 	 rix

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm0

h¼1
ruh;iy

	 riy

� �2
q . ð3Þ
3Actually, this is not absolutely true. Worse prediction algorithms

than the random-based one can be artificially produced but in order to

do this some kind of logged information is needed.
2.2.2. Based on item-category bitmap

It is also possible to compute the correlation between
two items by taking into account the categories in which
they belong. In this case, the similarity between two
items is defined as the Pearson correlation coefficient of
their associated rows in the item-category bitmap matrix
and is given by Eq. (4), where p is the number of
categories and vch;ix

is a Boolean value that equals to 1 if
the item x belongs to the category h or equals to 0
otherwise

nx;y ¼ sim ðix; iyÞ

¼

Xp

h¼1
vch;ix

	 vix

� �
	 vch;iy

	 viy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
vuh;ix

	 vix

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

h¼1
vuh;iy

	 viy

� �2
q . ð4Þ
3. Prediction algorithms

Prediction algorithms (Breese et al., 1998) try to guess
the rating that a user is going to provide for an item.
This user will be referred as active user ua and this item
as active item ia. These algorithms take advantage of the
logged history of ratings and of content associated with
users and items in order to provide predictions.

3.1. Random prediction algorithms

The random prediction algorithm represents the worst
case of prediction algorithm,3 since instead of applying a
sophisticated technique to produce a prediction it
generates a random one. The random prediction
algorithm serves as a reference point that helps to define
how much better results are obtained by the utilization
of more sophisticated algorithms.

3.2. User-based prediction algorithms description

User-based prediction algorithms are based on user’s
average rating and an adjustment to it, as given by

prediction ¼ user_average þ adjustment. (5)
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The adjustment is most often a weighted sum that
integrates user-based or item-based similarity measures.
Since prediction arises as the sum of the two, improve-
ments can be considered in both operators. Next, the
classic user-based collaborative filtering prediction
algorithm is presented and some improvements are
suggested that take advantage of the different user-
based and item-based similarity measures described in
the earlier section.
3.2.1. User-based with explicit ratings (CFUB	ER)

This prediction algorithm represents the classic user-
based collaborative filtering prediction algorithm and
comes up as the sum of the active user’s average rating,
regarding the whole set of items that the active user has
rated, and an adjustment. The adjustment is a weighted
sum of the other users’ ratings concerning the active
item and their similarity with the active user. The
prediction algorithm is given by Eq. (6), where m0 is the
number of users that have rated the item ia and r̄ua

is the
user’s average rating over the set of items that the active
user has rated

CFUB	ER ¼ pua;ia ¼ r̄ua
þ

Xm0

h¼1
ka;hðruh;ia 	 r̄uh

ÞXm0

h¼1
ka;h

		 		 . (6)

3.2.2. User-based with explicit ratings and category

boosted (CFUB	ER	CB)

Instead of computing the active user’s average rating
over the total number of rated items, it may be
preferable to take into account the active user’s average
rating over the subset of rated items that belong to the
same categories as the active item. This seems reason-
able, since user’s ratings may be higher for specific item
categories and lower for others. The prediction algo-
rithm is given by Eq. (7), where m0 is the number of users
that have rated the active item ia and r̄ua

is user’s average
rating over the set of items that have been rated by the
active user and belong to at least one of the categories
that active item ia belongs to

CFUB	ER	CB ¼ pua;ia ¼ r̄ua
þ

Xm0

h¼1
ka;hðruh;ia 	 r̄uh

ÞXm0

h¼1
ka;h

		 		 .

(7)

3.2.3. User-based with implicit ratings (CFUB	IR)

Instead of using the user-based explicit ratings
similarity k, it is possible to use the user-based implicit
ratings similarity l in order to compute the similarity
between the active user and the other users. The
prediction algorithm is given by Eq. (8), where m0 is
the number of users that have rated the item ia and r̄ua

is
the user’s average rating over the set of items that the
active user has rated.

CFUB	IR ¼ pua;ia ¼ r̄ua
þ

Xm0

h¼1
la;hðruh;ia 	 r̄uh

ÞXm0

h¼1
la;h

		 		 . (8)
3.3. Item-based prediction algorithms description

Item-based prediction algorithms refer to algorithms
that are based on item’s average rating and an
adjustment to it, as given by

prediction ¼ item_average þ adjustment: (9)

The adjustment is most often a weighted sum that
integrates user-based or item-based similarity measures.
Since prediction arises as the sum of the two, improve-
ments can be considered in both operators. Next, two
item-based algorithms are suggested; an item-based
collaborative filtering prediction algorithm based on
explicit ratings and an item-based collaborative filtering
prediction algorithm based on implicit ratings. Both
cases employ the item-based similarity measures de-
scribed in the earlier section.
3.3.1. Item-based with explicit ratings

This algorithm can be considered as the reverse of the
classic user-based collaborative filtering. First, the
item’s average rating is computed and then an adjust-
ment is added. The item-based collaborative filtering
prediction algorithm comes up as the sum of the
active item’s average rating, regarding the whole set of
users that have rated it, and an adjustment. The
adjustment is a weighted sum of the ratings that the
active user has given to other items and their similarity
with the active item. The prediction algorithm is given
by Eq. (10), where n0 is the number of items that the
active user ua has rated and r̄ia is the item’s average
rating based on all the ratings that have been submitted
for it

CFIB	ER ¼ pua;ia ¼ r̄ia þ

Xn0

h¼1
ma;hðrua;ih

	 r̄ua
ÞXn0

h¼1
ma;h

		 		 . (10)
3.3.2. Item-based with implicit ratings

Instead of using the item-based explicit ratings
similarity m, it is possible to use the item-based implicit
ratings similarity n in order to compute the similarity
between the active item and the other items. The
prediction algorithm is given by Eq. (11), where n0 is
the number of items that the active user ua has rated and
r̄ia is the item’s average rating based on all the ratings



ARTICLE IN PRESS
M. Papagelis, D. Plexousakis / Engineering Applications of Artificial Intelligence 18 (2005) 781–789786
that have been submitted for it

CFIB	IR ¼ pua;ia ¼ r̄ia þ

Xn0

h¼1
na;hðrua;ih

	 r̄ua
ÞXn0

h¼1
na;h

		 		 . (11)
4. Experimental evaluation and results

4.1. Data set

The experimental data comes from an in-house movie
recommendation system named Movie Recommenda-
tion System (MRS). The MRS database currently
consists of 2068 ratings provided by 114 users to 641
movies, which belong to at least 1 of 21 categories.
Therefore the lowest level of sparsity for the tests is
defined as 114 � 641 	 2068=114 � 641 ’ 0:9717. The
prediction algorithms are tested over a pre-selected 300-
ratings set extracted randomly by the set of 2068 actual
ratings. The interested user is strongly encouraged to
visit the website of the system and obtain a more
detailed view.

4.2. Metrics

Coverage and accuracy are two key dimensions on
which the quality of a prediction algorithm is usually
evaluated. The metrics that are employed to evaluate
coverage and accuracy are discussed below.

4.2.1. Coverage metric

Coverage is a measure of the percentage of items for
which a recommendation agent can provide predictions.
A basic coverage metric is the percentage of items for
which predictions are available. Coverage can be
reduced by defining small neighborhood sizes or by
sampling users to compute predictions. All experimental
results demonstrated in this paper had coverage slightly
less than perfect for typical level of sparsity (Coverage:
99%, Sparsity: 97.17%, in these experiments). Ob-
viously a prediction cannot be computed in case that
the active user has zero correlations with other users.

4.2.2. Accuracy metrics

Several metrics have been proposed for assessing the
accuracy of collaborative filtering methods. They are
divided into two main categories: statistical accuracy

metrics and decision-support accuracy metrics.
Statistical accuracy metrics: Statistical accuracy me-

trics evaluate the accuracy of a prediction algorithm by
comparing the numerical deviation of the predicted
ratings from the respective actual user ratings. Some of
them frequently used are mean absolute error (MAE),
root mean squared error (RMSE) and correlation

between ratings and predictions (Herlocker et al.,
1999). All of the above metrics were computed on result
data and generally provided the same conclusions.

As statistical accuracy measure, mean absolute error
(MAE) (Hofmann, 2003) is employed. Formally, if n is
the number of actual ratings in an item set, then MAE is
defined as the average absolute difference between the n

pairs oph; rh4 of predicted ratings ph and the actual
ratings rh and is given by

MAE ¼

Xn

h¼1
ph 	 rh

		 		
n

. (12)

The lower the MAE, the more accurate the predic-
tions would be, allowing for better recommendations to
be formulated. MAE has been computed for different
prediction algorithms and for different levels of sparsity.
Table 1 provides values for the MAE of the different
prediction algorithms presented, while Fig. 2 illustrates
the sensitivity of the algorithms in relation to the
different levels of sparsity applied.

As far as statistical accuracy is concerned, the
following outcomes about the quality performance of
the prediction algorithms are reached:
�
 Performance of item-based prediction algorithms is
of superior quality than user-based prediction algo-
rithms.
�
 Performance of implicit rating based algorithms, in
the sense that they have been defined for these tests, is
of inferior quality than explicit rating based algo-
rithms.
�
 Item-based algorithm, based on explicit ratings
(CFIB-ER) seems to be very sensitive to sparsity levels.
As sparsity reduces, the MAE of the algorithm
decreases, which means that prediction accuracy is
increased. CFIB-ER performs as much as 39.5% better
than classic Collaborative Filtering prediction algo-
rithm, CFUB-ER, for Sparsity levels close to 97.2%.
�
 CFUB-ER-CB increases the accuracy precision of
CFUB-ER, as it calculates the user average based only
on the subset of items that belong to the same
categories as the active item. However, this increment
is insignificant if taking into consideration the extra
computation needed to include the category informa-
tion.

Experimental results indicate that item-based algo-
rithms provide more accurate recommendations than
user-based algorithms. In particular, CFIB-ER behaves
much better as data becomes more dense (i.e. sparsity
level decreases) in comparison to all other algorithms
presented. A prospective recommendation agent would
provide predictions with a mean absolute error lower
than 1 grade (i.e. 0.838). In MRS recommendation
system, ratings range from 1 to 10, while in other
common systems (e.g. GroupLens, EachMovie dataset)
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Table 1

Statistical accuracy of the different prediction algorithms in terms of mean absolute error (MAE) with respect to different Sparsity levels

Prediction algorithms Sparsity levels

0.972 0.975 0.98 0.985 0.99 0.995 0.999

CFUB-ER 1.385 1.457 1.541 1.637 1.801 1.746 1.865

CFUB-ER-CB 1.34 1.412 1.518 1.606 1.807 1.667 1.771

CFUB-IR 1.703 1.739 1.796 1.781 1.755 1.863 2.147

CFIB-ER 0.838 0.91 1.06 1.14 1.28 1.626 1.66

CFIB-IR 1.35 1.38 1.445 1.45 1.521 1.804 1.665

Random 3.166 3.515 3.414 3.024 3.256 3.174 3.398

2.2
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Fig. 2. Statistical accuracy of the different prediction algorithms in

terms of mean absolute error (MAE) with respect to different sparsity

levels.
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ratings range from 1 to 5. In order to obtain a clear
comparative view of presented MAE results, one needs
to divide the results with a factor of 2. This considera-
tion leads to MAE of 0.419 in the best case, which is
particularly satisfactory for providing high-quality
recommendations.

Decision-support accuracy metrics: Decision-support
accuracy metrics evaluate how effectively predictions
help a user to select high-quality items. Some of them
frequently used are reversal rate, weighted errors,
precision-recall curve (PRC) sensitivity and receiver

operating characteristic (ROC) sensitivity (Sarwar et
al., 1998). They are based on the observation that, for
many users, filtering is a binary process. Consequently,
prediction algorithms can be treated as a filtering
procedure, which distinguishes ‘‘good’’ items from
‘‘bad’’ items.

As decision support accuracy measure, ROC sensitiv-
ity is employed. ROC sensitivity is a measure of the
diagnostic power of a filtering system. Operationally, it
is the area under the receiver operating characteristic
(ROC) curve-a curve that plots the sensitivity and the 1-
specificity of the test. Sensitivity refers to the probability
of a randomly selected ‘‘good’’ item being accepted by
the filter. Specificity is the probability of a randomly
selected ‘‘bad’’ item being rejected by the filter. The
ROC curve plots sensitivity (from 0 to 1) and 1—
specificity (from 0 to 1), obtaining a set of points by
varying the quality threshold. The ROC sensitivity
range between 0 and 1, where 0.5 is random and 1 is
perfect.

If PR denotes the predicted rating, AR denotes the
actual rating and the quality threshold as QT, then the
following possible cases are defined by the filter for one
item:
�
 True Positive (TP) when PRXQT ^ ARXQT;

�
 False Positive (FP) when PRXQT ^ ARoQT;

�
 True Negative (TN) when PRoQT ^ ARoQT;

�
 False Negative (FN) when PRoQT ^ ARXQT.
For a set of items sensitivity is defined as the true
positive fraction (TPF) and the 1-specificity as the false
positive fraction (FPF) where
�
 sensitivity ¼ TPF ¼ tp=ðtp þ fnÞ, where tp, fn is the
number of the true positive and the false negative
occurrences over the set of items, respectively.
�
 1 	 specificity ¼ FPF ¼ fp=ðfp þ tnÞ, where tn, fp is
the number of the true negative and the false positive
occurrences over the set of items, respectively.

ROC curve has been computed for different predic-
tion algorithms and for quality thresholds ranging
between 1 and 9, while the sparsity level was equal to
0.972. Notation of the form ROC-threshold defines the
discrete points on the ROC curve for the specific quality
threshold value. The area under the curve represents
how much sensitive the prediction algorithm is, so the
more area it covers the better for the prediction
algorithm. Fig. 3 illustrates the sensitivity of the
different prediction algorithms, while Table 2 provides
specific values for the ROC-6, ROC-7, ROC-8 and
ROC-9 curves of the different prediction algorithms
presented, which are of greatest interest. We consider
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Fig. 3. Decision support accuracy of the different prediction

algorithms in terms of receiver operating curve (ROC) with respect

to different sparsity levels.

Table 2

Decision support accuracy of the different prediction algorithms in

terms of receiver operating curve (ROC) with respect to different

Sparsity levels

TPF or sensitivity Quality threshold

Prediction algorithms ROC-6 ROC-7 ROC-8 ROC-9

CFUB-ER 0.77 0.55 0.28 0.21

CFUB-ER-CB 0.77 0.59 0.33 0.24

CFUB-IR 0.75 0.39 0.2 0.1

CFIB-ER 0.89 0.71 0.53 0.41

CFIB-IR 0.78 0.53 0.28 0.21
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these specific points in ROC curve of greatest interest,
because typically an item is considered as ‘‘good’’ if its
average rating is over 6, 7, 8, or 9 in a 1–10 rating scale.

The following remarks can be made about the quality
of the prediction algorithms as far as decision-support
accuracy is concerned.
�
 Performance of item-based prediction algorithms is
of superior quality than user-based prediction algo-
rithms.
�
 Performance of implicit rating based algorithms, in
the context that have been defined in this paper, is of
inferior quality than explicit rating based algorithms.
�
 CFIB-ER performs 95% better than classic collabora-
tive filtering, CFUB-ER, for ROC-9, 89% better for
ROC-8 and 29% better for ROC-7. This means that
if as ‘‘good’’ items are defined the ones that have
average rating more than 9 or 8 or 7, respectively, and
as ‘‘bad’’ items the ones that have average rating less
than 9 or 8 or 7, respectively, then CFIB-ER predicts
and therefore recommends items with 95% or 89% or
29%, respectively, more accuracy than classic colla-
borative filtering CFUB-ER.
�
 To obtain a clear view of the overall performance of
each algorithm one needs to compute the area under
the ROC curve. It is clear from Fig. 3 that CFIB-ER

performs much better than every other algorithm
examined.
5. Conclusions and future work

The vast volume of information flowing on the web
has given rise to the need for information filtering
techniques. Recommendation agents are effectively used
to filter out excess information and to provide persona-
lized services to users by employing sophisticated, well
thought-out prediction algorithms. This work described
how explicit ratings can be utilized in order to implicitly
obtain user’s preference to specific categories. A number
of prediction algorithms have been designed and
implemented, based on either user or item similarity
and have been thoroughly evaluated according to their
statistical and decision-support accuracy performance.
Experimental analysis showed that the performance of
item-based prediction algorithms is of superior quality
than user-based prediction algorithms. Category-
boosted algorithms can lead to slightly better quality
when combined with explicit ratings, while performance
of prediction algorithms based on implicit ratings is of
inferior quality than ones based on explicit ratings.

Directions for future research include incremental
updates of the similarity measures and exploration of
caching schemes for effectively bringing recommenda-
tion algorithms on the Web and dealing with the
scalability problem, use of prediction algorithms to
identify virtual, dynamically created communities based
on user models’ similarity, and identification of trust
inferences between users, in a social network context, to
alleviate the Sparsity problem of recommendation
algorithms.
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